Supplementary Information

Gold-Catalyzed Four-Component Multifunctionalization of Alkynes

Shangwen Fang,¹ Jie Han,¹ Chengjian Zhu,^{1,2} Weipeng Li¹ and Jin Xie^{1,3*}

¹State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

²Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China

³State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China Email: xie@nju.edu.cn

Table of Contents

1. General information	3
2. Optimization details	4
3. General procedure	9
4. Characterization data for the products	10
5. X-ray structure of products	47
6. Mechanistic study	50
7. Preparation of starting materials	56
8. NMR spectra	69
9 References	182

1. General information

All reactions were conducted in oven- or flame-dried glassware under an air atmosphere. Unless otherwise noted, all reagents were used as received and handled under air atmosphere. Chloroform- d_1 was purchased from J & K Scientific Ltd.

NMR spectra were recorded on a Bruker Ultra-shield 500 and 600MHz spectrometer. 1 H NMR, 13 C NMR and 19 F NMR are recorded on an NMR spectrometer with CDCl₃ as solvent. Chemical shifts of 1 H, 13 C, 19 F and 31 P NMR spectra are reported in parts per million (ppm). The 19 F NMR spectra is {1H} decoupled and the 13 C NMR spectra is {1H} decoupled. The residual solvent signals were used as standard, and the chemical shifts were converted to the corresponding scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.00 ppm). All coupling constants (J values) were reported in hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet(t), quint (quintet), and multiplet (m). GC-MS analyses were performed on a GC-MS with an EI mode. HRMS (ESI) was determined on the Micromass Q-TOF instrument. The IR spectrum was recorded on a Brucker Alpha FT/IR instrument. Schlenk tubes (10 mL and 500 mL) were purchased from synthware. Toppette was purchased from DLAB Scientific Co., Ltd. The compound names were generated by the Computer program ChemDraw according to the guidelines specified by the International Union of Pure and Applied Chemistry (IUPAC).

All reagents were purchased from commercial suppliers, Aladdin, Adamas-beta®, TCI (Shanghai) Development Co., Ltd, Energy Chemical, J & K scientific Ltd., Bide Pharmatech Ltd, Alfa-Aesar and Sigma-Aldrich unless otherwise noted.

2. Optimization details

2.1 Initial screening for directing groups

Supplementary Table 1 Investigation of directing groups^a

(4-CF₃Ph)₃PAuCl (10 mol%)

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **1** (0.1 mmol), **2** (0.3 mmol), Selectflour (0.2 mmol), H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

2.1 Optimization of oxidative oxo-arylfluorination of alkynes

Supplementary Table 2 Screening of gold catalysts and solvent^a

Ph PO(OEt)₂ +
$$p$$
-Tol-B(OH)₂ + Selectfluor + H₂O $\xrightarrow{\text{[Au]}}$ $\xrightarrow{\text{Po och }}$ PO(OEt)₂ $\xrightarrow{\text{Po och }}$ PO(OEt)₂ $\xrightarrow{\text{Po och }}$ PO(OEt)₂ $\xrightarrow{\text{Po och }}$ $\xrightarrow{\text{Po och }}$ PO(OEt)₂ $\xrightarrow{\text{Po och }}$ $\xrightarrow{\text{Po och }$

			ou
entry	gold catalyst	solvent	yield (%) ^b
1	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	MeCN	70
2	DMSAuCl (10 mol%)	MeCN	55
3	PNP(AuCl) ₂ (5 mol%)	MeCN	32
4	Me-DelphosAuCl (10 mol%)	MeCN	36
5	Au-I (10 mol%)	MeCN	64
6	Au-II (10 mol%)	MeCN	60
7	Au-III (5 mol%)	MeCN	60
8	Au-IV (5 mol%)	MeCN	53
9	Au-V (5 mol%)	MeCN	< 5
10	Au-VI (10 mol%)	MeCN	64
11	-	MeCN	0
12	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	toluene	0
13	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	DMF	< 5

^aStandard reaction conditions: gold catalyst, **1a** (0.1 mmol), **2a** (0.3 mmol), Selectflour (0.4 mmol), H₂O (0.2 mmol), solvent (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

Supplementary Table 3. Screening of reaction temperature^a

Ph PO(OEt)₂ +
$$p$$
-Tol-B(OH)₂ + Selectfluor + H_2 O $\frac{(4\text{-CF}_3\text{Ph})_3\text{PAuCl}}{\text{MeCN}}$ $\frac{O}{\text{Ph}}$ PO(OEt)₂

1a 2a 3a

entry temperature (°C) yield (%)^b

1 40 65

2 50 70

3 60 61

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **1a** (0.1 mmol), **2a** (0.3 mmol), Selectflour (0.4 mmol), H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out with heat under air atmosphere for 12 h; ^bIsolated yields.

Supplementary Table 4. Screening of [F]-reagent^a

Ph PO(OEt)₂ +
$$\rho$$
-Tol-B(OH)₂ + [F] + H₂O $\frac{(4\text{-CF}_3\text{Ph})_3\text{PAuCl}}{50\,^{\circ}\text{C}}$ $\frac{1}{\rho}$ -Tol F PO(OEt)₂

1a 2a $\frac{1}{1}$ $\frac{1}{1}$

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **1a** (0.1 mmol), **2a** (0.3 mmol), [F]-reagent, H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

$$F'$$
 $2 BF_4$ F SO_3CF_3

Supplementary Table 5. Screening of the amount of boronic acid^a

Ph PO(OEt)₂ +
$$p$$
-Tol-B(OH)₂ + Selectfluor + H_2 O $\frac{(4\text{-CF}_3\text{Ph})_3\text{PAuCl}}{50\,^{\circ}\text{C}}$ Ph PO(OEt)₂

1a 2a 3a

entry boronic acid (equiv) yield (%)^b

1 2.0 47

2 3.0 70

3 4.0 66

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **1a** (0.1 mmol), **2a**, Selectflour (0.4 mmol), H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

2.2 Optimization of oxo-arylalkenylation of alkynes

Supplementary Table 6. Screening of gold catalysts^a

4a	2d		5a
entry	gold catalyst	solvent	yield (%) ^b
1	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	MeCN	65
2	(p-Tol) ₃ PAuCl (10 mol%)	MeCN	52
3	Me-DelphosAuCl (10 mol%)	MeCN	7
4	PNP(AuCl) ₂ (5 mol%)	MeCN	43
5	dppm(AuCl) ₂ (5 mol%)	MeCN	48
6	-	MeCN	0
7	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	DMF	7
8	(4-CF ₃ Ph) ₃ PAuCl (10 mol%)	toluene	0

^aStandard reaction conditions: gold catalyst, **4a** (0.1 mmol), **2d** (0.3 mmol), Selectflour (0.25 mmol), H₂O (0.2 mmol), solvent (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

Supplementary Table 7. Screening of reaction temperature^a

4a	2d	5a
entry	temperature (°C)	yield (%) ^b
1.	40	48
2.	50	65
3.	60	50

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **4a** (0.1 mmol), **2d** (0.3 mmol), Selectflour (0.25 mmol), H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out with heat under air atmosphere for 12 h; ^bIsolated yields.

Supplementary Table 8. Screening of [F]- reagent^a

4a	2d	5a
entry	[F]- reagent	yield (%) ^b
1	-	0
2	[F]-I (2.5 equiv)	53
3	[F]-II (2.5 equiv)	< 5
4	NFSI (2.5 equiv)	< 5
5	Selectfluor (2.0 equiv)	47
6	Selectfluor (2.5 equiv)	65
7	Selectfluor (3.0 equiv)	60

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **4a** (0.1 mmol), **2d** (0.3 mmol), [F]-reagent, H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

$$F^{+}$$
 2 BF₄ F^{-} SO₃CF₃

Supplementary Table 9. Screening of the amount of boronic acid^a

4a	2d	5a
entry	boronic acid (equiv)	yield (%) ^b
1.	2.0	49
2.	3.0	65
3.	4.0	59

^aStandard reaction conditions: (4-CF₃Ph)₃PAuCl (10 mol%), **4a** (0.1 mmol), **2d**, Selectflour (0.25 mmol), H₂O (0.2 mmol), MeCN (2.0 mL), the reactions are carried out at 50 °C under air atmosphere for 12 h; ^bIsolated yields.

3. General procedure

GP1: General procedure for oxo-arylfluorination of alkynes

PO(OEt)₂ + ArB(OH)₂ + Selectfluor + H₂O
$$(4-CF_3Ph)_3PAuCl (10 mol%)
 $50 \, ^{\circ}C$ $MeCN (2.0 mL)$ $Ar F$$$

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), ArB(OH)₂ (0.3 mmol, 3.0 equiv.) and Selectfluor (0.4 mmol, 4.0 equiv.) are successively added under air atmosphere. Then MeCN (2.0 mL) is added into the tube under stirring conditions. After that, alkynes (0.1 mmol, 1.0 equiv.) and water (0.2 mmol, 2.0 euqiv) are added by microinjector under air atmosphere. The resulting reaction mixture is heated at 50 °C for 12 hours. When the reaction is finished (monitored by TLC), the reaction mixture is cooled to room temperature, and then concentrated in vacuo. The resulting residue is

purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the final product 3.

GP2: General procedure for oxo-arylalkenylation of alkynes

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), ArB(OH)₂ (0.3 mmol, 3.0 equiv.), Selectfluor (0.25 mmol, 2.5 equiv.) and MeCN (2 mL) are added successively under air atmosphere. After that, the corresponding alkynes (0.1 mmol, 1.0 equiv.) and water (0.2 mmol, 2.0 equiv.) are added by microinjector under air atmosphere. The resulting reaction mixture is heated at 50 °C for 12 hours and then cooled to room temperature and concentrated in vacuo. The resulting residue is purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the final product 5.

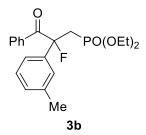
4. Characterization data for the products

diethyl (2-fluoro-3-oxo-3-phenyl-2-(p-tolyl)propyl)phosphonate

Compound **3a** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (25.2 mg, 70%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (m, 2H), 7.50 – 7.45 (m, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.35 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.09 – 3.99 (m, 4H), 3.37 – 3.23

(m, 1H), 2.68 - 2.59 (m, 1H), 2.33 (s, 3H), 1.23 (td, <math>J = 7.0, 4.1 Hz, 6H);


¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.9 (dd, J = 26.7, 4.5 Hz), 138.6, 135.5 (dd, J = 22.6, 11.6 Hz), 134.4 (d, J = 3.5 Hz), 132.9, 130.1 (d, J = 6.3 Hz), 129.6 (d, J = 1.7 Hz), 128.1, 123.9 (d, J = 8.7 Hz), 100.7 (dd, J = 192.6, 7.4 Hz), 61.8 (t, J = 5.9 Hz), 37.5 (dd, J = 139.6, 25.7 Hz), 21.1, 16.2 (dd, J = 6.2, 2.7 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.61 (d, J = 4.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.50 (d, J = 3.9 Hz);

IR (ATR): v = 1686, 1251, 1208, 1050, 1022, 959, 901, 830, 701, 688, 593;

HRMS (ESI) Calculated for $C_{20}H_{25}FO_4P [M+H]^+$: 379.1469; found 379.1462.

diethyl (2-fluoro-3-oxo-3-phenyl-2-(m-tolyl)propyl)phosphonate

Compound **3b** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (22.5 mg, 60%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91 – 7.89 (m, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.9 Hz, 3H), 7.32 – 7.24 (m, 2H), 7.13 (d, J = 7.6 Hz, 1H), 4.10 – 3.97 (m, 4H), 3.38 – 3.24 (m, 1H), 2.69 – 2.55 (m, 1H), 2.35 (s, 3H), 1.23 (td, J = 7.1, 4.9 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.8 (dd, J = 26.8, 3.8 Hz), 138.7 (d, J = 1.7 Hz), 138.4 (dd, J = 22.5, 11.6 Hz), 134.4 (d, J = 3.4 Hz), 132.9, 130.1 (d, J = 6.2 Hz), 129.4, 128.8 (d, J = 1.8 Hz), 128.1, 124.5 (d, J = 8.6 Hz), 121.0 (d, J = 9.3 Hz), 100.6 (dd, J = 192.9, 7.0 Hz), 61.8 (t, J = 5.9 Hz), 37.7 (dd, J = 139.5, 25.6 Hz), 21.5, 16.2 (dd, J = 6.3, 3.2 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.83 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.43 (d, J = 3.9 Hz);

IR (ATR): *v* = 2925, 1687, 1447, 1251, 1208, 1162, 1097, 1052, 1025, 964, 909, 776, 697;

HRMS (ESI) Calculated for C₂₀H₂₅FO₄P [M+H]⁺: 379.1469; found 379.1466.

diethyl (2-fluoro-2-(4-isopropylphenyl)-3-oxo-3-phenylpropyl)phosphonate

Compound **3c** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (28.8 mg, 71%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.92 – 7.91 (m, 2H), 7.50 – 7.40 (m, 3H), 7.34 (t, J = 7.8 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 4.09 – 3.94 (m, 4H), 3.37 – 3.23 (m, 1H), 2.90 – 2.85 (m, 1H), 2.69 – 2.60 (m, 1H), 1.25 – 1.17 (m, 12H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.9 (dd, J = 27.0, 4.4 Hz), 149.4, 135.7 (dd, J = 22.7, 11.7 Hz), 134.4 (d, J = 3.5 Hz), 132.8, 130.1 (d, J = 6.4 Hz), 128.0, 126.9, 124.0 (d, J = 8.9 Hz), 100.7 (dd, J = 192.6, 6.9 Hz), 61.7 (t, J = 7.0 Hz), 37.5 (dd, J = 139.4, 25.5 Hz), 33.7, 23.8 (d, J = 2.8 Hz), 16.2 (dd, J = 6.3, 2.9 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.54 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.51 (d, J = 3.8 Hz);

IR (ATR): v = 2960, 2926, 1686, 1510, 1251, 1050, 960, 901, 688;

HRMS (ESI) Calculated for C₂₂H₂₉FO₄P [M+H]+: 407.1782; found 407.1775.

diethyl (2-fluoro-3-oxo-2,3-diphenylpropyl)phosphonate

Compound **3d** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (22.3mg, 61%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91 – 7.89 (m, 2H), 7.55 – 7.52 (m, 2H), 7.49 – 7.46 (m, 1H), 7.41 – 7.30 (m, 5H), 4.09 – 3.98 (m, 4H), 3.38 – 3.25 (m, 1H), 2.71 – 2.62 (m, 1H), 1.23 (td, J = 7.1, 4.2 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.8 (dd, J = 26.7, 4.6 Hz), 138.4 (dd, J = 22.5, 11.4 Hz), 134.3 (d, J = 3.6 Hz), 133.0 , 130.1 (d, J = 6.3 Hz), 128.9 (d, J = 1.9 Hz), 128.6, 128.1, 124.0 (d, J = 9.0 Hz), 100.6 (dd, J = 193.1, 7.1 Hz), 61.8 (t, J = 6.1 Hz), 37.5 (dd, J = 139.9, 25.5 Hz), 16.2 (dd, J = 6.3, 2.9 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.10 (d, J = 4.6 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.35 (d, J = 4.0 Hz);

IR (ATR): *v* = 1686, 1251, 1208, 1050, 1022, 959, 900, 830, 701, 688, 593;

HRMS (ESI) Calculated for $C_{19}H_{23}FO_4P [M+H]^+$: 365.1313; found 365.1309.

diethyl (2-fluoro-2-(4-fluorophenyl)-3-oxo-3-phenylpropyl)phosphonate

Compound **3e** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (25.2 mg, 66%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89 – 7.87 (m, 2H), 7.53 – 7.46 (m, 3H), 7.37 – 7.34 (m, 2H), 7.10 – 7.05 (m, 2H), 4.09 – 3.98 (m, 4H), 3.33 – 3.20 (m, 1H), 2.70 – 2.61 (m, 1H), 1.22 (td, J = 7.1, 3.2 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.7 (dd, J = 26.7, 4.9 Hz), 163.8, 161.8, 134.2 (d, J = 3.5 Hz), 133.1, 130.1 (d, J = 6.4 Hz), 128.2, 126.1 (t, J = 8.8 Hz), 115.9 (dd, J = 21.8, 1.3 Hz). 100.4 (dd, J = 193.5, 6.6 Hz), 61.9 (dd, J = 6.3, 2.8 Hz), 37.5 (dd, J =

140.3, 25.5 Hz), 16.2 (dd, J = 6.3, 2.4 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -113.00, -157.08 (d, J = 4.2 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.03 (d, J = 3.8 Hz);

IR (ATR): *v* = 2926, 1685, 1531, 1441, 1349, 1243, 1040, 967, 782;

HRMS (ESI) Calculated for $C_{19}H_{22}F_2O_4P$ [M+H]⁺: 383.1218; found 383.1217.

diethyl (2-(4-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **3f** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (23.8 mg, 60%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89 – 7.86 (m, 2H), 7.51 – 7.45 (m, 3H), 7.39 – 7.34 (m, 4H), 4.08 – 3.98 (m, 4H), 3.32 – 3.19 (m, 1H), 2.69 – 2.60 (m, 1H), 1.22 (td, J = 7.1, 3.5 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-d) δ 196.5 (dd, J = 26.6, 5.1 Hz), 136.9 (dd, J = 23.0, 11.4 Hz), 134.9 , 134.1 (d, J = 3.5 Hz), 133.2 , 130.1 (d, J = 6.4 Hz), 129.1 (d, J = 1.7 Hz), 128.2 , 125.6 (d, J = 9.1 Hz), 100.3 (dd, J = 194.0, 6.7 Hz), 61.9 (dd, J = 6.3, 2.0 Hz), 37.4 (dd, J = 140.5, 25.5 Hz), 16.2 (dd, J = 6.2, 2.5 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.89 (d, J = 4.2 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.93 (d, J = 4.5 Hz);

IR (ATR): v = 1686, 1247, 1094, 1049, 1016, 958, 899, 839, 781, 730, 699, 595, 538; HRMS (ESI) Calculated for $C_{19}H_{22}ClFO_4P$ [M+H]⁺: 399.0923; found 399.0921.

diethyl (2-(3-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **3g** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (25.0 mg, 62%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89 – 7.87 (m, 2H), 7.57 – 7.52 (m, 1H), 7.53 – 7.45 (m, 1H), 7.43 – 7.33 (m, 3H), 7.35 – 7.27 (m, 2H), 4.10 – 3.96 (m, 4H), 3.33 – 3.19 (m, 1H), 2.68 – 2.59 (m, 1H), 1.22 (td, J = 7.1, 5.1 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.3 (dd, J = 26.6, 4.6 Hz), 140.3 (dd, J = 22.8, 11.5 Hz), 135.0 (d, J = 2.1 Hz), 134.1 (d, J = 3.6 Hz), 133.2 , 130.2 (d, J = 1.7 Hz), 130.0 (d, J = 6.5 Hz), 128.9 , 128.2 , 124.3 (d, J = 10.0 Hz), 122.2 (d, J = 8.9 Hz), 100.1 (dd, J = 194.8, 6.9 Hz), 61.9 (t, J = 5.6 Hz), 37.5 (dd, J = 140.4, 25.4 Hz), 16.2 (dd, J = 6.1, 3.5 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.03 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.78 (d, J = 5.0 Hz);

IR (ATR): v = 1686, 1248, 1211, 1050, 1023, 983, 963, 792, 691;

HRMS (ESI) Calculated for C₁₉H₂₂ClFO₄P [M+H]⁺: 399.0923; found 399.0923.

diethyl (2-(4-bromophenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **3h** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (32.5 mg, 74%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v)

as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, 2H), 7.54 – 7.47 (m, 3H), 7.43 – 7.39 (m, 2H), 7.38 – 7.34 (m, 2H), 4.10 – 3.97 (m, 4H), 3.32 – 3.18 (m, 1H), 2.69 – 2.60 (m, 1H), 1.22 (td, J = 7.1, 3.6 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196. 5 (dd, J = 26.5, 4.8 Hz), 137.4 (dd, J = 22.8, 11.3 Hz), 134.1 (d, J = 3.8 Hz), 133.2, 132.1 (d, J = 1.7 Hz), 130.1 (d, J = 6.4 Hz), 128.2, 125.8 (d, J = 9.1 Hz), 123.0, 100.4 (dd, J = 194.1, 6.9 Hz), 61.9 (dd, J = 6.3, 1.8 Hz), 37.3 (dd, J = 140.5, 25.4 Hz), 16.2 (dd, J = 6.2, 2.5 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.10 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.87 (d, J = 4.0 Hz);

IR (ATR): *v* = 1685, 1487, 1395, 1246, 1210, 1048, 1020, 958, 899, 837, 781, 723, 698, 594, 528;

HRMS (ESI) Calculated for C₁₉H₂₂BrFO₄P [M+H]⁺: 443.0418; found 443.0418.

diethyl (2-fluoro-2-(4-iodophenyl)-3-oxo-3-phenylpropyl)phosphonate

Compound **3i** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (26.5 mg, 54%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.55 – 7.46 (m, 1H), 7.38 – 7.35 (m, 2H), 7.30 – 7.24 (m, 2H), 4.09 – 3.98 (m, 4H), 3.31 – 3.17 (m, 1H), 2.69-2.59 (m, 1H), 1.23 (td, J = 7.1, 3.9 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5 (dd, J = 26.6, 4.9 Hz), 138.1 (dd, J = 22.8, 11.3 Hz), 138.0 (d, J = 1.9 Hz), 134.1 (d, J = 3.7 Hz), 133.2, 130.1 (d, J = 6.4 Hz), 128.3, 126.0 (d, J = 8.9 Hz), 100.4 (dd, J = 194.2, 6.9 Hz), 94.8, 61.9 (dd, J = 6.3, 1.8 Hz), 37.3 (dd, J = 140.4, 25.5 Hz), 16.3 (dd, J = 6.3, 2.7 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.44 (d, J = 4.0 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.86 (d, J = 3.8 Hz);

IR (ATR): v = 2980, 2924, 2853, 1686, 1392, 1250, 1052, 1025, 970, 899, 720; HRMS (ESI) Calculated for $C_{19}H_{22}FIO_4P [M+H]^+$: 491.0279; found 491.0276.

diethyl (2-(3-bromo-5-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **3j** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (41.9 mg, 88%). The flash chromatography was performed with EA/PE (1:2~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 – 7.86 (m, 2H), 7.58 (t, J = 1.7 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.49 – 7.47 (m, 2H), 7.42 – 7.37 (m, 2H), 4.10 – 3.99 (m, 4H), 3.29 – 3.22 (m, 1H), 2.64 – 2.62 (m, 1H), 1.23 (q, J = 6.9 Hz, 6H).

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.0 (dd, J = 26.6, 4.7 Hz), 141.9 (dd, J = 23.1, 11.5 Hz), 135.9 (d, J = 2.3 Hz), 133.9 (d, J = 3.8 Hz), 133.5, 131.8, 130.1 (d, J = 6.8 Hz), 128.4, 125.6 (d, J = 9.7 Hz), 123.4 (d, J = 1.9 Hz), 123.3 (d, J = 9.8 Hz), 99.6 (dd, J = 196.9, 6.6 Hz), 62.0 (dd, J = 6.4, 2.9 Hz), 37.6 (dd, J = 140.7, 25.2 Hz), 16.3 (dd, J = 6.3, 4.0 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.93 (d, J = 3.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.27 (d, J = 3.8 Hz);

IR (ATR): v = 1415, 1324, 1265, 1209, 1050, 1022, 973, 863, 760, 724, 701, 686; **HRMS** (ESI) Calculated for $C_{19}H_{21}BrClFO_4P$ [M+H]⁺: 477.0028; found 477.0026.

diethyl (2-(4-acetylphenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **3k** was prepared according to GP1 in 0.1 mmol scale as a white solid (23.6 mg, 58%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.3 Hz, 2H), 7.89 – 7.87 (m, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.53 – 7.45 (m, 1H), 7.36 (t, J = 7.8 Hz, 2H), 4.08 – 4.00 (m, 4H), 3.36 – 3.22 (m, 1H), 2.72 – 2.63 (m, 1H), 2.58 (s, 3H), 1.22 (td, J = 7.1, 3.5 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 197.3, 196.2 (dd, J = 26.7, 5.1 Hz), 143.1 (dd, J = 22.4, 11.0 Hz), 137.2, 134.1 (d, J = 3.5 Hz), 133.3, 130.1 (d, J = 6.5 Hz), 128.9 (d, J = 2.0 Hz), 128.3, 124.4 (d, J = 8.9 Hz), 100.6 (dd, J = 194.9, 6.8 Hz), 62.0 (d, J = 6.4 Hz), 37.3 (dd, J = 140.7, 25.2 Hz), 26.7, 16.3 (dd, J = 6.2, 2.6 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.45 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.77 (d, J = 3.8 Hz);

IR (ATR): *v* = 2982, 2929, 1606, 1447, 1406, 1360, 1263, 1101, 1018, 957;

HRMS (ESI) Calculated for $C_{21}H_{25}FO_5P$ [M+H]⁺: 407.1418; found 407.1416.

diethyl (2-(4-benzoylphenyl)-2-fluoro-3-oxo-3-phenylpropyl)phosphonate

Compound **31** was prepared according to GP1 in 0.1 mmol scale as a white solid (21.4 mg, 47%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.93 – 7.90 (m, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.80 – 7.74 (m, 2H), 7.67 (d, J = 8.6 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.54 – 7.43 (m, 3H), 7.38 (t, J = 7.8 Hz, 2H), 4.14 – 3.97 (m, 4H), 3.41 – 3.27 (m, 1H), 2.74 – 2.65 (m, 1H), 1.24 (td, J = 7.1, 3.3 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.3 (dd, J = 26.6, 4.7 Hz), 195.8, 142. 5 (dd, J = 22.4, 11.4 Hz), 137.8, 137.1, 134.1 (d, J = 3.5 Hz), 133.3, 132.7, 130.5 (d, J = 2.0 Hz), 130.1 (d, J = 6.4 Hz), 130.0, 128.3 (d, J = 11.9 Hz), 124.1 (d, J = 9.1 Hz), 100.6 (dd, J = 194.8, 6.9 Hz), 61.9 (dd, J = 6.4, 2.4 Hz), 37.4 (dd, J = 140.4, 25.3 Hz), 16.2 (dd, J = 6.3, 2.5 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.38 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.79 (d, J = 3.8 Hz);

IR (ATR): v = 1687, 1659, 1316, 1276, 1051, 1025, 962, 939, 926, 701;

HRMS (ESI) Calculated for $C_{26}H_{27}FO_5P$ [M+H]⁺: 469.1575; found 469.1573.

$$\begin{array}{c} O \\ Ph \\ \hline \\ F \\ \hline \\ EtO_2C \\ \end{array}$$

ethyl 4-(3-(diethoxyphosphoryl)-2-fluoro-1-oxo-1-phenylpropan-2-yl)benzoate

Compound **3m** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (24.9 mg, 57%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.3 Hz, 2H), 7.88 – 7.85 (m, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.38 – 7.30 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.09 – 3.97 (m, 4H), 3.36 – 3.22 (m, 1H), 2.71 – 2.61 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.22 (td, J = 7.1, 4.8 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.2 (dd, J = 26.6, 5.1 Hz), 165.8, 142.8 (dd, J = 22.4, 11.3 Hz), 134.0 (d, J = 3.6 Hz), 133.2, 130.8, 130.1 (d, J = 1.9 Hz), 130.0 (d, J = 6.3 Hz), 128.2, 124.1 (d, J = 9.1 Hz), 100.5 (dd, J = 194.5, 6.8 Hz), 61.9 (dd, J = 6.4, 2.7 Hz), 61.1, 37.3 (dd, J = 140.7, 25.2 Hz), 16.2 (dd, J = 6.3, 3.0 Hz), 14.2;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.37 (d, J = 4.6 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.83 (d, J = 3.8 Hz);

IR (ATR): v = 2349, 1716, 1271, 1104, 1049, 1019, 959, 719, 697;

HRMS (ESI) Calculated for C₂₂H₂₇FO₆P [M+H]⁺: 437.1524; found 437.1522.

diethyl (2-fluoro-2-(4-nitrophenyl)-3-oxo-3-phenylpropyl)phosphonate

Compound **3n** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow solid (22.0 mg, 54%). Mp. = 79 - 81 °C. The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.29 – 8.23 (m, 2H), 7.89 – 7.87 (m, 2H), 7.78 – 7.72 (m, 2H), 7.56 – 7.48 (m, 1H), 7.42 – 7.35 (m, 2H), 4.10 – 3.99 (m, 4H), 3.34 – 3.21 (m, 1H), 2.76 – 2.65 (m, 1H), 1.23 (td, J = 7.1, 1.4 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 195.8 (dd, J = 26.2, 5.7 Hz), 148.0, 144.9 (dd, J = 22.6, 10.6 Hz), 133.7 (d, J = 3.6 Hz), 133.6, 130.0 (d, J = 6.7 Hz), 128.4, 125.3 (d, J = 9.3 Hz), 124.7, 124.0, 118.8, 100.4 (dd, J = 196.3, 6.6 Hz), 62.0 (dd, J = 6.3, 3.7 Hz), 37.2 (dd, J = 141.4, 25.1 Hz), 16.1 (dd, J = 6.2, 1.3 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.21 (d, J = 3.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-d) δ 22.18 (d, J = 4.8 Hz);

IR (ATR): v = 2923, 2854, 1687, 1524, 1348, 1247, 1050, 1024, 962, 854, 719, 693; HRMS (ESI) Calculated for $C_{19}H_{22}FNO_6P [M+H]^+$: 410.1163; found 410.1161.

$$\begin{array}{c}
O \\
PO(OEt)_2
\end{array}$$
Me

30

diethyl (2-fluoro-3-oxo-2,3-di-p-tolylpropyl)phosphonate

Compound **30** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (24.2 mg, 62%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.09 – 3.97 (m, 4H), 3.35 – 3.21 (m, 1H), 2.68 – 2.59 (m, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 1.22 (td, J = 7.1, 4.8 Hz, 6H); 13C NMR (125 MHz, Chloroform-*d*) δ 196.2 (dd, J = 26.4, 4.7 Hz), 143.8, 138.4, 135.7 (dd, J = 22.7, 11.3 Hz), 131.7 (d, J = 3.6 Hz), 130.3 (d, J = 6.4 Hz), 129.5, 128.8, 123.9 (d, J = 8.7 Hz), 101.6 (dd, J = 191.1, 6.8 Hz), 61.8 (dd, J = 6.3, 3.9 Hz), 37.4 (dd, J = 139.8, 25.9 Hz), 21.6, 21.1, 16.3 (dd, J = 6.1, 2.1 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.37 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.62;

IR (ATR): *v* = 2923, 2853, 1684, 1607, 1457, 1243, 1025, 965, 819;

HRMS (ESI) Calculated for $C_{21}H_{27}FO_4P [M+H]^+$: 393.1626; found 393.1624.

diethyl (3-(4-ethylphenyl)-2-fluoro-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound **3p** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (25.6 mg, 63%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.44 – 7.35 (m, 2H), 7.19 – 7.16 (m, 4H), 4.07 – 3.97 (m, 4H), 3.35 – 3.21 (m, 1H), 2.76 – 2.47 (m, 3H), 2.32 (s, 3H), 1.25 – 1.17 (m, 9H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.2 (d, J = 21.9 Hz), 150.0, 138.5, 135.7 (dd, J = 22.6, 11.2 Hz), 131.9 (d, J = 3.6 Hz), 130.5 (d, J = 6.3 Hz), 129.5, 127.7, 123.9 (d, J = 8.7 Hz), 100.8 (dd, J = 192.5, 7.1 Hz), 61.8 (t, J = 5.3 Hz), 37.5 (dd, J = 139.7, 25.8 Hz), 28.9, 21.1, 16.3 (dd, J = 6.2, 3.0 Hz), 15.1;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.39 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.63;

IR (ATR): *v* = 2924, 1683, 1607, 1255, 1054, 1025, 926, 827;

HRMS (ESI) Calculated for C₂₂H₂₉FO₄P [M+H]⁺: 407.1782; found 407.1781.

diethyl (2-fluoro-3-(4-fluorophenyl)-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound **3q** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (25.1 mg, 63%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98 – 7.94 (m, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.02 (t, J = 8.7 Hz, 2H), 4.07 – 4.00 (m, 4H), 3.36 – 3.22 (m, 1H), 2.66 – 2.57 (m, 1H), 2.33 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.3 (dd, J = 26.6, 4.3 Hz), 166.5, 164.5, 138.7, 135.3 (dd, J = 22.8, 11.8 Hz), 132.9 (dd, J = 9.3, 6.9 Hz), 130.7 (d, J = 3.4 Hz), 129.6, 123.8 (d, J = 8.8 Hz), 115.3 (d, J = 21.9 Hz), 100.8 (dd, J = 192.3, 7.1 Hz), 61.8 (t, J = 6.1 Hz), 37.5 (dd, J = 139.7, 25.7 Hz), 21.1, 16.3 (dd, J = 6.3, 1.4 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -104.81, -157.16 (d, J = 4.7 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.42;

IR (ATR): v = 1600, 1507, 1252, 1220, 1157, 1094, 1018, 962, 836, 774, 548, 531; HRMS (ESI) Calculated for $C_{20}H_{24}F_{2}O_{4}P$ [M+H]⁺: 397.1375; found 397.1375.

diethyl (2-fluoro-3-(2-fluorophenyl)-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound **3r** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (15.4 mg, 39%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-d) δ 7.66 – 7.62 (m, 1H), 7.46 – 7.35 (m, 3H), 7.20

(d, J = 8.0 Hz, 2H), 7.15 - 7.12 (m, 1H), 7.03 - 6.99 (m, 1H), 4.10 - 4.00 (m, 4H), 3.34 - 3.20 (m, 1H), 2.65 - 2.57 (m, 1H), 2.35 (s, 3H), 1.26 (td, J = 7.0, 4.3 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 197.7 (dd, J = 31.0, 2.4 Hz), 161.2, 159.1, 138.5, 134.6 (dd, J = 23.1, 12.1 Hz), 133.5 (d, J = 8.4 Hz), 131.4 (dd, J = 5.2, 2.6 Hz), 129.4 (d, J = 1.8 Hz), 124.5 (dd, J = 14.2, 2.6 Hz), 124.2 (d, J = 9.1 Hz), 123.7 (d, J = 3.7 Hz), 116.1 (d, J = 22.0 Hz), 99.8 (dd, J = 193.1, 6.9 Hz), 61.9 (dd, J = 18.9, 6.2 Hz), 37.9 (dd, J = 138.9, 25.3 Hz), 21.1, 16.3 (dd, J = 6.2, 2.1 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -109.44 (d, J = 15.2 Hz), -161.41 (dd, J = 15.2, 4.7 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.10 (d, J = 3.6 Hz);

IR (ATR): v = 1697, 1610, 1450, 1250, 1206, 1098, 1050, 1021, 959, 904, 829, 761; HRMS (ESI) Calculated for $C_{20}H_{24}F_{2}O_{4}P$ [M+H]⁺: 397.1375; found 397.1374.

diethyl (3-(4-chlorophenyl)-2-fluoro-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound **3s** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (25.1 mg, 61%). The flash chromatography was performed with EA/PE (1:1~1:2, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 4.11 – 3.96 (m, 4H), 3.35 – 3.21 (m, 1H), 2.65 – 2.57 (m, 1H), 2.32 (s, 3H), 1.30 – 1.14 (m, 6H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.7 (dd, J = 26.7, 4.1 Hz), 139.4, 138.7, 135.1 (dd, J = 22.6, 11.9 Hz), 132.7 (d, J = 3.5 Hz), 131.5 (d, J = 6.8 Hz), 129.6, 128.4, 123.8 (d, J = 8.8 Hz), 100.7 (dd, J = 192.0, 7.0 Hz), 61.8 (t, J = 7.2 Hz) 37.5 (dd, J = 139.5, 25.6 Hz), 21.0, 16.2 (d, J = 6.3 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.46 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.37;

IR (ATR): v = 1687, 1588, 1250, 1092, 1050, 1022, 960, 903, 824, 790, 594; **HRMS (ESI)** Calculated for $C_{20}H_{24}ClFO_4P [M+H]^+$: 413.1079; found 413.1077.

diethyl (3-(4-bromophenyl)-2-fluoro-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound **3t** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (29.1 mg, 64%). The flash chromatography was performed with EA/PE (1:1~1:3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78 – 7.76 (m, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.09 – 3.99 (m, 4H), 3.35 – 3.21 (m, 1H), 2.66 – 2.57 (m, 1H), 2.33 (s, 3H), 1.24 (td, J = 7.1, 1.7 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 196.0 (dd, J = 26.8, 4.3 Hz), 138.7, 135.1 (dd, J = 22.7, 11.8 Hz), 133.1 (d, J = 3.6 Hz), 131.6 (d, J = 6.8 Hz), 131.4, 129.6, 128.2, 123.8 (d, J = 8.7 Hz), 100.7 (dd, J = 192.0, 7.1 Hz), 61.8 (dd, J = 8.6, 6.3 Hz), 37.5 (dd, J = 139.5, 25.6 Hz), 21.0, 16.2 (d, J = 6.3 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.50 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.33;

IR (ATR): v = 1690, 1584, 1395, 1251, 1209, 1052, 1024, 962, 902, 823;

HRMS (ESI) Calculated for $C_{20}H_{24}BrFO_4P [M+H]^+$: 457.0574; found 457.0571.

methyl 4-(3-(diethoxyphosphoryl)-2-fluoro-2-(p-tolyl)propanoyl)benzoate

Compound **3u** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (29.2 mg, 67%). The flash chromatography was performed with EA/PE (1:1~1:3, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.5 Hz, 2H), 7.92 – 7.90 (m, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.10 – 3.98 (m, 4H), 3.90 (s, 3H), 3.37 – 3.23 (m, 1H), 2.66 – 2.58 (m, 1H), 2.33 (s, 3H), 1.24 (td, J = 7.1, 2.1 Hz, 6H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 197.0 (dd, J = 27.6, 4.0 Hz), 166.2, 138.8, 138.2 (d, J = 3.4 Hz), 135.0 (dd, J = 22.9, 11.9 Hz), 133.4, 129.8 (d, J = 6.1 Hz), 129.7 (d, J = 1.2 Hz), 129.2, 123.9 (d, J = 8.8 Hz), 100.7 (dd, J = 192.2, 7.1 Hz), 61.9 (dd, J = 9.5, 6.3 Hz), 52.4, 37.6 (dd, J = 139.3, 25.4 Hz), 21.0, 16.3 (d, J = 6.2 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.06 (d, J = 3.9 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.27;

IR (ATR): v = 1725, 1692, 1277, 1250, 1106, 1048, 1019, 959, 905, 829, 776, 595; HRMS (ESI) Calculated for $C_{22}H_{27}FO_6P [M+H]^+$: 437.1524; found 437.1516.

diethyl (3-cyclopropyl-2-fluoro-3-oxo-2-(p-tolyl)propyl)phosphonate

Compound 3v was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (16.0 mg, 47%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 4.13 – 3.97 (m, 4H), 3.17 – 3.03 (m, 1H), 2.60 – 2.51 (m, 1H), 2.48 – 2.42 (m, 1H), 2.33 (s, 3H), 1.27 (td, J = 7.0, 3.1 Hz, 6H), 1.19 – 1.13 (m, 1H), 1.06 – 0.99 (m, 1H), 0.93 – 0.87 (m, 1H), 0.86 – 0.80 (m, 1H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 207.1 (dd, J = 28.3, 4.6 Hz), 138.5, 135.1 (dd, J = 23.2, 11.4 Hz), 129.3 (d, J = 1.7 Hz), 124.2 (d, J = 9.3 Hz), 99.6 (dd, J = 190.5, 7.1 Hz), 61.8 (dd, J = 15.0, 6.3 Hz), 35.3 (dd, J = 140.5, 24.4 Hz), 21.1, 16.3 (d, J = 6.2 Hz), 15.4 (d, J = 3.4 Hz), 12.9, 12.0;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -162.13 (d, J = 4.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.62;

IR (ATR): v = 1707, 1381, 1253, 1074, 1050, 1023, 988, 959, 937, 824, 542; **HRMS (ESI)** Calculated for $C_{17}H_{25}FO_4P [M+H]^+$: 343.1469; found 343.1462.

Me
$$\stackrel{\bullet}{\underset{p\text{-Tol}}{\downarrow}}$$
 PO(OEt)₂

diethyl (2-fluoro-3-oxo-2-(p-tolyl)nonyl)phosphonate

Compound **3w** was prepared according to GP1 in 0.1 mmol scale as a pale-yellow oil (25.4 mg, 66%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.28 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.11 – 4.00 (m, 4H), 3.18 – 3.04 (m, 1H), 2.82 – 2.75 (m, 1H), 2.58 – 2.42 (m, 2H), 2.32 (s, 3H), 1.56 – 1.37 (m, 2H), 1.27 (td, J = 7.1, 4.7 Hz, 6H), 1.23 – 1.12 (m, 6H), 0.80 (t, J = 7.0 Hz, 3H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 207.9 (dd, J = 28.7, 3.8 Hz), 138.4, 134.8 (dd, J = 22.9, 12.5 Hz), 129.3 (d, J = 1.8 Hz), 123.9 (d, J = 9.8 Hz), 99.6 (dd, J = 190.3, 7.1 Hz), 77.0 (d, J = 31.9), 61.8 (dd, J = 35.3, 6.3 Hz), 36.5, 35.8 (dd, J = 139.8, 24.2 Hz), 31.4, 28.5, 22.7 (d, J = 2.1 Hz), 22.4, 21.0, 16.2 (dd, J = 6.3, 1.7 Hz), 13.9;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -163.83 (d, J = 4.6 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.78 (d, J = 5.0 Hz);

IR (ATR): v = 2956, 2928, 1727, 1393, 1253, 1052, 1024, 961, 826, 549;

HRMS (ESI) Calculated for C₂₀H₃₃FO₄P [M+H]⁺: 387.2095; found 387.2089.

$$PO(OEt)_2$$

diethyl (6-chloro-2-fluoro-3-oxo-2-(p-tolyl)hexyl)phosphonate

Compound 3x was prepared according to GP1 in 0.1 mmol scale as a yellow oil (21.9 mg, 58%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the

eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 4.17 – 3.98 (m, 4H), 3.52 – 3.43 (m, 2H), 3.26 – 2.99 (m, 2H), 2.76 – 2.68 (m, 1H), 2.52 – 2.44 (m, 1H), 2.34 (s, 3H), 2.10 – 1.89 (m, 2H), 1.30 (td, J = 7.1, 1.5 Hz, 6H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 207.1 (dd, J = 29.1, 3.1 Hz), 138.7, 134.6 (dd, J = 22.9, 13.0 Hz), 129. 4 (d, J = 1.8 Hz), 124.0 (d, = 9.7 Hz), 99.7 (dd, J = 190.2, 6.9 Hz), 61.9 (dd, J = 42.4, 6.2 Hz), 44.1, 36.0 (dd, J = 139.7, 24.2 Hz), 33.8, 25.9 (d, J = 2.4 Hz), 21.0, 16.3 (dd, J = 6.0, 4.5 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -163.28 (d, J = 5.4 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.64 (d, J = 5.0 Hz);

IR (ATR): v = 2958, 2925, 2854, 1727, 1393, 1250, 1087, 1053, 1025, 962, 823; HRMS (ESI) Calculated for $C_{17}H_{26}ClFO_4P$ [M+H]⁺: 379.1236; found 379.1234.

diethyl (4-cyclohexyl-2-fluoro-3-oxo-2-(p-tolyl)butyl)phosphonate

Compound **3y** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (22.5 mg, 56%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.27 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.12 – 4.00 (m, 4H), 3.17-3.03 (m, 1H), 2.65 – 2.61 (m, 1H), 2.54 – 2.40 (m, 2H), 2.32 (s, 3H), 1.83 – 1.71 (m, 1H), 1.70 – 1.49 (m, 4H), 1.45 – 1.35 (m, 1H), 1.27 (td, J = 7.1, 5.2 Hz, 6H), 1.21 – 1.11 (m, 2H), 1.10 – 1.00 (m, 1H), 0.94 – 0.80 (m, 1H), 0.67 – 0.51 (m, 1H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 207.0 (dd, J = 28.4, 4.0 Hz), 138.4, 134.6 (dd, J = 22.9, 12.4 Hz), 129.3 (d, J = 1.7 Hz), 124.0 (d, J = 9.8 Hz), 99.6 (dd, J = 190.7, 6.9 Hz), 61.8 (dd, J = 31.1, 6.2 Hz), 43.9, 35.6 (dd, J = 140.1, 24.3 Hz), 32.9 (d, J = 53.7 Hz), 32.3 (d, J = 1.7 Hz), 26.2, 26.0 (d, J = 14.7 Hz), 21.0, 16.3 (d, J = 6.2 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -163.94 (d, J = 4.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.83;

IR (ATR): v = 2923, 2852, 1726, 1254, 1100, 1049, 1024, 995, 960, 822, 549;

HRMS (ESI) Calculated for $C_{21}H_{33}FO_4P [M+H]^+$: 399.2095; found 399.2092.

diethyl (2-fluoro-3-oxo-3-(thiophen-3-yl)-2-(p-tolyl)propyl)phosphonate

Compound 3z was prepared according to GP1 n 0.1 mmol scale as a yellow oil (14.5 mg, 41%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.29 – 8.28 (m, 1H), 7.60 – 7.58 (m, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.21 – 7.15 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 4.06 – 3.98 (m, 4H), 3.35 – 3.21 (m, 1H), 2.70 – 2.61 (m, 1H), 2.30 (s, 3H), 1.20 (td, J = 7.3, 1.1 Hz, 6H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 190.2 (dd, J = 26.8, 4.8 Hz), 138.5, 137.1 (d, J = 4.0 Hz), 135.31 (d, J = 14.0 Hz), 135.30 (dd, J = 23.0, 11.4 Hz), 129.4, 128.7 (d, J = 3.8 Hz), 125.1, 124.0 (d, J = 9.2 Hz), 100.5 (dd, J = 192.0, 7.0 Hz), 61.8 (t, J = 6.7 Hz), 36.6 (dd, J = 140.1, 25.0 Hz), 21.0, 16.1 (d, J = 6.4 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -158.60 (d, J = 4.7 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.43;

IR (ATR): v = 1673, 1510, 1244, 1049, 1021, 978, 960, 857, 808, 785, 698, 559; HRMS (ESI) Calculated for $C_{18}H_{23}FO_4PS$ [M+H]⁺: 385.1033; found 385.1027.

diethyl (2-fluoro-3-oxo-3-(thiophen-2-yl)-2-(p-tolyl)propyl)phosphonate

Compound 3aa was prepared according to GP1 in 0.1 mmol scale as a yellow oil (14.0

mg, 36%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.98 (m, 1H), 7.64 (d, J = 4.9 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.07 (t, J = 4.4 Hz, 1H), 4.11 – 3.94 (m, 4H), 3.38 – 3.24 (m, 1H), 2.72 – 2.63 (m, 1H), 2.31 (s, 3H), 1.21 (t, J = 7.0 Hz, 6H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 189.0 (dd, J = 27.4, 4.8 Hz), 139.1 (d, J = 5.3 Hz), 138.6, 135.3 (d, J = 11.5 Hz), 135.1 (d, J = 11.7 Hz), 135.0 (d, J = 3.6 Hz), 129.4, 128.1 (d, J = 2.6 Hz), 124.1 (d, J = 9.3 Hz), 100.3 (dd, J = 192.6, 7.2 Hz), 61.9 (dd, J = 11.8, 6.4 Hz), 36.4 (dd, J = 140.3, 24.7 Hz), 21.0, 16.2 (dd, J = 6.3, 2.0 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -158.10 (d, J = 4.6 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.14 (d, J = 4.3 Hz);

IR (ATR): *v* = 1658, 1409, 1239, 1049, 1020, 963, 848, 828, 729, 557;

HRMS (ESI) Calculated for C₁₈H₂₃FO₄PS [M+H]⁺: 385.1033; found 385.1028.

Ph PO(OMe)₂

$$p$$
-Tol F

3bb

dimethyl (2-fluoro-3-oxo-3-phenyl-2-(p-tolyl)propyl)phosphonate

Compound **3bb** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (11.0 mg, 31%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 – 7.87 (m, 2H), 7.49 – 7.44 (m, 1H), 7.42 – 7.38 (m, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 3.67 (d, J = 1.6 Hz, 3H), 3.65 (d, J = 1.6 Hz, 3H), 3.38 – 3.24 (m, 1H), 2.67 – 2.59 (m, 1H), 2.32 (s, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.9 (dd, J = 26.7, 4.1 Hz), 138.6, 135.3 (dd, J = 22.6, 12.1 Hz), 134.3 (d, J = 3.5 Hz), 132.9, 130.0 (d, J = 6.2 Hz), 129.6 (d, J = 1.7 Hz), 128.1, 123.8 (d, J = 8.8 Hz), 100.6 (dd, J = 192.3, 7.0 Hz), 52.4 (dd, J = 9.9, 6.3 Hz), 36.8 (dd, J = 139.6, 25.8 Hz), 21.0;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -157.18 (d, J = 3.3 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 26.34 (d, J = 3.7 Hz);

IR (ATR): v = 1686, 1255, 1208, 1184, 1026, 967, 903, 830, 786, 701, 593;

HRMS (ESI) Calculated for $C_{18}H_{21}FO_4P [M+H]^+$: 351.1156; found 351.1152.

diethyl (3-fluoro-4-oxo-4-phenyl-3-(p-tolyl)butyl)phosphonate

Compound **3cc** was prepared according to GP1 in 0.1 mmol scale as a yellow oil (11.8 mg, 30%). The flash chromatography was performed with EA/PE (1:3~1:5, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, J = 8.5, 1.6 Hz, 2H), 7.50 – 7.45 (m, 1H), 7.37 – 7.31 (m, 4H), 7.20 (d, J = 8.0 Hz, 2H), 4.10 – 4.01 (m, 4H), 2.71 – 2.55 (m, 1H), 2.52 – 2.36 (m, 1H), 2.33 (s, 3H), 1.88 – 1.80 (m, 1H), 1.72 – 1.68 (m, 1H), 1.30 (q, J = 6.9 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-d) δ 197.3 (d, J = 27.7 Hz), 138.5, 134.7 (d, J = 22.1 Hz), 134.5 (d, J = 3.7 Hz), 133.1, 130.1 (d, J = 5.9 Hz), 129.6 (d, J = 1.5 Hz), 128.2, 124.0 (d, J = 8.9 Hz), 102.6 (dd, J = 190.3, 18.4 Hz), 61.7 (dd, J = 6.4, 2.7 Hz), 32.8 (dd, J = 24.0, 3.3 Hz), 32.6 (d, J = 3.3 Hz), 21.1, 20.3 (d, J = 3.8 Hz), 19.2 (d, J = 3.6 Hz), 16.4 (d, J = 6.2 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -163.60;

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 31.28;

IR (ATR): v = 2980.72, 2925.75, 1737.86, 1682.83, 1447.43, 1243.79, 1163.06, 958.03;HRMS (ESI) Calculated for $C_{21}H_{27}FO_4P [M+H]^+$: 393.1626; found 393.1620.

ethyl (Z)-4-oxo-3-phenyldec-2-enoate

Compound **5a** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.6 mg, 65%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.37 (m, 5H), 6.14 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.70 – 2.62 (m, 2H), 1.72 – 1.66 (m, 2H), 1.34 – 1.23 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.6, 165.4, 158.3, 133.3, 130.3, 129.1, 126. 7, 115.8, 60.9, 42.8, 31.6, 28.7, 23.0, 22.5, 14.1, 14.0;

IR (ATR): *v* = 2929, 1708, 1615, 1369, 1337, 1276, 1262, 1177, 1127, 1077, 1028, 768, 692;

HRMS (ESI) Calculated for $C_{18}H_{25}O_3$ [M+H]⁺: 289.1798; found 289.1793.

ethyl (Z)-4-oxo-3-(o-tolyl)dec-2-enoate

Compound **5b** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (16.5 mg, 54%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.29 – 7.22 (m, 3H), 7.21 – 7.16 (m, 1H), 5.80 (s, 1H), 4.22 (q, J = 7.0 Hz, 2H), 2.57 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 1.62 – 1.57 (m, 2H), 1.36 – 1.16 (m, 9H), 0.84 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.2, 165.2, 158.7, 135.7, 134.4, 131.0, 129.0, 128.1, 126.0, 120.6, 61.0, 41.6, 31.5, 28.6, 23.0, 22.4, 20.3, 14.1, 14.0;

IR (ATR): v = 2956, 2926, 1717, 1369, 1328, 1259, 1199, 1180, 1126, 1075, 1029, 763;HRMS (ESI) Calculated for $C_{19}H_{27}O_3$ [M+H]⁺: 303.1955; found 303.1952.

ethyl (Z)-4-oxo-3-(m-tolyl)dec-2-enoate

Compound **5c** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (17.0 mg, 56%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 1H), 7.24 – 7.19 (m, 3H), 6.13 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.65 (d, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.72-1.66 (m, 2H), 1.42 – 1.13 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.8, 165.4, 158.6, 138.8, 133.2, 131.1, 128.9, 127.3, 123.8, 115.5, 60.8, 42.7, 31.6, 28.7, 23.0, 22.5, 21.4, 14.1, 14.0;

IR (ATR): *v* = 2955. 2927, 1710, 1616, 1368, 1332, 1280, 1260, 1161, 1126, 1080, 1033, 872, 788;

HRMS (ESI) Calculated for C₁₉H₂₇O₃ [M+H]⁺: 303.1955; found 303.1950.

ethyl (Z)-4-oxo-3-(p-tolyl)dec-2-enoate

Compound **5d** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (16.2 mg, 54%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.12 (s, 1H), 4.20 (q, J = 7.0 Hz, 2H), 2.65 (t, J = 7.6 Hz, 2H), 2.37 (s, 3H), 1.74 – 1.65 (m, 2H), 1.32 – 1.24 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.9, 165.5, 158.3, 140.8, 130.4, 129.8, 126.6, 114.7, 60.8, 42.8, 31.6, 28.7, 23.1, 22.5, 21.3, 14.2, 14.0;

IR (ATR): v = 2956, 2925, 2857, 1711, 1605, 1369, 1275, 1176, 1077, 1035, 818, 750;HRMS (ESI) Calculated for $C_{19}H_{27}O_3$ [M+H]⁺: 303.1955; found 303.1951.

ethyl (Z)-3-(4-fluorophenyl)-4-oxodec-2-enoate

Compound **5e** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.4 mg, 60%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.44 – 7.37 (m, 2H), 7.08 (t, J = 8.6 Hz, 2H), 6.09 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 1.70 – 1.64 (m, 2H), 1.34 – 1.23 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 206.6, 165.2 (d, J = 34.3 Hz), 163.0, 157.2, 129.5 (d, J = 3.5 Hz), 128.8 (d, J = 8.4 Hz), 116.3 (d, J = 21.9 Hz), 115.8 (d, J = 1.7 Hz), 61.0, 42.8, 31.6, 28.7, 23.1, 22.5, 14.2, 14.0;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -109.66;

IR (ATR): *v* = 2987, 1713, 1509, 1371, 1276, 1182, 1066, 839, 750;

HRMS (ESI) Calculated for $C_{18}H_{24}FO_3$ [M+H]⁺: 307.1704; found 307.1703.

ethyl (Z)-3-(3-fluorophenyl)-4-oxodec-2-enoate

Compound **5f** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (20.2 mg, 66%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.39 – 7.33 (m, 1H), 7.19 (m, 1H), 7.15 – 7.08 (m, 2H), 6.14 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.74 – 2.55 (m, 2H), 1.76 – 1.60 (m, 2H), 1.36 – 1.20 (m, 9H), 0.85 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.1, 165.1, 163.9, 161.9, 157.0 (d, J = 2.3 Hz), 135.5 (d, J = 7.7 Hz), 130.7 (d, J = 8.4 Hz), 122.5 (d, J = 3.0 Hz), 117.3 (d, J = 21.1 Hz), 117.0, 113.6 (d, J = 23.0 Hz), 61.1, 42.8, 31.6, 28.7, 23.0, 22.5, 14.1, 14.0;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -111.34;

IR (ATR): v = 2929, 1711, 1582, 1370, 1335, 1268, 1202, 1159, 1082, 867, 788; HRMS (ESI) Calculated for $C_{18}H_{24}FO_3$ [M+H]⁺: 307.1704; found 307.1703.

ethyl (Z)-3-(4-chlorophenyl)-4-oxodec-2-enoate

Compound **5g** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (17.0 mg, 53%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.39 – 7.33 (m, 4H), 6.12 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.68 – 2.57 (m, 2H), 1.70 – 1.64 (m, 2H), 1.33 – 1.21 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.4, 165.2, 157.0, 136.6, 131.7, 129.4, 128.0, 116.3, 61.0, 42.8, 31.6, 28.7, 23.0, 22.5, 14.1, 14.0;

IR (ATR): v = 2956, 2928, 1710, 1492, 1369, 1336, 1268, 1179, 1093, 1031, 1013, 829;HRMS (ESI) Calculated for $C_{18}H_{24}ClO_3$ [M+H]⁺: 323.1408; found 323.1402.

ethyl (Z)-3-(4-bromophenyl)-4-oxodec-2-enoate

Compound **5h** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (20.5 mg, 56%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.52 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 6.12 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.66 – 2.59 (m, 2H), 1.69 – 1.62 (m, 2H), 1.35 – 1.31 – 1.24 (m, 9H), 0.85 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.2, 165.2, 157.1, 132.3, 132.2, 128.2, 124.9, 116.3, 61.0, 42.8, 31.6, 28.7, 23.0, 22.5, 14.1, 14.0;

IR (ATR): *v* = 2955, 2927, 1711, 1488, 1401, 1181, 1074, 826;

HRMS (ESI) Calculated for $C_{18}H_{24}BrO_3$ [M+H]⁺: 367.0903; found 367.0902.

ethyl (Z)-3-(4-iodophenyl)-4-oxodec-2-enoate

Compound **5i** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.4 mg, 44%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.39 – 7.33 (m, 4H), 6.12 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.68 – 2.57 (m, 2H), 1.70 – 1.64 (m, 2H), 1.34 – 1.15 (m, 9H), 0.86 (t, J =

7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.4, 165.2, 157.0, 136.6, 131.7, 129.4, 128.0, 116.3, 61.0, 42.8, 31.6, 28.7, 23.0, 22.5, 14.1, 14.0;

IR (ATR): v = 2955, 2927, 1712, 1616, 1484, 1369, 1266, 1181, 1080, 1005, 822; HRMS (ESI) Calculated for $C_{18}H_{24}IO_3$ [M+H]⁺: 415.0765; found 415.0760.

ethyl (Z)-3-(3-bromo-5-chlorophenyl)-4-oxodec-2-enoate

Compound **5j** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (22.0 mg, 55%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.55 (t, J = 1.8 Hz, 1H), 7.45 (t, J = 1.8 Hz, 1H), 7.33 (t, J = 1.8 Hz, 1H), 6.12 (s, 1H), 4.22 (q, J = 7.0 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 1.70 – 1.64 (m, 2H), 1.38 – 1.18 (m, 9H), 0.86 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.4, 164.7, 155.4, 136.6, 135.9, 132.8, 127.9, 125.5, 123.5, 118.4, 61.3, 42.8, 31.5, 28.6, 23.0, 22.5, 14.1, 14.0;

IR (ATR): *v* = 2956, 2926, 1714, 1554, 1259, 1240, 1184, 1080, 1028, 859;

HRMS (ESI) Calculated for $C_{18}H_{23}BrClO_3$ [M+H]⁺: 401.0514; found 401.0512.

methyl (Z)-4-(1-ethoxy-1,4-dioxodec-2-en-3-yl)benzoate

Compound 5k was prepared according to GP2 in 0.1 mmol scale as a colorless oil (25.9

mg, 72%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 6.20 (s, 1H), 4.23 (q, J = 7.0 Hz, 2H), 3.93 (s, 3H), 2.65 (t, J = 7.5 Hz, 2H), 1.70 – 1.64 (m, 2H), 1.35 – 1.20 (m, 9H), 0.85 (t, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.1, 166.2, 165.1, 157.2, 137.6, 131.6, 130.2, 126.7, 117.8, 61.1, 52.4, 42.9, 31.6, 28.7, 23.1, 22.5, 14.1, 14.0;

IR (ATR): *v* = 2954, 2924, 1714, 1275, 1182, 1110, 1080, 1019, 775;

HRMS (ESI) Calculated for $C_{20}H_{27}O_5$ [M+H]⁺: 347.1853; found 347.1852.

ethyl (Z)-4-cyclopropyl-4-oxo-3-phenylbut-2-enoate

Compound **51** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (13.4 mg, 55%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.46 – 7.44 (m, 2H), 7.43 – 7.36 (m, 3H), 6.21 (s, 1H), 4.22 (q, J = 7.2 Hz, 2H), 2.17 – 2.12 (m, 1H), 1.35 – 1.27 (m, 5H), 1.06 – 1.02 (m, 2H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 206.7, 165.2, 157.9, 133.5, 130.3, 129.0, 127.0, 115.9, 60.9, 22.4, 14.1, 12.6;

IR (ATR): v = 2954, 2923, 2853, 1714, 1615, 1448, 1177, 1079, 873, 690;

HRMS (ESI) Calculated for $C_{15}H_{17}O_3$ [M+H]⁺: 245.1172; found 245.1172.

ethyl (Z)-5-cyclohexyl-4-oxo-3-phenylpent-2-enoate

Compound **5m** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (20.4 mg, 68%). The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.46 – 7.36 (m, 5H), 6.11 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 2.56 (d, J = 6.4 Hz, 2H), 2.02 – 1.94 (m, 1H), 1.85 – 1.76 (m, 2H), 1.67 – 160 (m, 3H), 1.33 – 1.24 (m, 5H), 1.16 – 1.04 (m, 1H), 0.93 – 0.85 (m, 2H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.5, 165.3, 158.2, 133.4, 130.2, 129.0, 126.7, 115.9, 60.8, 49.8, 33.2, 32.3, 26.3, 26.1, 14.2;

IR (ATR): *v* = 2922, 2851, 1712, 1617, 1447, 1280, 1180, 1028, 768, 693;

HRMS (ESI) Calculated for C₁₉H₂₅O₃ [M+H]⁺: 301.1798; found 301.1796.

ethyl (Z)-7-chloro-4-oxo-3-phenylhept-2-enoate

Compound **5n** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (17.4 mg, 62%). The flash chromatography was performed with EA/PE (1:15 \sim 1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.43 – 7.39 (m, 5H), 6.18 (s, 1H), 4.22 (q, J = 7.0 Hz, 2H), 3.66 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 2.25 – 2.19 (m, 2H), 1.31 (t, J = 7.5 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.3, 165.5, 157.9, 132.9, 130.6, 129.2, 126.7, 116.1, 61.1, 44.4, 39.7, 26.2, 14.2;

IR (ATR): *v* = 2923, 1708, 1370, 1337, 1265, 1180, 1094, 1026, 769, 693;

HRMS (ESI) Calculated for C₁₅H₁₈ClO₃ [M+H]⁺: 281.0939; found 281.0937.

ethyl (Z)-4-oxo-3,4-diphenylbut-2-enoate

Compound **50** was prepared according to GP2 in 0.1 mmol scale as a white solid (14.4 mg, 51%). Mp. = 56 - 58 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.96 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.45 – 7.42 (m, 2H), 7.39 – 7.35 (m, 3H), 6.50 (s, 1H), 4.07 (q, J = 7.1 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.4, 165.1, 155.4, 136.0, 134.2, 133.5, 130.4, 129.1, 128.9, 128.7, 126.9, 117.8, 60.9, 13.9;

IR (ATR): v = 1711, 1675, 1448, 1369, 1275, 1216, 1171, 1046, 1019, 770, 688; HRMS (ESI) Calculated for $C_{18}H_{17}O_3$ [M+H]+: 281.1172; found 281.1169.

ethyl (Z)-4-oxo-3-phenyl-4-(p-tolyl)but-2-enoate

Compound **5p** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (12.0 mg, 41%). Mp. = 94 - 95 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.2 Hz, 2H), 7.52 – 7.46 (m, 2H), 7.41 – 7.31 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 6.49 (s, 1H), 4.07 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.0, 165.0, 155.6, 144.4, 134.4, 133.7, 130.3, 129.4, 129.0, 126.9, 117.6, 60.8, 21.7, 13.9;

IR (ATR): v = 2922, 1714, 1672, 1607, 1369, 1345, 1278, 1172, 773;

HRMS (ESI) Calculated for C₁₉H₁₉O₃ [M+H]+: 295.1329; found 295.1328.

ethyl (Z)-4-(4-fluorophenyl)-4-oxo-3-phenylbut-2-enoate

Compound **5q** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.1 mg, 61%). Mp. = 90 - 93 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.01 – 7.95 (m, 2H), 7.50 – 7.46 (m, 2H), 7.42 – 7.34 (m, 3H), 7.11 (t, J = 8.6 Hz, 2H), 6.50 (s, 1H), 4.09 (q, J = 7.1 Hz, 2H), 1.14 (t, J = 7.1 Hz, 3H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 194.9, 166.9, 165.0 (d, J = 14.5 Hz), 155.2, 134.0, 132.6 (d, J = 2.8 Hz), 131.6 (d, J = 9.3 Hz), 130.6, 129.2, 126.9, 117.9, 116.0 (d, J = 22.2 Hz), 61.0, 13.9;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -104.23;

IR (ATR): v = 1712, 1675, 1596, 1344, 1277, 1215, 1179, 1151, 847, 774;

HRMS (ESI) Calculated for C₁₈H₁₆FO₃ [M+H]⁺: 299.1078; found 299.1074.

ethyl (Z)-4-(4-chlorophenyl)-4-oxo-3-phenylbut-2-enoate

Compound **5r** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.4 mg, 59%). Mp. = 113 - 115 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.5 Hz, 2H), 7.49 – 7.45 (m, 2H), 7.43 – 7.34 (m, 5H), 6.50 (s, 1H), 4.09 (q, J = 7.1 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 195.2, 165.0, 155.0, 140.0, 134.5, 133.9, 130.6, 130.2, 129.2, 129.1, 126.9, 118.0, 61.0, 13.9;

IR (ATR): v = 2923, 2852, 1714, 1678, 1589, 1344, 1279, 1216, 1183, 1092, 766; **HRMS** (ESI) Calculated for $C_{18}H_{16}ClO_3$ [M+H]⁺: 315.0782; found 315.0780.

ethyl (Z)-4-(4-bromophenyl)-4-oxo-3-phenylbut-2-enoate

Compound **5s** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (15.5 mg, 43%). Mp. = 99 - 101 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.81 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.34 (m, 3H), 6.50 (s, 1H), 4.09 (q, J = 7.1 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.4, 165.0, 155.0, 134.9, 133.9, 132.1, 130.6, 130.3, 129.2, 128.8, 126.9, 118.0, 61.0, 13.9;

IR (ATR): v = 1713, 1677, 1585, 1397, 1369, 1279, 1213, 1182, 1069, 1010; **HRMS (ESI)** Calculated for $C_{18}H_{16}BrO_{3}$ [M+H]⁺: 359.0277; found 359.0277.

ethyl (Z)-4-oxo-3-phenyl-4-(thiophen-2-yl)but-2-enoate

Compound **5t** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (9.5 mg, 34%). Mp. = 69 - 71 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.67 (dd, J = 4.9, 1.2 Hz, 1H), 7.57 – 7.51 (m, 3H), 7.43 – 7.34 (m, 3H), 7.06 (m, 1H), 6.46 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-d) δ 188.4, 164.8, 154.4, 143.7, 134.5, 134.2, 133.9,

130.4, 129.1, 128.2, 126.9, 118.2, 61.0, 13.9;

IR (ATR): v = 2955, 2922, 2853, 1713, 1650, 1462, 1411, 1369, 1280, 1178; **HRMS (ESI)** Calculated for $C_{16}H_{15}O_3S [M+H]^+$: 287.0736; found 287.0735.

ethyl (Z)-3-(4-fluorophenyl)-4-oxo-4-phenylbut-2-enoate

Compound **5u** was prepared according to GP2 in 0.1 mmol scale as a colorless solid (19.5 mg, 65%). Mp. = 42 - 44 °C. The flash chromatography was performed with EA/PE (1:15~1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.97 – 7.91 (m, 2H), 7.59 – 7.52 (m, 1H), 7.52 – 7.41 (m, 4H), 7.05 (t, J = 8.6 Hz, 2H), 6.45 (s, 1H), 4.06 (q, J = 7.1 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.2, 164.9 (d, J = 9.1 Hz), 163.0, 154.2, 135.8, 133.6, 130.4 (d, J = 3.4 Hz), 129.0 (d, J = 8.6 Hz), 128.8 (d, J = 11.6 Hz), 117.7 (d, J = 1.9 Hz), 116.4, 116.2, 61.0, 13.8;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -109.40;

IR (ATR): v = 2983, 1710, 1674, 1598, 1508, 1450, 1369, 1278, 1216, 1163, 1046; **HRMS (ESI)** Calculated for $C_{18}H_{16}FO_3[M+H]^+$: 299.1078; found 299.1071.

5v

ethyl (Z)-2-methyl-4-oxo-3,4-diphenylbut-2-enoate

Compound **5v** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (13.0 mg, 45%). The flash chromatography was performed with EA/PE (1:15 \sim 1:20, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98 – 7.92 (m, 2H), 7.53 – 7.47 (m, 1H), 7.44 – 7.33 (m, 6H), 7.32 – 7.27 (m, 1H), 4.01 (q, J = 7.1 Hz, 2H), 2.06 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.1, 167.1, 150.2, 135.9, 135.0, 133.0, 129.1, 128.62, 128.58, 128.52, 128.48, 61.3, 15.7, 13.5;

IR (ATR): v = 2925, 1711, 1667, 1448, 1261, 1134, 1021, 861, 762, 699;

HRMS (ESI) Calculated for $C_{19}H_{19}O_3$ [M+H]⁺: 295.1329; found 295.1323.

5w

ethyl (Z)-2-ethyl-4-oxo-3,4-diphenylbut-2-enoate

Compound **5w** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (12.3 mg, 40%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 2H), 7.53 – 7.46 (m, 1H), 7.42 (dd, J = 8.4, 6.9 Hz, 2H), 7.39 – 7.27 (m, 5H), 4.01 (q, J = 7.1 Hz, 2H), 2.44 (q, J = 7.4 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H), 1.00 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.0, 166.9, 149.3, 135.8, 135.0, 134.9, 132.9, 129.1, 128.6, 128.5, 128.5, 128.2, 61.1, 22.7, 13.9, 13.5;

IR (ATR): *v* = 2958, 2926, 2857, 1712, 1669, 1448, 1259, 1204, 1021, 761;

HRMS (ESI) Calculated for C₂₀H₂₁O₃ [M+H]⁺: 309.1485; found 309.1479.

5x

ethyl (Z)-2-(2-oxo-1,2-diphenylethylidene)hexanoate

Compound **5x** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (14.8 mg, 44%).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.93 (m, 2H), 7.53 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H), 7.40 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 4.00 (q, J = 7.2 Hz, 2H), 2.46 – 2.38 (m, 2H), 1.56 – 1.50 (m, 2H), 1.31 (h, J = 7.4 Hz, 2H), 0.99 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.1, 167.1, 149.3, 135.9, 135.1, 133.9, 132.9, 129.1, 128.6, 128.5, 128.4, 128.2, 61.1, 31.5, 29.0, 22.6, 13.7, 13.4;

IR (ATR): v = 2958, 2926, 2857, 1712, 1669, 1448, 1259, 1204, 1140, 761, 698; **HRMS (ESI)** Calculated for $C_{22}H_{25}O_3$ [M+H]⁺: 337.1798; found 337.1796.

$$\begin{array}{c}
O \\
p-\text{Tol} \\
\hline
F
\end{array}$$

$$\begin{array}{c}
O \\
PO(OEt)_2 \\
\hline
6a
\end{array}$$

diethyl (2-fluoro-6-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-3-oxo-2-(p-tolyl)hexyl)phosphonate

Compound **6a** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (20.4mg, 41%). The flash chromatography was performed with EA/PE (1: 3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 – 7.27 (m, 2H), 7.15 (d, J = 7.8 Hz, 2H), 4.10 – 4.00 (m, 4H), 3.53 – 3.48 (m, 1H), 3.21 – 3.02 (m, 2H), 2.96 – 2.81 (m, 2H), 2.75 – 2.59 (m, 1H), 2.58 – 2.44 (m, 1H), 2.32 (s, 3H), 2.11 – 2.02 (m, 1H), 2.01 – 1.96 (m, 1H), 1.84 – 1.67 (m, 3H), 1.62 – 1.53 (m, 2H), 1.32 – 1.24 (m, 6H), 1.14 – 1.08 (m, 1H), 0.93 – 0.58 (m, 12H);

¹³C NMR (125 MHz, Chloroform-d) δ 207.7 (ddd, J = 28.9, 6.5, 3.7 Hz), 138.4, 134.8 (ddd, J = 23.0, 12.6, 2.9 Hz), 129.3 (d, J = 2.0 Hz), 124.0 (d, J = 9.9 Hz), 100.3 (dd, J = 6.9, 3.1 Hz), 98.8 (dd, J = 7.0, 3.1 Hz), 79.1, 78.9, 67.2 (d, J = 5.1 Hz), 62.0 (d, J = 6.3 Hz), 61.7 (d, J = 6.3 Hz), 48.2 (d, J = 10.1 Hz), 40.3 (d, J = 8.0 Hz), 36.3 (t, J = 23.4 Hz), 35.2 (t, 23.4 Hz), 34.5, 33.5 (d, J = 10.6 Hz), 31.5 (d, J = 3.7 Hz), 25.5 (d, J = 5.9 Hz), 23.5 (dd, J = 4.4, 2.2 Hz), 23.3 (d, J = 2.2 Hz), 22.3, 21.0, 20.9 (d, J = 2.3 Hz), 16.3 (dd, J = 6.2, 1.8 Hz), 16.2, 16.0;

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -163.63 (dd, J = 19.1, 4.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.73 (dd, J = 10.4, 4.4 Hz);

IR (ATR): v = 2954, 2925, 2868, 1727, 1456, 1392, 1369, 1255, 1091, 1056, 1025, 962;HRMS (ESI) Calculated for $C_{27}H_{45}FO_5P [M+H]^+$: 499.2983; found 499.2976.

$$p$$
-Tol F PO(OEt)₂

diethyl (2-fluoro-3-oxo-2-(p-tolyl)-6-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)hexyl)phosphonate

Compound **6b** was prepared according to GP1 in 0.1 mmol scale as a colorless oil (23.4mg, 47%). The flash chromatography was performed with EA/PE (1: 3, v/v) as the eluent.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 – 7.26 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.16 – 3.94 (m, 4H), 3.40 – 3.03 (m, 4H), 2.92 – 2.84 (m, 1H), 2.71 – 2.63 (m, 1H), 2.52 – 2.44 (m, 1H), 2.31 (s, 3H), 2.06 – 1.58 (m, 6H), 1.51 – 1.50 (m, 1H), 1.29 – 1.26 (m, 6H), 1.18 – 1.01 (m, 2H), 0.92 – 0.88 (dd, J = 13.0, 3.3 Hz, 0.5H), 0.79 – 0.77 (m, 7H), 0.71 (s, 1H), 0.70 – 0.66 (m, 0.5H);

¹³C **NMR** (125 MHz, Chloroform-d) δ 207.8 (dt, J = 28.8, 3.5 Hz), 138.4, 134.8 (dd, J = 23.0, 12.4 Hz), 129.3 (d, J = 2.0 Hz), 124.0 (d, J = 9.8 Hz), 99.6 (ddd, J = 190.6, 7.0, 2.8 Hz), 84.4 (d, J = 2.8 Hz), 68.4 (d, J = 2.6 Hz), 62.0 (d, J = 6.3 Hz), 61.7 (d, J = 6.3 Hz), 49.0 (d, J = 2.3 Hz), 47.6 (d, J = 2.6 Hz), 44.9 (d, J = 3.5 Hz), 36.3 (d, J = 24.3 Hz), 36.1 (d, J = 6.9 Hz), 35.2 (d, J = 24.4 Hz), 33.3 (d, J = 13.0 Hz), 28.1 (d, J = 15.7 Hz), 26.5 (d, J = 2.8 Hz), 23.4 (dd, J = 6.3, 2.0 Hz), 21.0, 19.7, 18.7, 16.26 (dd, J = 6.3, 1.7 Hz), 13.9 (d, J = 10.9 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -163.81 (dd, J = 118.3, 4.8 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 23.71 (d, J = 4.9 Hz);

IR (ATR): v = 2981, 2948, 2873, 1727, 1453, 1389, 1254, 1164, 1095, 1054, 989;

HRMS (ESI) Calculated for $C_{27}H_{43}FO_5P$ [M+H]⁺: 497.2827; found 497.2827.

6c

ethyl (S, Z)-7-((2-(4-isobutylphenyl)propanoyl)oxy)-4-oxo-3-phenylhept-2-enoate

Compound **6c** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (19.5mg, 43%). The flash chromatography was performed with EA/PE (1: 10, v/v) as the eluent.

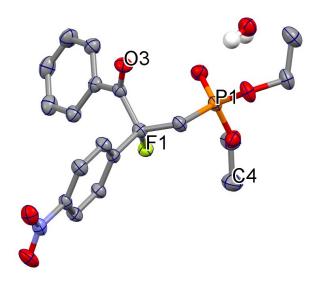
¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.36 (m, 5H), 7.12 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.16 (s, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.15 – 4.11 (m, 2H), 3.63 (q, J = 7.2 Hz, 1H), 2.64 – 2.60 (m, 2H), 2.41 (d, J = 7.2 Hz, 2H), 2.06 – 2.00 (m, J = 7.0 Hz, 2H), 1.84 – 1.79 (m, 1H), 1.44 (d, J = 7.2 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H), 0.89 (s, 3H), 0.87 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.4, 174.6, 165.4, 157.9, 140.4, 137.7, 132.9, 129.2, 129.1, 127.1, 126.6, 115.9, 63.6, 61.0, 45.1, 45.0, 38.8, 30.1, 22.4, 22.3, 18.3, 14.1;

IR (ATR): v = 2955, 2926, 1711, 1615, 1448, 1369, 1272, 1094, 1027, 770;**HRMS (ESI)** Calculated for $C_{28}H_{35}O_5$ [M+H]⁺: 451.2479; found 451.2477.

(Z)-7-ethoxy-4,7-dioxo-5-phenylhept-5-en-1-yl 2-acetoxybenzoate

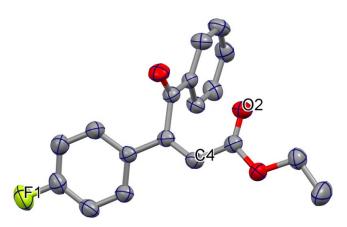
Compound **6d** was prepared according to GP2 in 0.1 mmol scale as a colorless oil (18.7mg, 44%). The flash chromatography was performed with EA/PE (1: 5, v/v) as the eluent.


¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 1H), 7.56 – 7.50 (m, 1H), 7.43 – 7.34 (m, 5H), 7.29 – 7.23 (m, 1H), 7.09 – 7.07 (m, 1H), 6.18 (s, 1H), 4.35 (t, J = 6.6

Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H), 2.20 (t, J = 6.9 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 205.3, 169.6, 165.4, 164.3, 157.9, 150.6, 133.7, 132.9, 131.6, 130.5, 129.2, 126.6, 125.9, 123.7, 116.1, 64.2, 61.0, 38.9, 22.4, 21.0, 14.1; **IR** (ATR): v = 2927, 1768, 1712, 1607, 1450, 1368, 1253.77, 1184.82, 1078.61, 1027.15, 752.06;

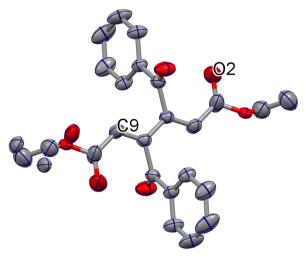
HRMS (ESI) Calculated for $C_{24}H_{25}O_7$ [M+H]⁺: 425.1595; found 425.1591.


5. X-ray structure of products

Supplementary Table 10. Crystal data and structure refinement for 3n. CCDC: 2202498

Identification code	1_a
Empirical formula	$C_{19}H_{23}FNO_7P$
Formula weight	427.35
Temperature/K	296.15
Crystal system	monoclinic
Space group	C2/c
a/Å	39.028(4)
b/Å	10.8883(11)
c/Å	9.8254(10)
α/°	90
β/°	100.829(5)
γ/°	90
Volume/Å ³	4101.0(7)

Z	8
$\rho_{calc}g/cm^3$	1.384
μ/mm^{-1}	0.184
F(000)	1792.0
Crystal size/mm ³	? × ? × ?
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	4.25 to 56.572
Index ranges	$-43 \le h \le 51$, $-14 \le k \le 14$, $-12 \le l \le 13$
Reflections collected	19133
Independent reflections	$5041 \; [R_{int} = 0.0691, R_{sigma} = 0.0597]$
Data/restraints/parameters	5041/1/263
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0523, wR_2 = 0.1370$
Final R indexes [all data]	$R_1 = 0.0620, wR_2 = 0.1463$
Largest diff. peak/hole / e Å-3	0.40/-0.50



$\label{thm:continuous} \textbf{Supplementary Table 11. Crystal data and structure refinement for 5u.}$

CCDC: 2202499

Identification code	2_a	
Empirical formula	$C_{18}H_{15}FO_3$	
Formula weight	298.30	
Temperature/K	296.15	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	11.3707(3)	
b/Å	13.3857(4)	
c/Å	20.1113(6)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	3061.04(15)	
	40	

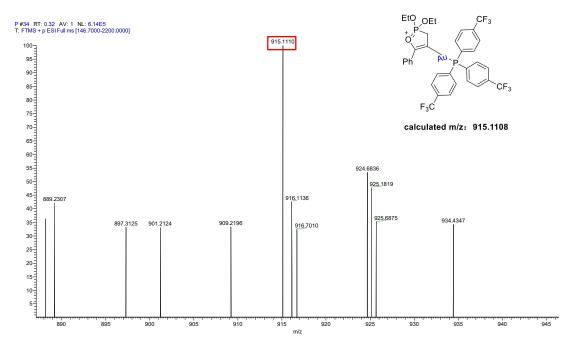
Z	8
$\rho_{calc}g/cm^3$	1.295
μ /mm ⁻¹	0.095
F(000)	1248.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	4.05 to 55.006
Index ranges	$-14 \le h \le 14, -16 \le k \le 17, -25 \le l \le 26$
Reflections collected	27377
Independent reflections	$3511 [R_{int} = 0.0597, R_{sigma} = 0.0344]$
Data/restraints/parameters	3511/0/200
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0480, wR_2 = 0.0976$
Final R indexes [all data]	$R_1 = 0.0782$, $wR_2 = 0.1124$
Largest diff. peak/hole / e Å-3	0.17/-0.15

Supplementary Table 12. Crystal data and structure refinement for 8. CCDC: 2202500

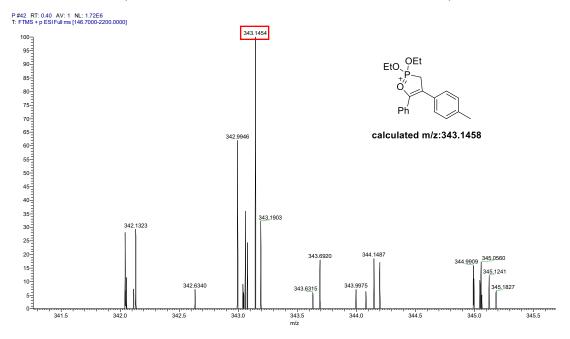
Identification code	data_220718li_xiejin_0m_a
Empirical formula	$C_{24}H_{22}O_6$
Formula weight	406.41
Temperature/K	193.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.0194(5)
b/Å	13.4473(7)
c/Å	9.6359(5)
α/°	90
β/°	116.234(3)

γ/°	90
Volume/Å ³	1048.32(10)
Z	2
$\rho_{calc}g/cm^3$	1.288
μ /mm ⁻¹	0.489
F(000)	428.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.11$
Radiation	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/°	9.51 to 107.914
Index ranges	$-9 \le h \le 10, -12 \le k \le 16, -11 \le l \le 11$
Reflections collected	6761
Independent reflections	1909 [$R_{int} = 0.0339$, $R_{sigma} = 0.0313$]
Data/restraints/parameters	1909/189/166
Goodness-of-fit on F ²	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0540, wR_2 = 0.1296$
Final R indexes [all data]	$R_1 = 0.0704, wR_2 = 0.1412$
Largest diff. peak/hole / e Å-3	0.21/-0.25

6. Mechanistic study


6.1 ¹⁸O labeling experiment

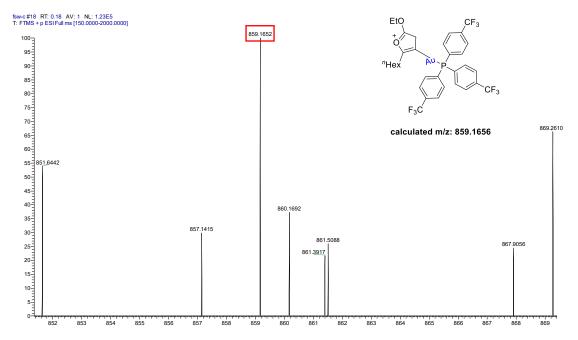
a. ESI-MS monitoring of oxo-arylfluorination reaction


PO(OEt)₂ +
$$p$$
-TolB(OH)₂ + Selectfluor + H₂O $\frac{(4-CF_3PH)_3PAUCI}{(10 \text{ mol}\%)}$ $\frac{(10 \text{ mol}\%)}{50 \text{ °C, } 10 \text{ min}}$ Ph PO(OEt)₂

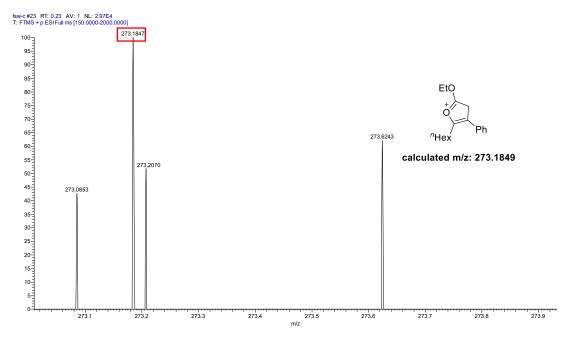
1a 2a 3a

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), **2** (0.3 mmol, 3.0 equiv.) and Selectfluor (0.4 mmol, 4.0 equiv.) are successively added under air atmosphere. Then MeCN (2.0 mL) is added into the tube under stirring conditions. After that, alkynes **1** (0.1 mmol, 1.0 equiv.) and water (0.2 mmol, 2.0 euqiv) are added by microinjector under air atmosphere. The reaction mixture is heated at 50 °C for 10 minutes and stops heating. (footnote: prepare the corresponding ESI-MS sample and test in the shortest time).

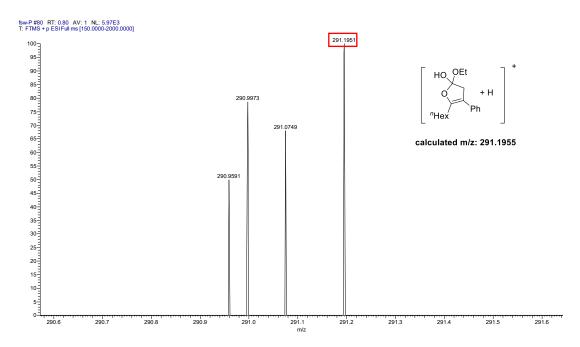
Supplementary Figure 1. HRMS investigation of oxo-arylfluorination reaction mixture at 10 minutes (reaction-intermediate, calculated 915.1108, found: 915.1110)

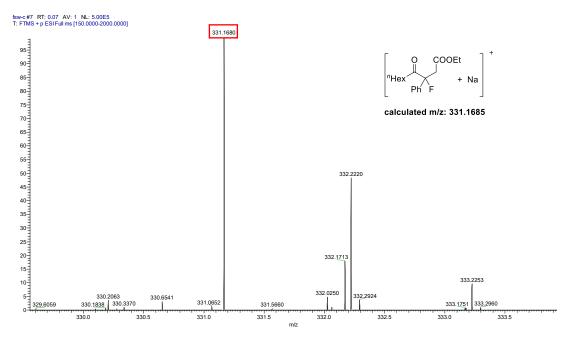


Supplementary Figure 2. HRMS investigation of oxo-arylfluorination reaction mixture at 10 minutes (reaction-intermediate, calculated 343.1458, found: 343.1454)


b. ESI-MS monitoring of oxo-arylalkenylation reaction

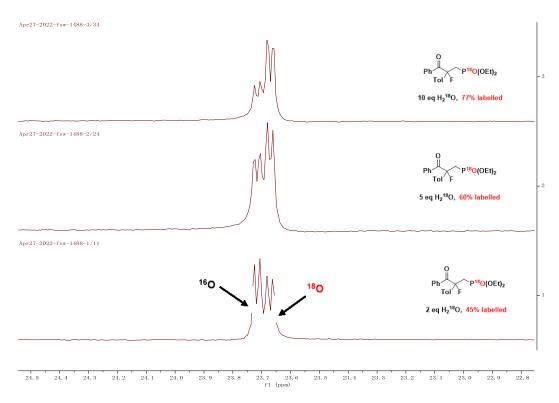
To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), **3d** (0.3 mmol, 3.0 equiv.) and Selectfluor (0.25 mmol, 2.5 equiv.) are successively added under air atmosphere. Then MeCN (2.0 mL) is added into the tube under stirring conditions. After that, alkynes **4a** (0.1 mmol, 1.0 equiv.) and water (0.2 mmol, 2.0 euqiv) are added by microinjector under air atmosphere. The reaction mixture is heated at 50 °C for 10 minutes and stops heating.


(footnote: prepare the corresponding ESI-MS sample and test in the shortest time).


Supplementary Figure 3. HRMS investigation of oxo-arylalkenylation reaction mixture at 10 minutes (reaction-intermediate, calculated 859.1656, found: 859.1652)

Supplementary Figure 4. HRMS investigation of oxo-arylalkenylation reaction mixture at 10 minutes (reaction-intermediate, calculated 273.1849, found: 273.1847)

Supplementary Figure 5. HRMS investigation of oxo-arylalkenylation reaction mixture at 10 minutes (reaction-intermediate, calculated 291.1955, found: 291.1951)

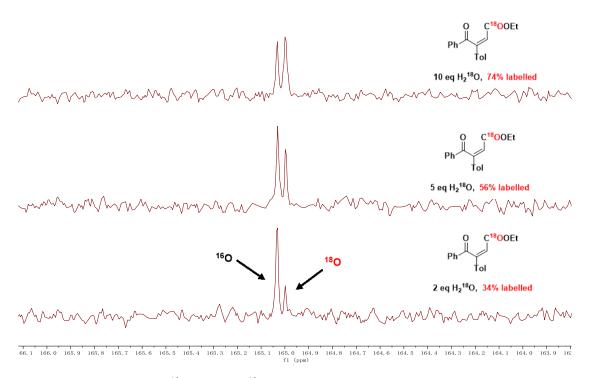

Supplementary Figure 6. HRMS investigation of oxo-arylalkenylation reaction mixture at 10 minutes (reaction-intermediate, calculated 331.1685, found: 331.1680)

6.2 ¹⁸O labeling experiment

a. ³¹P NMR for ¹⁸O labeling experiment of oxidative oxo-arylfluorination of alkynes.

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), **6** (0.1 mmol, 1.0 equiv.) and Selectfluor (0.4 mmol, 4.0 equiv.) are successively added under air atmosphere. Then MeCN (2.0 mL) is added into the tube under stirring conditions. After that, alkynes **1a** (0.1 mmol, 1.0 equiv.) and H₂¹⁸O (x euqiv) are added by microinjector under air atmosphere. The resulting reaction mixture is heated at 50 °C. When the reaction is finished (monitored by TLC), the reaction mixture is cooled to room temperature. Prepare the corresponding ESI-MS sample and test. After ESI-MS test, recycle the example and combine with reaction mixture. Concentrated in vacuo,

the resulting residue is purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) to give the final product $3a^{-18}O$. The ^{18}O labeling resulting are derived from ESI-MS data.



Supplementary Figure 7. ³¹P NMR for ¹⁸O labeling experiment of oxo-arylfluorination reaction

b. ¹³C NMR for ¹⁸O labeling experiment of oxo-arylalkenylation reaction

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), 7 (0.1 mmol, 1.0 equiv.) and Selectfluor (0.25 mmol, 2.5 equiv.) are successively added under air atmosphere. Then MeCN (2.0 mL) is added into the tube under stirring conditions. After that, alkynes **4a** (0.1 mmol, 1.0 equiv.) and H₂¹⁸O (x euqiv) are added by microinjector under air atmosphere. The resulting reaction mixture is heated at 50 °C. When the reaction is finished (monitored by TLC), the reaction mixture is cooled to room temperature. Prepare the corresponding ESI-MS sample and test. After ESI-MS test, recycle and combine the example with reaction mixture. Concentrated in vacuo,

the resulting residue is purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) to give the final product $5a^{-18}O$. The ^{18}O labeling resulting are derived from ESI-MS data.

Supplementary Figure 8. ¹³C NMR for ¹⁸O labeling experiment of oxo-arylalkenylation reaction

7. Preparation of starting materials

Synthesis of alkynes 1a - 1aa [1]

To an oven-dried flask (100 mL) with CuI (0.5 mmol, 5 mol%) and MeCN (30 mL) under N_2 atmosphere, alkynes (10 mol, 1.0 equiv..) are added. And then, diethyl diazomethylphosphonates (10 mol, 1.0 equiv..) are added dropwise into the mixture and stirred at room temperature overnight. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on silica gel to afford proparylphosphonates (eluent: EA/PE = 1:1 to 1:3, v/v).

Preparation of alkynes 1bb - 1cc [2]

Step 1

To an oven-dried flask (50 mL) are added Pd(PPh₃)₂Cl₂ (2 mol%), CuI (10 m ol%) and equips with a magnetic stir bar. Then iodobenzene (10 mmol, 1.0 eq uiv..) and Et₃N (25 mL) are added through syringe under N₂ atmosphere at ro om temperature. Stirred at the same temperature for 15 min and 4-bromo-1-but yne (12 mmol, 1.2 equiv..) is added to the mixture. The reaction is conducted at room temperature overnight. Saturated aqueous NH₄Cl (20 mL) and EtOAc (30 mL) are added. Keep the organic phase and washed with brine, dried over Na₂SO₄. Concentrated in vacuo, and the residue is purified by column chroma tography on silica gel to afford the desired product (eluent: EA/PE = 1:20, v/v).

Step 2

To an oven-dried flask (25 mL) are added the alkynyl bromides (10 mol, 2.0 equiv..) and $P(OR)_3$ (5 mol, 1 equiv..) under N_2 atmosphere. The mixture is stirred at $150^{\circ}C$ overnight. After that, the mixture is cooled to room temperature and purified by column chromatography on silica gel to afford proparylphosphonates (eluent: EA/PE = 1:2 to 1:3, v/v).

Synthesis of 3-alkynoates [3]

$$R'$$
 + N_2 CO_2Et N_2 , rt, overnight R

To a solution of alkynes (12 mmol, 1.2 equiv..) and CuI (0.5 mol, 5 mol%) in MeCN (30 mL) under N₂ atmosphere, diazocarbonyl compounds (10 mmol, 1.0 equiv..) are

added. The mixture is stirred at room temperature overnight. And then, the solvent is removed in vacuo and the residue is purified by column chromatography on silica gel to afford 3-alkynoates (eluent: EA/PE = 1:15 to 1:20, v/v).

diethyl (3-(4-ethylphenyl)prop-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:2, v/v) to afford **1p** as a light-yellow oil (496.7 mg, yield 50%, for the alkyne).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.32 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.26 – 4.18 (m, 4H), 2.97 (d, J = 22.1 Hz, 2H)., 2.62 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.1 Hz, 6H), 1.21 (t, J = 7.6 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.5, 131.6 (d, J = 3.3 Hz), 127.7, 120.1 (d, J = 4.1 Hz), 82.8 (d, J = 10.4 Hz), 78.6 (d, J = 14.9 Hz), 63.0, 62.9, 28.7, 18.8 (d, J = 145.6 Hz), 16.4 (d, J = 5.9 Hz), 15.3;

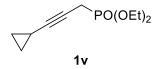
³¹**P NMR** (202 MHz, Chloroform-*d*) δ 21.61;

IR (ATR): v = 2968, 2932, 1737, 1510, 1443, 1392, 1256, 1163, 1049, 961; **HRMS (ESI)** Calculated for $C_{15}H_{22}O_3P [M+H]^+$: 281.1301; found 281.1297.

diethyl (3-(2-fluorophenyl)prop-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:2, v/v) to afford $1\mathbf{r}$ as a light-yellow oil (167.5 mg, yield 62%, 6.0 mmol for the alkyne);

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.43 – 7.39 (m, 1H), 7.32 – 7.26 (m, 1H), 7.10 –


7.02 (m, 2H), 4.27 – 4.22 (m, 4H), 3.03 (d, J = 22.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 6H); ¹³C **NMR** (125 MHz, Chloroform-d) δ 133.7, 129.9, 129.9, 123.9 (d, J = 3.8 Hz), 115.5, 115.4, 84.9 (d, J = 14.8 Hz), 76.3 (d, J = 10.5 Hz), 63.2, 63.1, 19.0 (d, J = 145.1 Hz)., 16.4 (d, J = 5.9 Hz);

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -110.47;

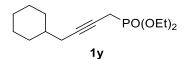
³¹**P NMR** (202 MHz, Chloroform-*d*) δ 20.83;

IR (ATR): *v* = 2981, 2922, 2851, 1449, 1260, 1052, 1020, 969;

HRMS (ESI) Calculated for $C_{13}H_{17}FO_3P [M+H]^+$: 271.0894; found 271.0889.

diethyl (3-cyclopropylprop-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:4, v/v) to afford $\mathbf{1v}$ as a pale-yellow oil (395.7 mg, yield 61%, 3.0 mmol for the alkyne);


¹**H NMR** (500 MHz, Chloroform-*d*) δ 4.16 – 4.12 (m, 4H), 2.66 (dd, J = 21.8, 2.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 6H), 1.23 – 1.12 (m, 1H), 0.72 – 0.65 (m, 2H), 0.63 – 0.57 (m, 2H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 85.9 (d, J = 9.8 Hz), 64.6 (d, J = 14.9 Hz), 62.7 (d, J = 6.5 Hz), 18.0 (d, J = 146.2 Hz), 16.3 (d, J = 5.9 Hz), 7.8 (d, J = 2.7 Hz), -0.5 (d, J = 3.9 Hz);

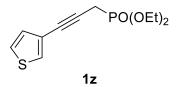
³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.58;

IR (ATR): *v* = 2983, 2906, 1392, 1258, 1017, 959, 775;

HRMS (ESI) Calculated for $C_{10}H_{18}O_3P [M+H]^+$: 217.0988; found 217.0989.

diethyl (4-cyclohexylbut-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:4, v/v) to afford $\mathbf{1y}$ as a pale-yellow oil (702.6 mg, yield 43%, 6.0 mmol for the alkyne);


¹**H NMR** (500 MHz, Chloroform-*d*) δ 4.18 – 4.12 (m, 4H), 3.40 (d, J = 21.9 Hz, 2H), 2.62 – 2.60 (m, 2H), 1.80 – 1.69 (m, 5H), 1.67 – 1.60 (m, 1H), 1.33 (t, J = 7.1 Hz, 6H), 1.27 – 1.12 (m, 3H), 1.04 – 0.98 (m, 2H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 125.2 (d, J = 14.4 Hz), 110.0 (d, J = 14.5 Hz), 62.4, 62.3, 47.7 (d, J = 2.9 Hz), 39.8 (d, J = 142.2 Hz), 37.0 (d, J = 3.7 Hz), 32.3, 26.3, 26.1, 16.4 (d, J = 6.3 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.18;

IR (ATR): *v* = 2981, 2922, 2851, 1448, 1260, 1052, 1020, 959, 841;

HRMS (ESI) Calculated for $C_{14}H_{26}O_3P [M+H]^+$: 273.1614; found 273.1609.

diethyl (3-(thiophen-3-yl)prop-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:3, v/v) to afford 1z as a yellow oil (1162.2 mg, yield 45%, 10.0 mmol for the alkyne);

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.42 – 7.38 (m, 1H), 7.25-7.26 (m, 1H), 7.09 – 7.07 (m, 1H), 4.25 – 4.19 (m, 4H), 2.96 (d, J = 22.0 Hz, 2H), 1.37 (t, J = 7.1 Hz, 6H); ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 129.9 (d, J = 2.8 Hz), 128.7 (d, J = 4.0 Hz), 125.2, 79.0 (d, J = 15.0 Hz), 77.9 (d, J = 10.2 Hz), 63.0 (d, J = 6.5 Hz), 18.8 (d, J = 145.8 Hz), 16.4 (d, J = 6.0 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 21.46;

IR (ATR): v = 2981, 2905, 1391, 1254, 1215, 1163, 1049, 1018, 960, 859;

HRMS (ESI) Calculated for $C_{11}H_{16}O_3PS [M+H]^+$: 259.0552; found 259.0549.

diethyl (3-(thiophen-2-yl)prop-2-yn-1-yl)phosphonate

Prepared according to the general procedure 2.1. Flash column chromatography (eluent: EA/PE = 1:3, v/v) to afford **1aa** as a yellow oil (363.0 mg, yield 35%, 4.0 mmol for the alkyne);

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.22 – 7.20 (m, 1H), 7.18 – 7.17 (m, 1H), 6.94 – 6.95 – 6.64 (m 1H), 4.26 – 4.18 (m, 4H), 2.99 (d, *J* = 22.0 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 131.9 (d, J = 3.4 Hz), 126.8, 126.7, 83.5 (d, J = 15.4 Hz), 76.1 (d, J = 10.4 Hz), 63.0 (d, J = 6.8 Hz), 19.1 (d, J = 145.6 Hz), 16.4 (d, J = 5.9 Hz)

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 20.91;

IR (ATR): *v* = 2982, 2930, 2165, 1626, 1412, 1391, 1248, 1014, 966, 848;

HRMS (ESI) Calculated for $C_{11}H_{16}O_3PS [M+H]^+$: 259.0552; found 259.0548.

ethyl 5-cyclohexylpent-3-ynoate

Prepared according to the general procedure 2.2. Flash column chromatography (eluent: EA/PE = 1:20 v/v) to afford **4m** as a pale-yellow oil (293.7 mg, yield 47%, 3.0 mmol for the alkyne).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 4.18 (q, J = 7.1 Hz, 2H), 3.24 (t, J = 2.5 Hz, 2H), 2.09 – 2.07 (m, 2H), 1.82 – 1.78 (m, 2H), 1.73 – 1.69 (m, 2H), 1.66 – 1.62 (m, 1H), 1.50 – 1.41 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.25 – 1.19 (m, 2H), 1.18 – 1.10 (m, 1H), 1.02 – 0.93 (m, 2H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 169.0, 82.7, 72.3, 61.4, 37.4, 32.6, 26.6, 26.3, 26.2, 26.1, 14.1;

IR (ATR): v = 2982, 2922, 2851, 1739, 1449, 1368, 1325, 1258, 1162, 1029; **HRMS (ESI)** Calculated for $C_{13}H_{21}O_2$ [M+H]⁺: 209.1536; found 209.1536.

ethyl 7-chlorohept-3-ynoate

Prepared according to the general procedure 2.2. Flash column chromatography (eluent: EA/PE = 1:20, v/v) to afford **4n** as a pale-yellow oil (556.4 mg, yield 59%, 5.0 mmol for the alkyne).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 4.21 (q, J = 7.1 Hz, 2H), 3.78 (s, 2H), 3.59 (t, J = 6.6 Hz, 2H), 2.92 – 2.87 (m, 2H), 2.13 – 2.08 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 168.1, 124.5, 113.0, 61.4, 46.9, 43.3, 38.1, 30.4, 14.1;

IR (ATR): v = 2982, 1739, 1444, 1404, 1369, 1259, 1178, 1096, 1028, 652; HRMS (ESI) Calculated for $C_9H_{14}ClO_2$ [M+H]⁺: 189.0677; found 189.0676.

ethyl 4-(thiophen-2-yl)but-3-ynoate

Prepared according to the general procedure 2.2. Flash column chromatography (eluent: EA/PE = 1:15, v/v) to afford **4t** as a yellow oil (951.8 mg, yield 49%, 10.0 mmol for the alkyne).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.21 – 7.19 (m, 2H), 6.95 – 6.93 (m, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.51 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, Chloroform-d) δ 167.9, 132.0, 126.8, 85.2, 61.8, 27.0, 14.1.

IR (ATR): v = 2981, 1736, 1368, 1330, 1299, 1258, 1159, 1095, 1027, 847;

HRMS (ESI) Calculated for $C_{10}H_{11}O_2S [M+H]^+$: 195.0474; found 195.0472.

Under N₂ atmosphere, to a solution of (-)-Menthol (10.0 mmol, 1.0 eq) in DMF (20 mL) is added NaH (1.5 eq, 60% dispersion in mineral oil) at 0 °C. And then, the mixture is warmed to rt and stirred for 1 hours. Pent-4-yn-1-yl 4-methylbenzenesulfonate (10.0 mmol, 1.0 eq) in DMF (10 mL) is added dropwise in 10 min. The mixture is warmed up to 50 °C and stirred for 24 hours. The reaction mixture is quenched with NH₄Cl saturated solution, and the organic layer is extracted with EA, washed with brine and dried over anhydrous Na₂SO₄. The residue is purified by chromatography on silica gel with EA/PE (1:40, v/v) as the eluent to afford desired product **6a-1** as a colorless oil (75% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 3.72 – 3.68 (m, 1H), 3.39 – 3.35 (m, 1H), 3.04 – 2.99 (m, 1H), 2.32 – 2.28 (m, 2H), 2.23 – 2.17 (m, 1H), 2.12 – 2.07 (m, 1H), 1.93 (t, J = 2.7 Hz, 1H), 1.80 – 1.73 (m, 2H), 1.66 – 1.59 (m, 3H), 1.37 – 1.31 (m, 1H), 1.23 – 1.18 (m, 1H), 0.98 – 0.95 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H), 0.85 – 0.82 (m, 3H), 0.85 – 0.81 (m, 1H), 0.77 (d, J = 7.0 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 84.2, 79.3, 68.3, 66.6, 48.3, 40.5, 34.6, 31.6, 29.2, 25.6, 23.3, 22.4, 21.0, 16.2 15.4;

IR (ATR): v = 3312, 2953, 2920, 2868, 1456, 1370, 1239, 1111, 1093, 626;**HRMS (ESI)** $Calculated for <math>C_{15}H_{27}O$ [M+H]⁺: 223.2056; found 223.2053.

To a solution of **6a-1** (2.0 mmol, 1.0 eq) and CuI (0.2 mol, 10 mol%) in MeCN (15 mL) are added diethyl (diazomethyl)phosphonate (3.0 mmol, 1.5 eq) under N₂ atmosphere. The reaction mixture is stirred at 30 °C for 12 hours. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on

silica gel with EA/PE (1:2, v/v) to afford **6a-2** as a pale-yellow oil (54% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 4.15 – 4.10 (m, 4H), 3.65 – 3.61 (m, 1H), 3.31 – 3.26 (m, 1H), 2.96 – 2.93 (m, 1H), 2.70 – 2.64 (m, 2H), 2.25 – 2.20 (m, 2H), 2.18 – 2.11 (m, 2H), 2.06 – 2.02 (m, 1H), 1.71 – 1.65 (m, 2H), 1.61 – 1.53 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 6H), 1.18 – 1.12 (m, 1H), 0.93 – 0.75 (m, 9H), 0.72 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 82.5 (d, *J* = 10.3 Hz), 79.2, 69.4 (d, *J* = 14.5 Hz), 66.8, 62.7, 62.6, 48.2, 40.4, 34.5, 31.4, 29.3 (d, *J* = 2.9 Hz), 25.5, 23.2, 22.2, 20.8, 18.5, 17.3, 16.3 (d, *J* = 5.9 Hz), 16.1, 15.7 (d, *J* = 3.1 Hz);

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.79;

IR (ATR): *v* = 2952, 2920, 2868, 1456, 1262, 1110, 1054, 1022, 962, 842;

HRMS (ESI) Calculated for $C_{20}H_{38}O_4P$ [M+H]⁺: 373.2502; found 373.2495.

Under N₂ atmosphere, to a solution of L(-)-Borneol (10.0 mmol, 1.0 eq) in DMF (20 mL) is added NaH (1.5 eq, 60% dispersion in mineral oil) at 0 °C. And then, the mixture is warmed to rt and stirred for 1 hours. Pent-4-yn-1-yl 4-methylbenzenesulfonate (10.0 mmol, 1.0 eq) in DMF (10 mL) is added dropwise in 10 min. The mixture is warmed up to 50 °C and stirred for 24 hours. The reaction mixture is quenched with NH₄Cl saturated solution, and the organic layer is extracted with EA, washed with brine and dried over anhydrous Na₂SO₄. The residue is purified by chromatography on silica gel with EA/PE (1:40, v/v) as the eluent to afford desired product **6b-1** as a colorless oil (61% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 3.55 - 3.51 (m, 2H), 3.44 - 3.39 (m, 1H), 2.31 - 2.28 (m, 2H), 2.13 - 2.07 (m, 1H), 1.99 - 1.89 (m, 2H), 1.79 - 1.73 (m, 2H), 1.71 - 1.65 (m, 1H), 1.62 - 1.60 (m, 1H), 1.23 - 1.15 (m, 2H), 1.00 (dd, J = 13.0, 3.3 Hz, 1H),

0.86 (s, 3H), 0.83 (s, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 84.7, 84.4, 68.2, 68.0, 49.2, 47.8, 45.0, 36.2, 29.1, 28.2, 26.6, 19.8, 18.8, 15.3, 14.0;

IR (ATR): v = 3312, 2949, 2873, 1454, 1388, 1362, 1140, 1118, 1099, 1077, 626; **HRMS (ESI)** Calculated for $C_{15}H_{25}O$ [M+H]⁺: 221.1900; found 221.1897.

To a solution of **6b-1** (2.0 mmol, 1.0 eq) and CuI (0.2 mol, 10 mol%) in MeCN (15 mL) is added diethyl (diazomethyl)phosphonate (3.0 mmol, 1.5 eq) under N_2 atmosphere. The reaction mixture is stirred at 30 °C for 12 hours. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on silica gel with EA/PE (1:2, v/v) to afford **6b-2** as a pale-yellow oil (50% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 4.15 – 4.12 (m, 4H), 3.52 – 3.45 (m, 2H), 3.39 – 3.35 (m, 1H), 2.72 – 2.67 (m, 2H), 2.27 – 2.23 (m, 2H), 2.10 – 2.04 (m, 1H), 1.96 – 1.90 (m, 1H), 1.74 – 1.63 (m, 3H), 1.59 (t, J = 4.6 Hz, 1H), 1.32 (t, J = 7.1 Hz, 6H), 1.18 – 1.13 (m, 2H), 0.98 – 0.94 (m, 1H), 0.82 (s, 3H), 0.81 (s, 6H);

¹³C **NMR** (125 MHz, Chloroform-*d*) δ 84.6, 82.7 (d, J = 10.2 Hz), 69.3 (d, J = 14.5 Hz), 68.2, 62.73, 62.67, 49.1, 47.7, 45.0, 36.2, 29.2 (d, J = 2.9 Hz), 28.2, 26.6, 19.7, 18.8, 18.5, 17.4, 16.4 (d, J = 5.9 Hz), 15.7 (d, J = 3.0 Hz), 13.9;

³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.83;

IR (ATR): v = 2981, 2948, 2873, 1388, 1262, 1118, 1097, 1053, 1021, 963;

HRMS (ESI) Calculated for $C_{20}H_{36}O_4P [M+H]^+$: 371.2346; found 371.2338.

To a solution of (+)-ibuprofen (10 mmol, 1.0 eq), DCC (15 mmol, 1.5 eq) and DMAP (2 mmol, 2 mol%) in DCM (30 mL), 4-pentyn-1-ol (15 mmol, 1.5 eq) is added at rt. The reaction mixture is stirred at the same temperature for overnight, before quenched with H₂O and extracted with DCM. The organic phase is dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product Is purified by column chromatography on silica gel with EA/PE (1:40, v/v) to afford **6c-1** as a colorless oil (87% yield).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.20 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 4.17 (td, J = 6.1, 3.8 Hz, 2H), 3.69 (q, J = 7.2 Hz, 1H), 2.45 (d, J = 7.2 Hz, 2H), 2.16 – 2.13 (m, 2H), 1.93 (t, J = 2.7 Hz, 1H), 1.88 – 1.76 (m, 3H), 1.49 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.7 Hz, 6H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 174.6, 140.5, 137.7, 129.3, 127.1, 82.9, 68.9, 63.0, 45.1, 45.0, 30.1, 27.5, 22.3, 18.3, 15.0;

IR (ATR): v = 3294, 2930, 2854, 2117, 1733, 1450, 1240, 1071, 847;

HRMS (ESI) Calculated for $C_{18}H_{25}O_2$ [M+H]⁺: 273.1849; found 273.1846.

To a solution of **6c-1** (4 mmol, 1.0 equiv..) and CuI (0.4 mol, 10 mol%) in MeCN (20 mL) under N₂ atmosphere, diazocarbonyl compounds (6 mmol, 1.5 equiv.) are added. The mixture is stirred at room temperature overnight. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on silica gel with EA/PE (1:20, v/v) to afford **6c-2** as a pale-yellow oil (43% yield).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.18 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H),

4.22 - 4.11 (m, 4H), 3.68 (q, J = 7.2 Hz, 1H), 3.21 (t, J = 2.4 Hz, 2H), 2.44 (d, J = 7.2 Hz, 2H), 2.19 - 2.15 (m, 2H), 1.87 - 1.73 (m, 3H), 1.48 (d, J = 7.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.89 (d, J = 6.7 Hz, 6H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 174.6, 168.7, 140.4, 137.7, 129.3, 127.1, 82.2, 72.3, 63.3, 61.4, 45.10, 45.0, 30.1, 27.6, 26.0, 22.3, 18.4, 15.3, 14.1;

IR (ATR): v = 2956, 2870, 1732, 1464, 1367, 1256, 1160, 1094, 1029;

HRMS (ESI) Calculated for $C_{22}H_{31}O_4$ [M+H]⁺: 359.2217; found 359.2210.

To a solution of acetylsalicylic acid (10 mmol, 1.0 eq), DCC (15 mmol, 1.5 eq) and DMAP (2 mmol, 2 mol%) in DCM (30 mL), 4-pentyn-1-ol (15 mmol, 1.5 eq) is added at rt. The reaction mixture is stirred at the same temperature for overnight, before quenched with H₂O and extracted with DCM. The organic phase is dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on silica gel with EA/PE (1:50, v/v) to afford **6d-1** as a colorless oil (71% yield).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.01 (dd, J = 7.9, 1.7 Hz, 1H), 7.57 – 7.55 (m, 1H), 7.33 – 7.29 (m, 1H), 7.11 – 7.09 (m, 1H), 4.39 (t, J = 6.3 Hz, 2H), 2.37 – 2.34 (m, 5H), 2.00 – 1.93 (m, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 169.6, 164.3, 150.7, 133.8, 131.7, 126.0, 123.8, 123.2, 82.9, 69.2, 63.6, 27.6, 21.0, 15.3;

IR (ATR): v = 2962, 1768, 1720, 1607, 1485, 1451, 1251, 1160, 915;

HRMS (ESI) Calculated for $C_{14}H_{15}O_4$ [M+H]⁺: 247.0965; found 247.0965.

To a solution of **6d-1** (4 mmol, 1.0 equiv..) and CuI (0.4 mol, 10 mol%) in MeCN (20 mL) under N_2 atmosphere, diazocarbonyl compounds (6 mmol, 1.5 equiv..) are added. The mixture is stirred at room temperature overnight. After filtration and concentration under reduced pressure, the crude product is purified by column chromatography on silica gel with EA/PE (1:10, v/v) to afford **6d-2** as a pale-yellow oil (45% yield).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.05 – 8.03 (m, 1H), 7.57 – 7.54 (m, 1H), 7.32 – 7.29 (m, 1H), 7.11 – 7.09 (m, 1H), 4.32 (t, J = 6.5 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.77 (s, 2H), 2.90 (t, J = 7.3 Hz, 2H), 2.35 (s, 3H), 2.11 – 2.04 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 169.6, 168.1, 164.2, 150.78, 133.8, 131.7, 126.0, 124.7, 123.8, 123.2, 112.9, 63.4, 61.4, 46.9, 37.3, 26.6, 21.0, 14.1;

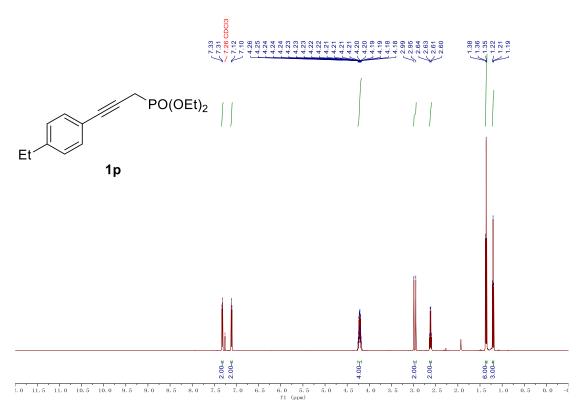
IR (ATR): *v* = 2928, 1769, 1720, 1607, 1252, 1186, 1078, 1028;

HRMS (ESI) Calculated for $C_{18}H_{21}O_6$ [M+H]⁺: 333.1333; found 333.1326.

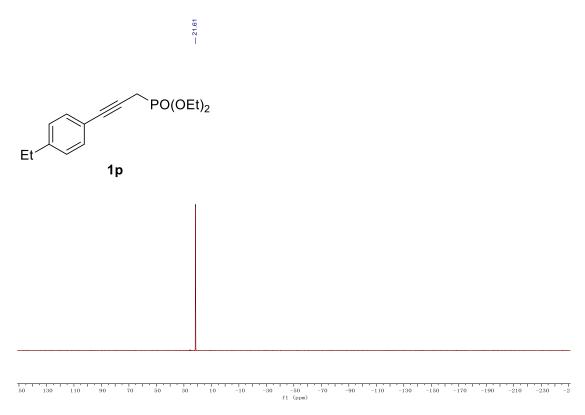
diethyl (2Z,4Z)-3,4-dibenzoylhexa-2,4-dienedioate

To a dried Schlenk tube, (4-CF₃Ph)₃PAuCl (0.01mmol, 10 mol%), Selectfluor (0.25 mmol, 2.5 equiv.) and MeCN (2 mL) are added successively under air atmosphere. After that, **4a** (0.1 mmol, 1.0 equiv.) and water (0.2 mmol, 2.0 euqiv) are added by microinjector under air atmosphere. The resulting reaction mixture is heated at 50 °C for 12 hours and then cooled to room temperature and concentrated in vacuo. The resulting residue is purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10: 1) to give the final product **8** (19.3 mg, 95% yield, colorless oil).

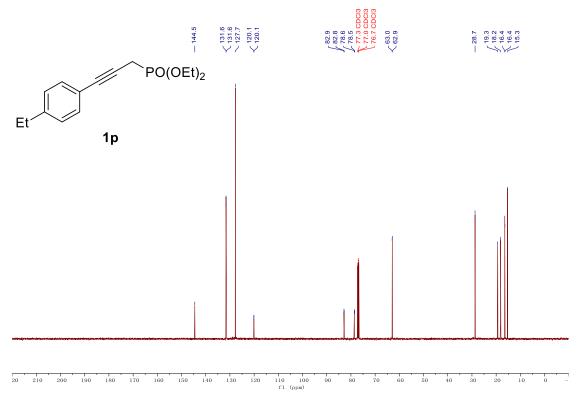
¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.03 – 7.98 (m, 4H), 7.65 – 7.62 (m, 2H), 7.52 (t, J = 7.8 Hz, 4H), 6.07 (s, 2H), 3.97 (q, J = 7.2 Hz, 4H), 1.03 (t, J = 7.2 Hz, 6H).

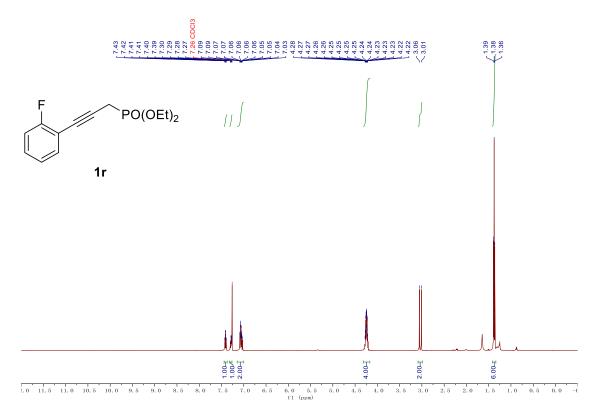

¹³C NMR (125 MHz, Chloroform-d) δ 194.3, 163.9, 149.9, 135.5, 134.2, 129.0, 128.9,

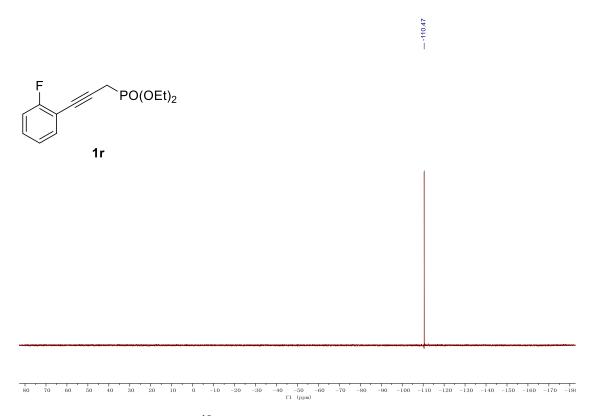
125.3, 61.5, 13.7.


IR (ATR): *v* = 2982, 2927, 1713, 1672, 1596, 1308, 1234, 1041, 957, 868;

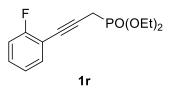
HRMS (ESI) Calculated for $C_{24}H_{23}O_6$ [M+H]⁺: 407.1489; found 407.1483.

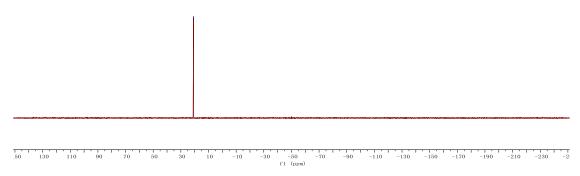

8. NMR spectra

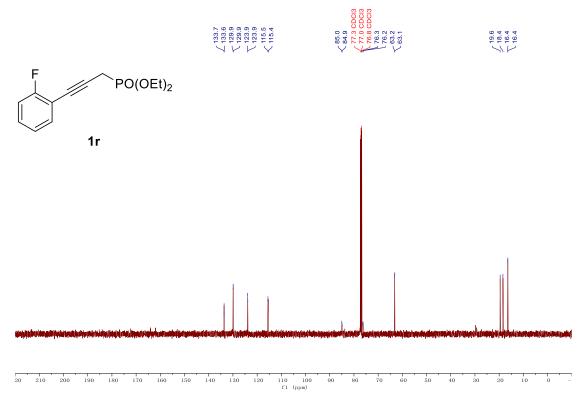

Supplementary Figure 9. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 1p

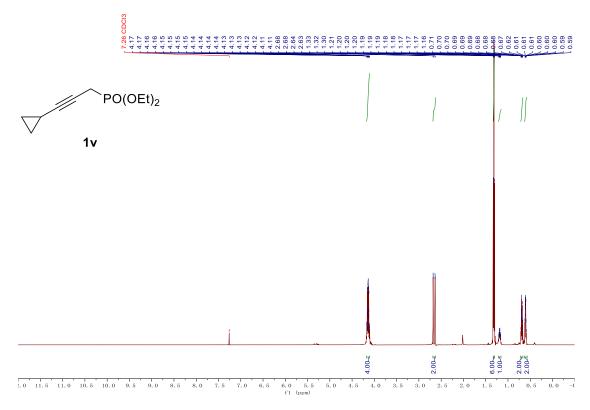

Supplementary Figure 10. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 1p

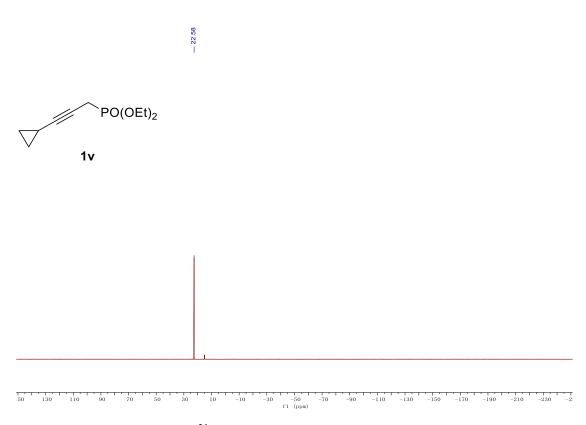
Supplementary Figure 11. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 1p

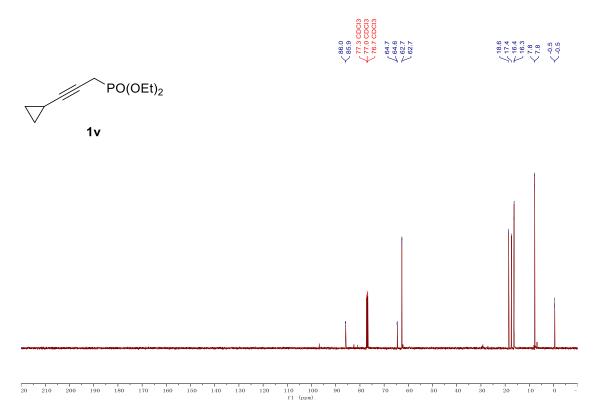


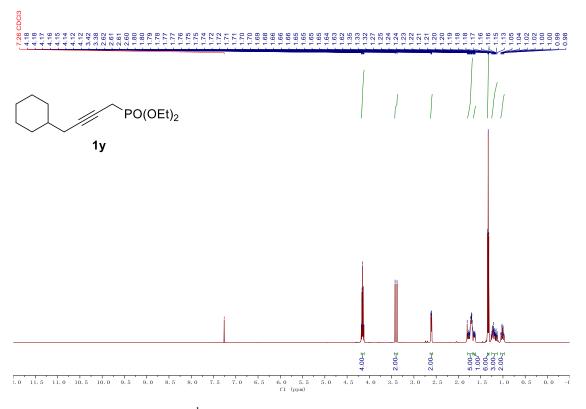

Supplementary Figure 12. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 1r

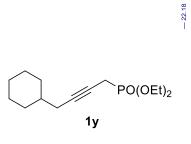

Supplementary Figure 13. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 1r

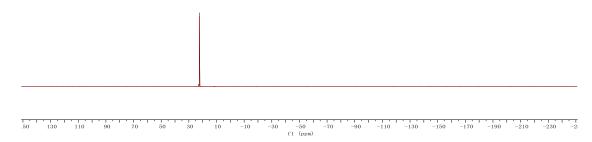



Supplementary Figure 14. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 1r

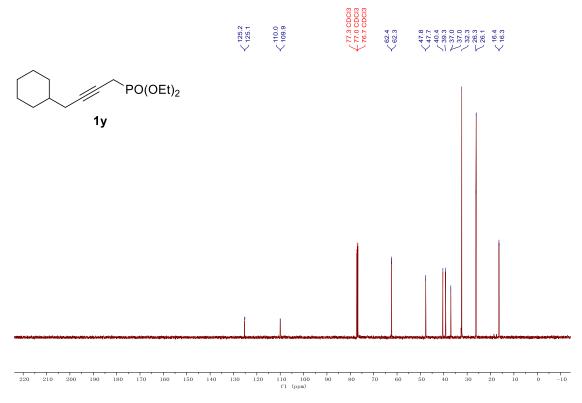

Supplementary Figure 15. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 1r


Supplementary Figure 16. ^1H NMR (500 MHz, CDCl₃) spectrum for compound 1v

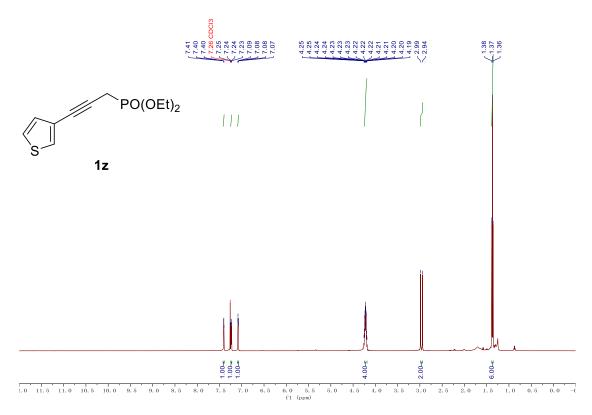

Supplementary Figure 17. 31 P NMR (202 MHz, CDCl₃) spectrum for compound 1v

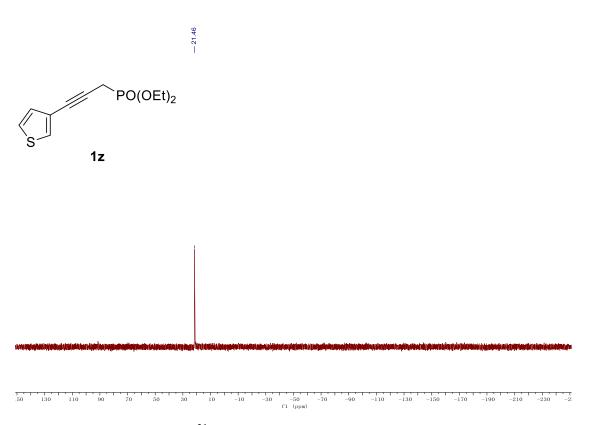


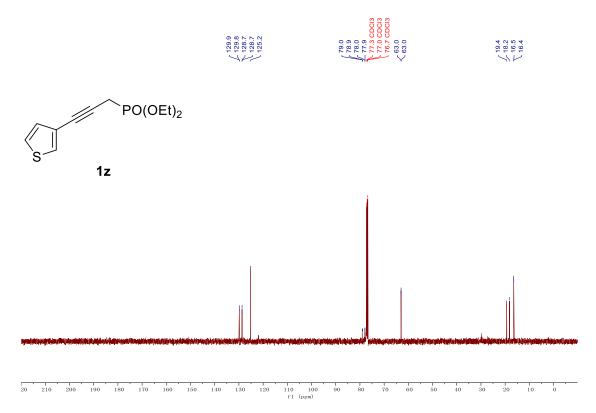
Supplementary Figure 18. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 1v

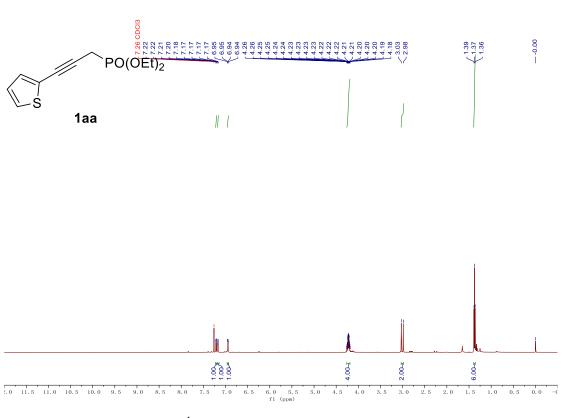


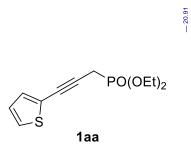
Supplementary Figure 19. $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) spectrum for compound 1y

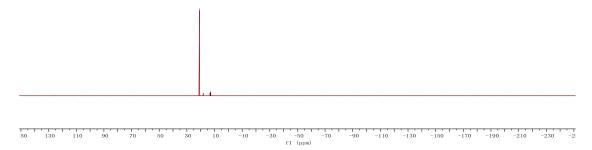



Supplementary Figure 20. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 1y

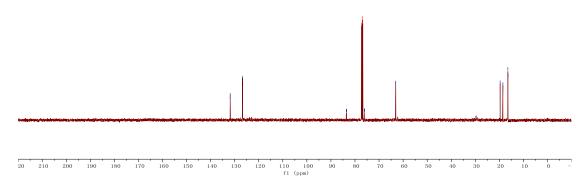

Supplementary Figure 21. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 1y

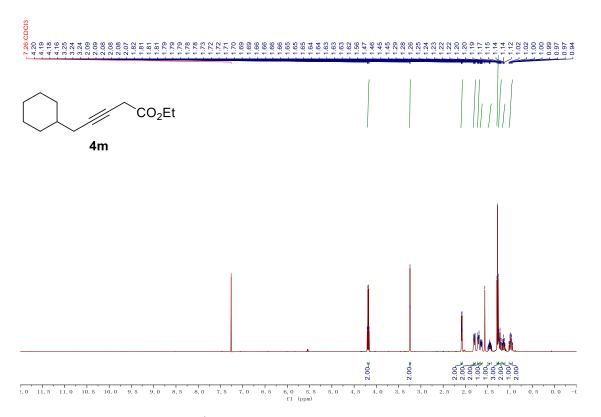

Supplementary Figure 22. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 1z


Supplementary Figure 23. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 1z

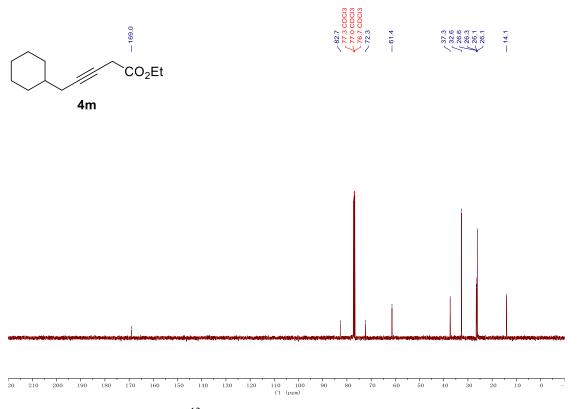


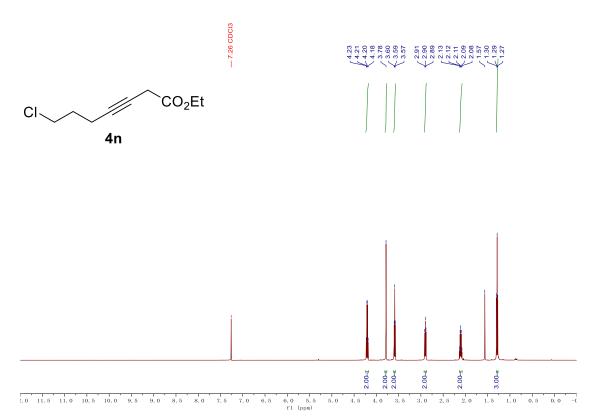
Supplementary Figure 24. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 1z

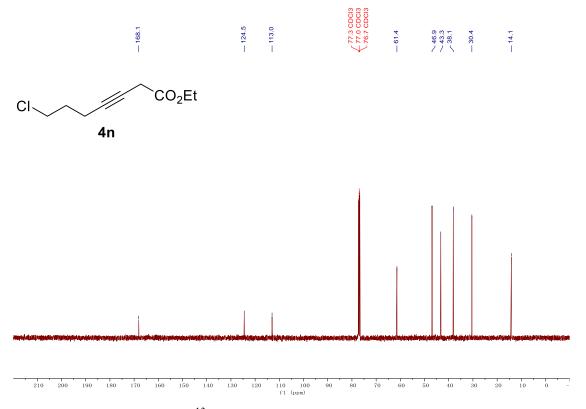

Supplementary Figure 25. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 1aa

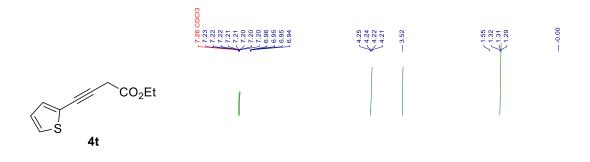


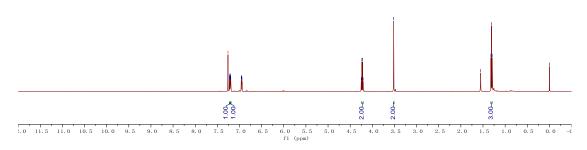
Supplementary Figure 26. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 1aa



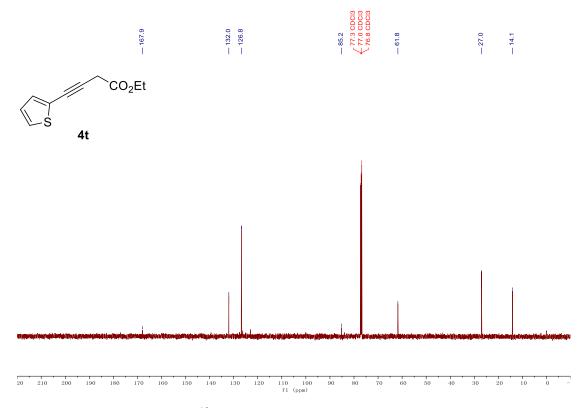

Supplementary Figure 27. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 1aa


Supplementary Figure 28. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 4m

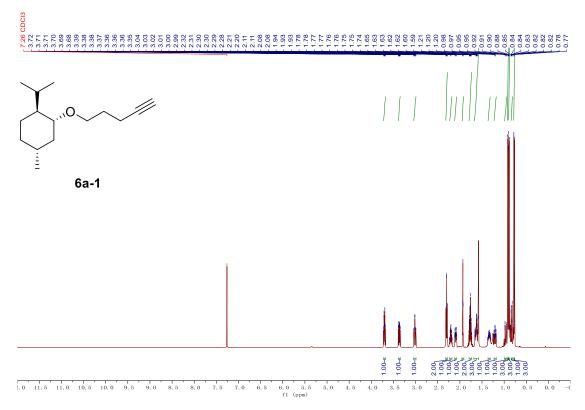

Supplementary Figure 29. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 4m

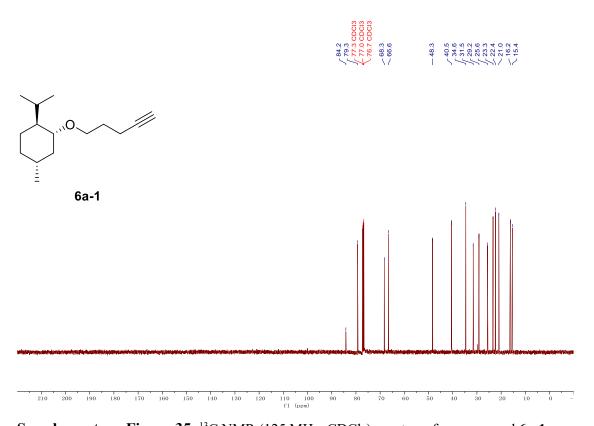


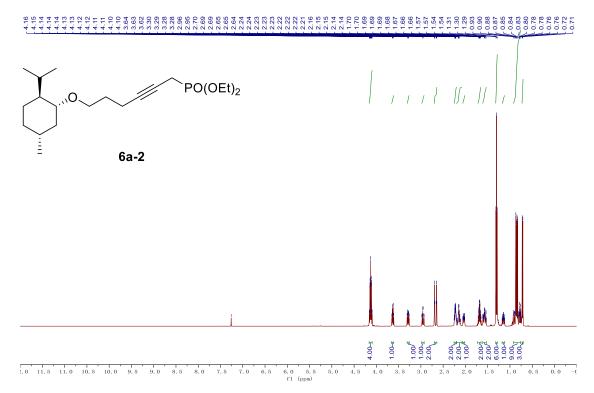
Supplementary Figure 30. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 4n

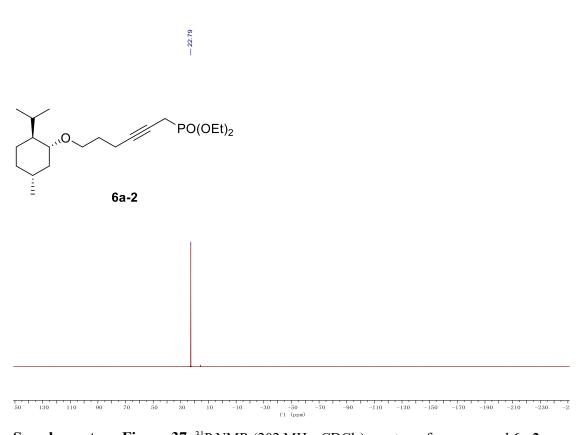


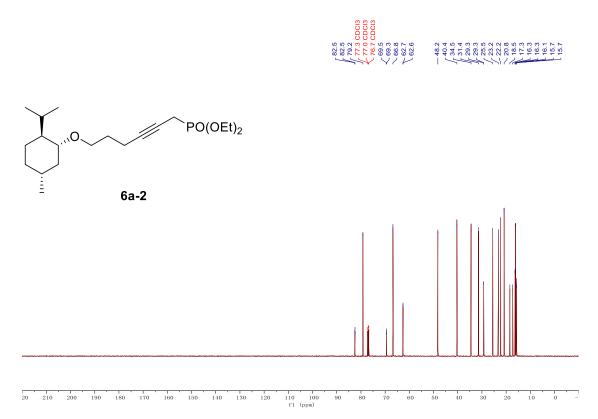
Supplementary Figure 31. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 4n

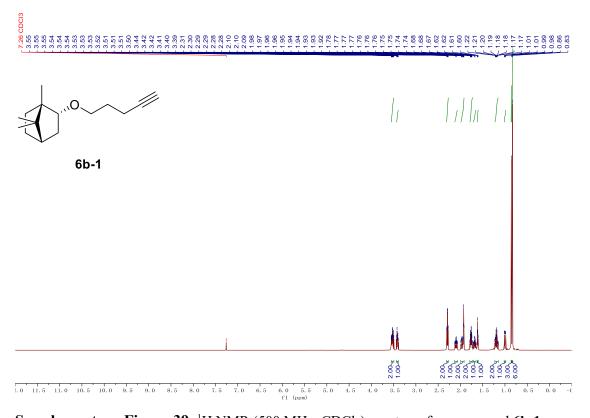


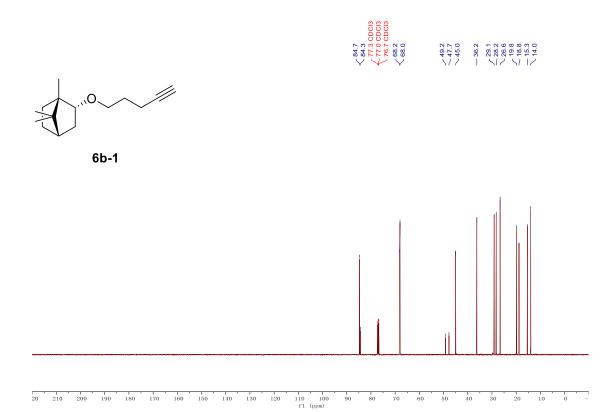

Supplementary Figure 32. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 4t

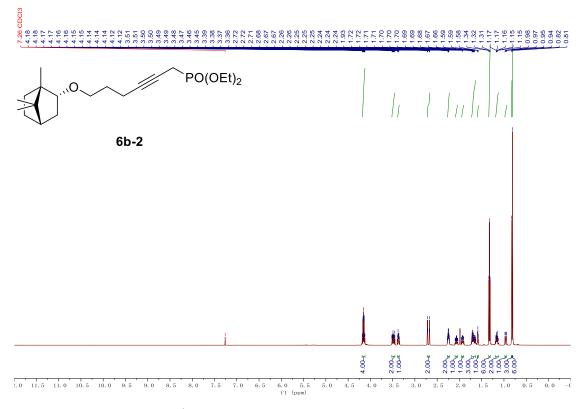

Supplementary Figure 33. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 4t

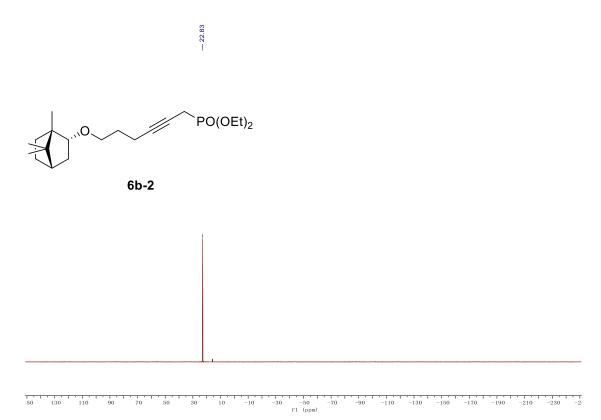

Supplementary Figure 34. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6a-1

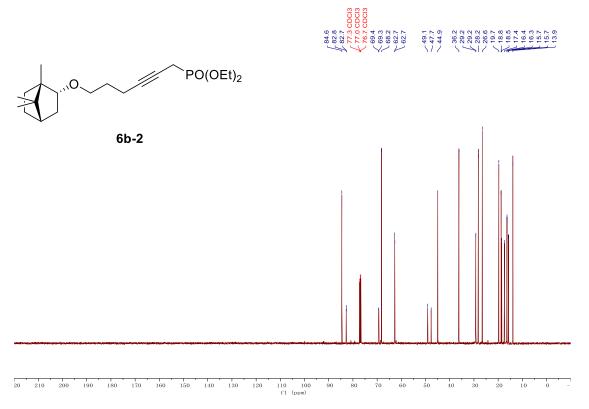

Supplementary Figure 35. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6a-1

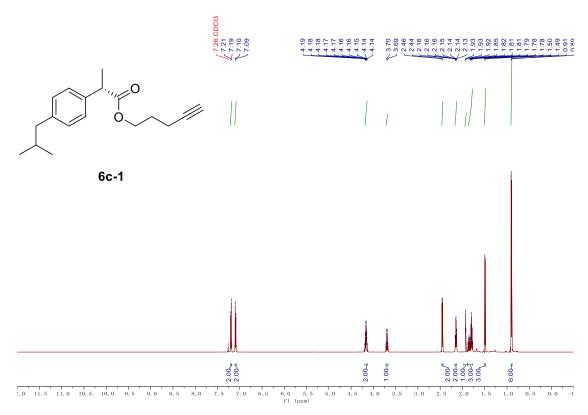

Supplementary Figure 36. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6a-2

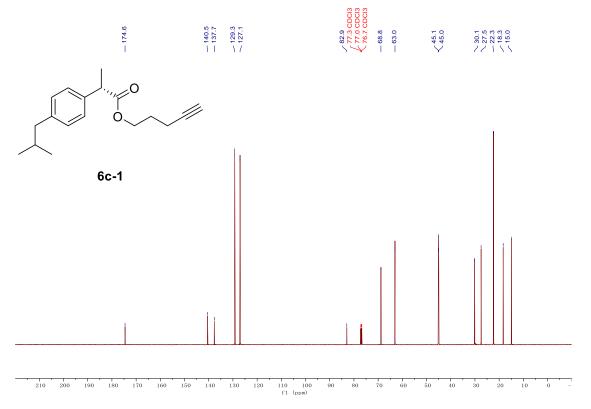

Supplementary Figure 37. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 6a-2

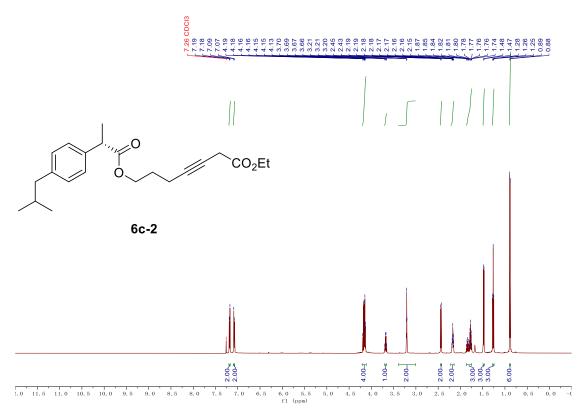

Supplementary Figure 38. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 6a-2

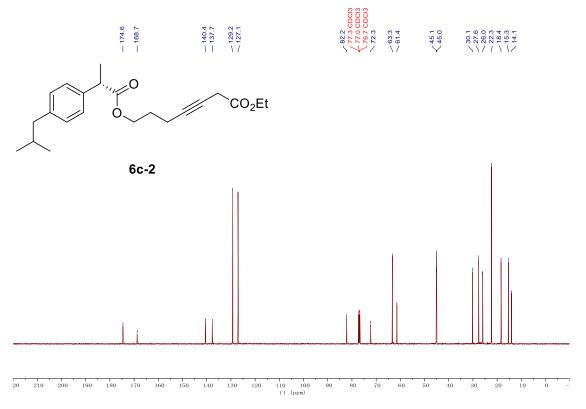

Supplementary Figure 39. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6b-1

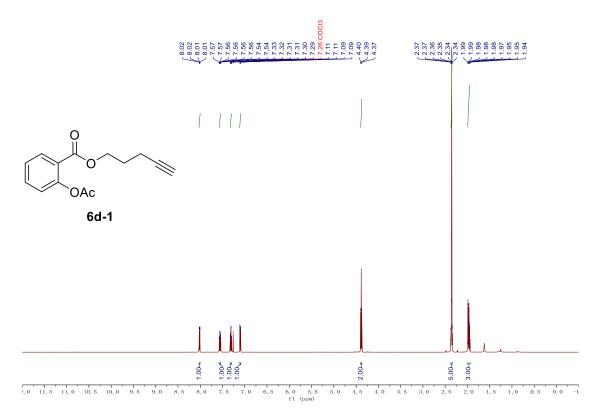

Supplementary Figure 40. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 6b-1

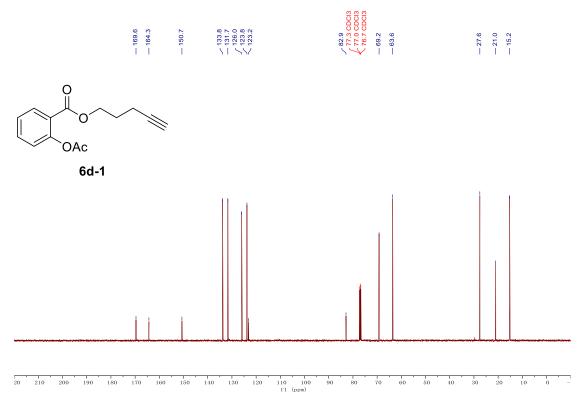

Supplementary Figure 41. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6b-2

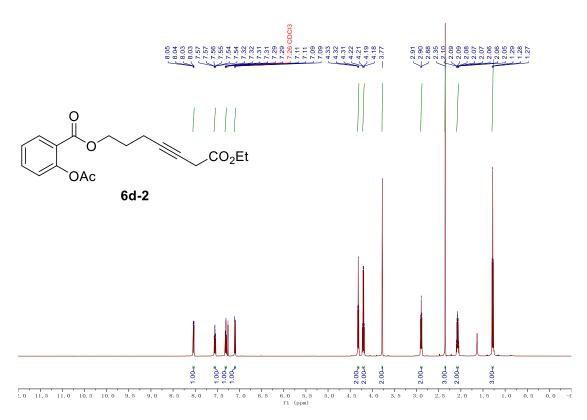

Supplementary Figure 42. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 6b-2

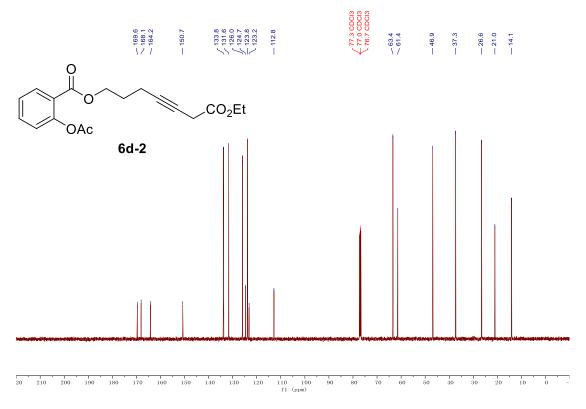

Supplementary Figure 43. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6b-2

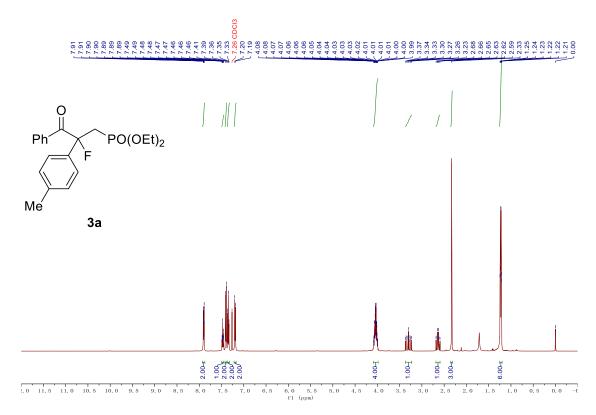

Supplementary Figure 44. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6c-1

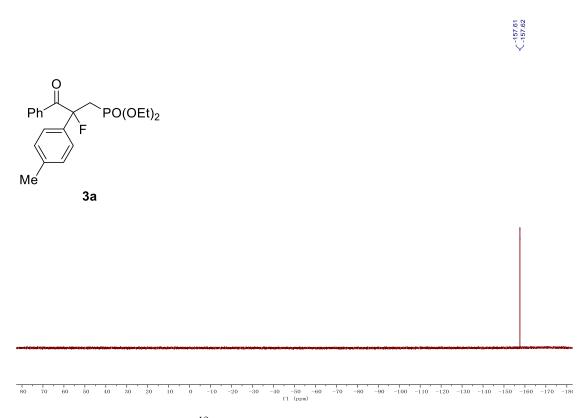

Supplementary Figure 45. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 6c-1

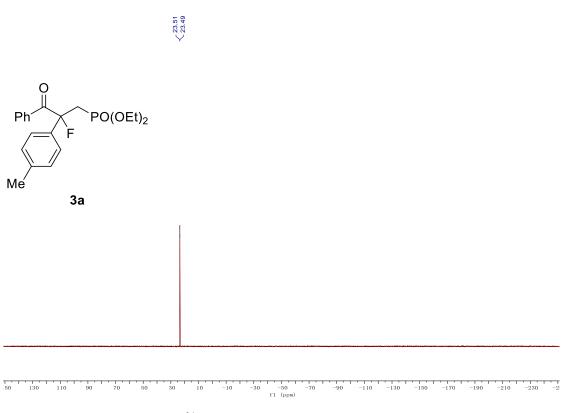

Supplementary Figure 46. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6c-2


Supplementary Figure 47. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6c-2

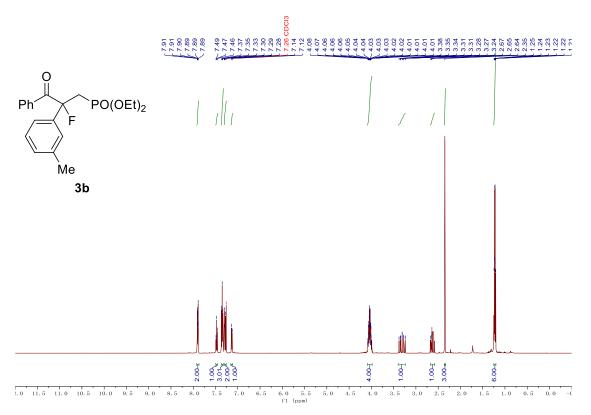

Supplementary Figure 48. ^1H NMR (500 MHz, CDCl3) spectrum for compound 6d-1

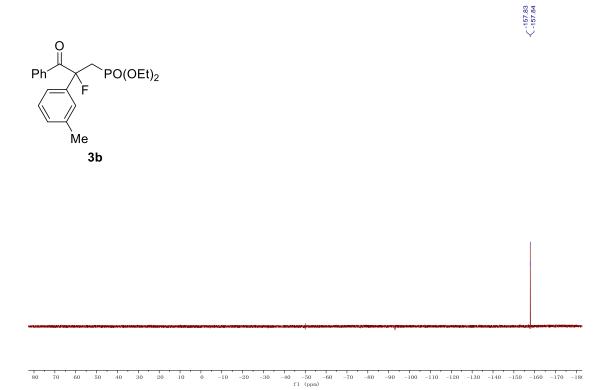

Supplementary Figure 49. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6d-1

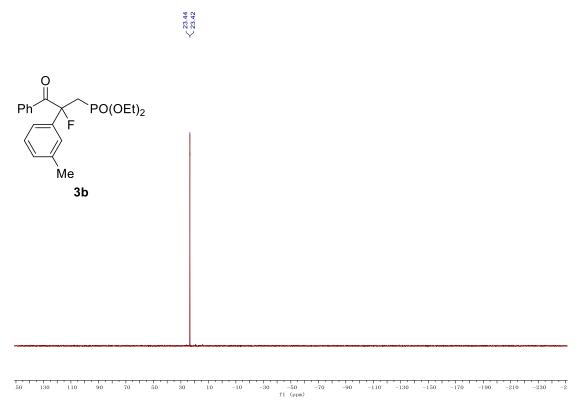

Supplementary Figure 50. ^1H NMR (500 MHz, CDCl₃) spectrum for compound 6d-2

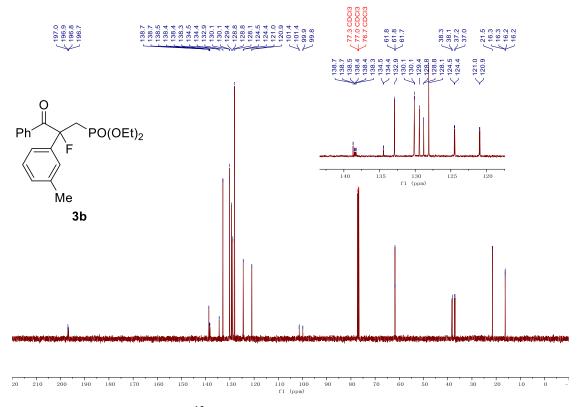

Supplementary Figure 51. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6d-2

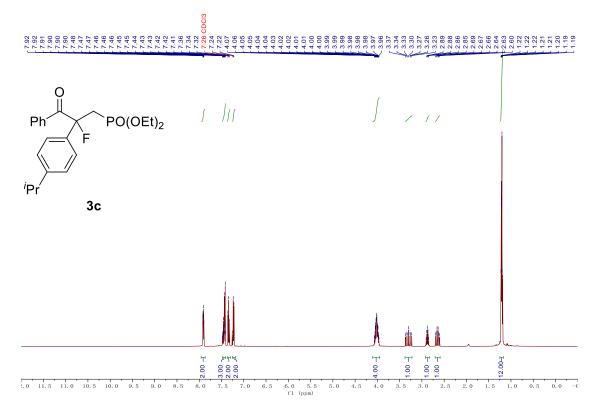

Supplementary Figure 52. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3a

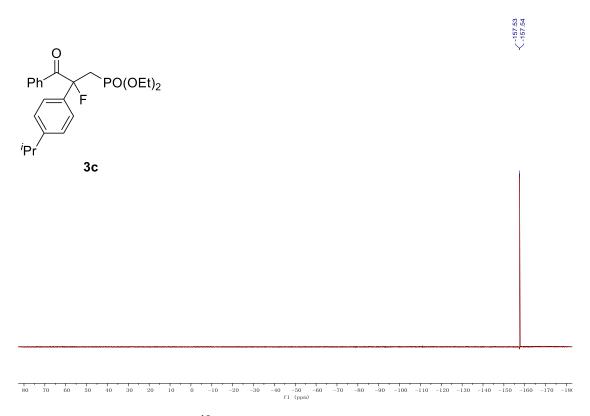

Supplementary Figure 53. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3a

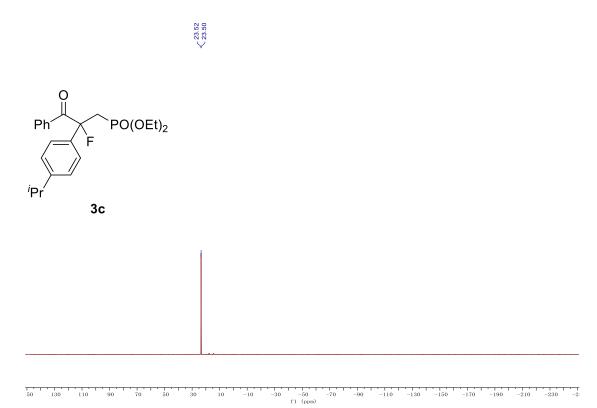

Supplementary Figure 54. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3a

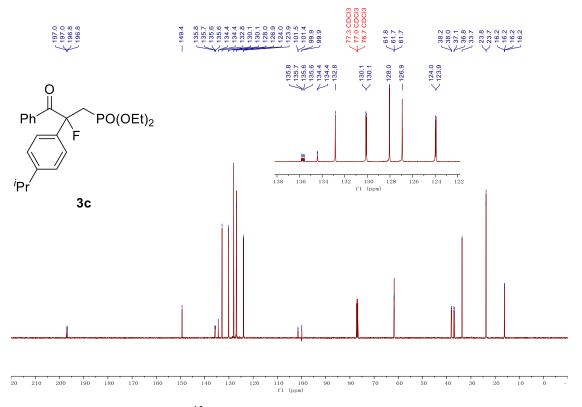

Supplementary Figure 55. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3a

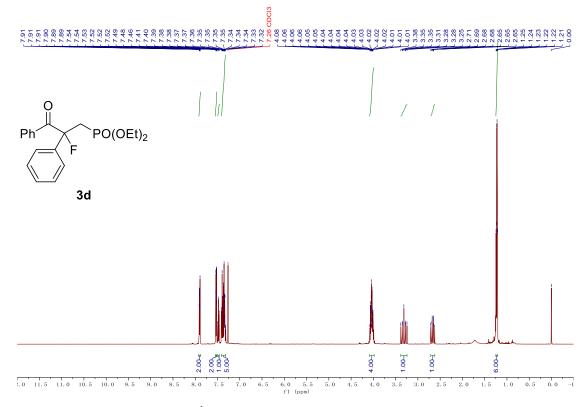

Supplementary Figure 56. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3b

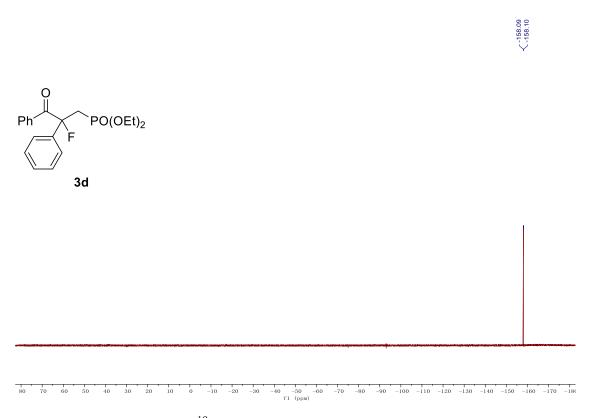

Supplementary Figure 57. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3b

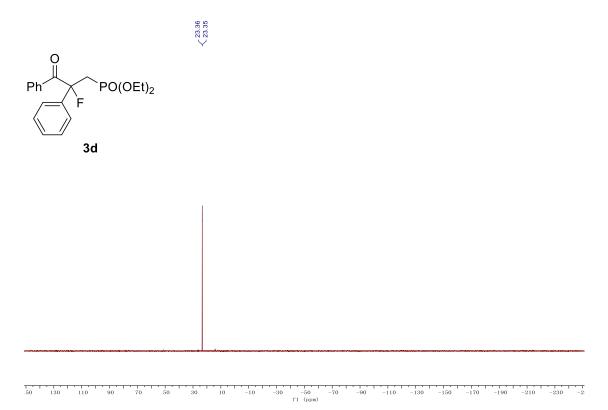

Supplementary Figure 58. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3b


Supplementary Figure 59. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3b

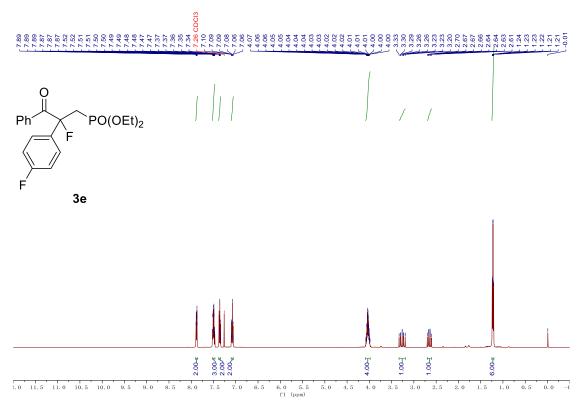

Supplementary Figure 60. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3c

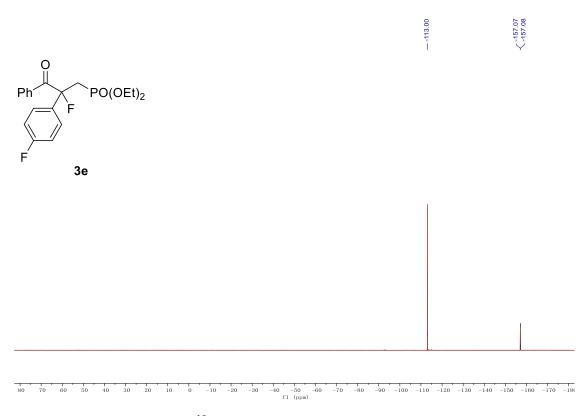

Supplementary Figure 61. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3c

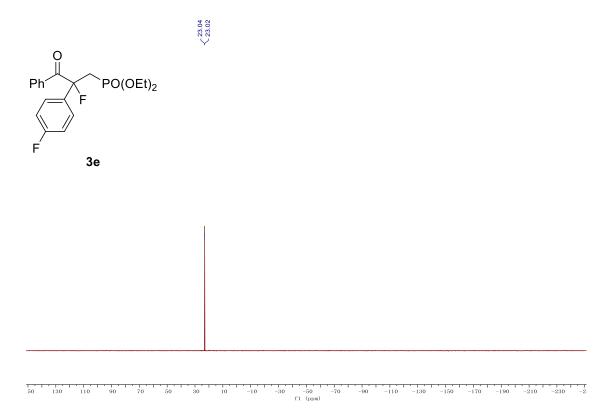

Supplementary Figure 62. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3c

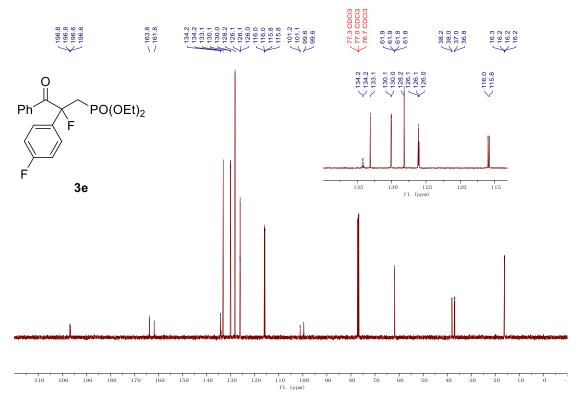

Supplementary Figure 63. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3c

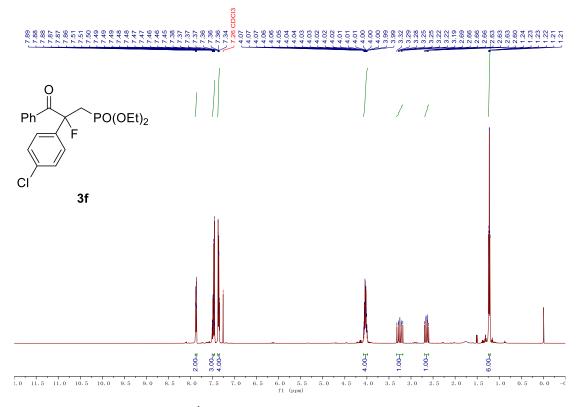

Supplementary Figure 64. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3d

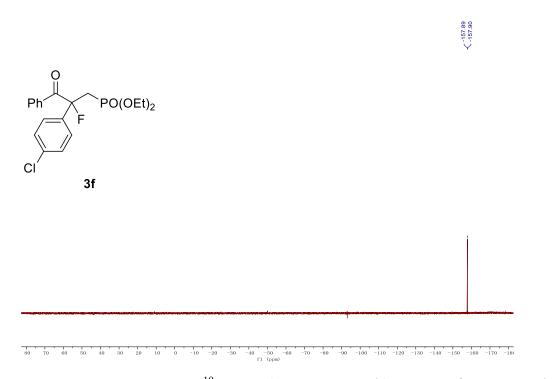

Supplementary Figure 65. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3d

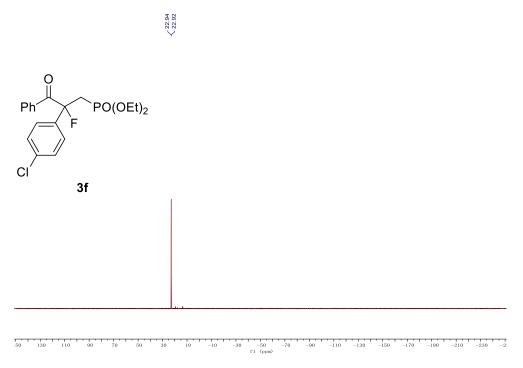

Supplementary Figure 66. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3d

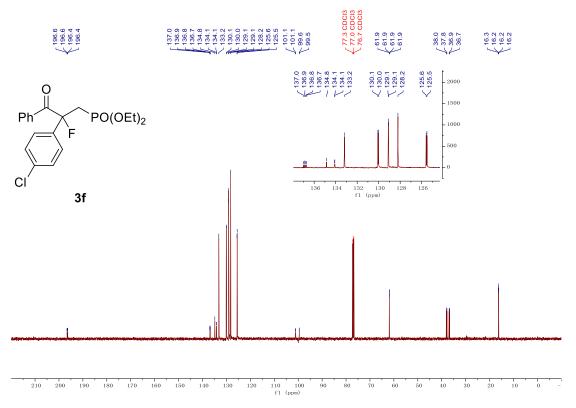

Supplementary Figure 67. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3d

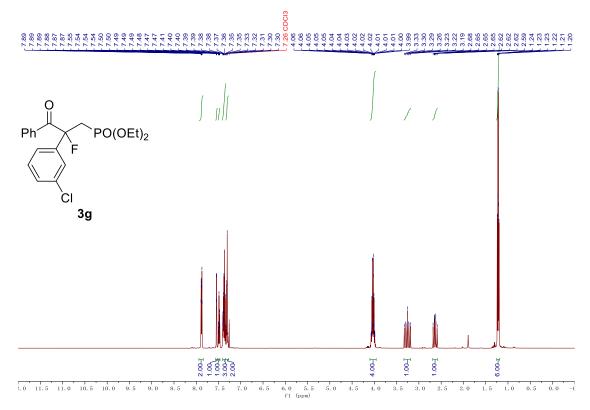

Supplementary Figure 68. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3e

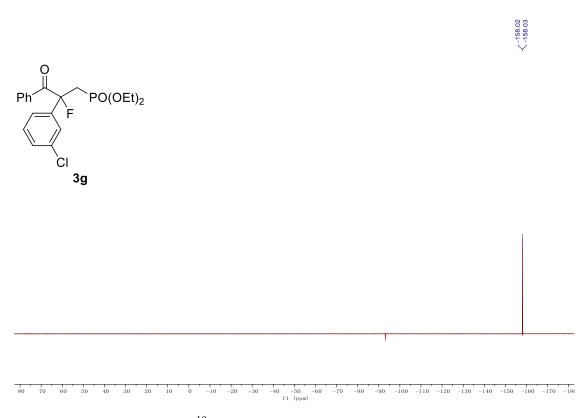

Supplementary Figure 69. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3e

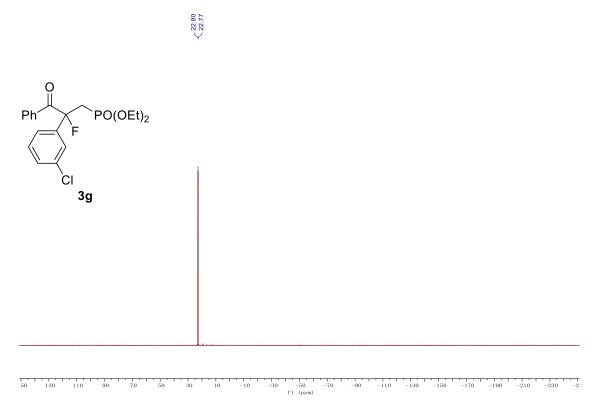

Supplementary Figure 70. 31 P NMR (202 MHz, CDCl₃) spectrum for compound 3e

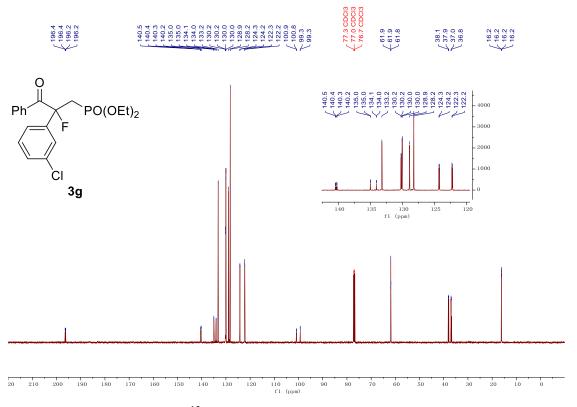

Supplementary Figure 71. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3e

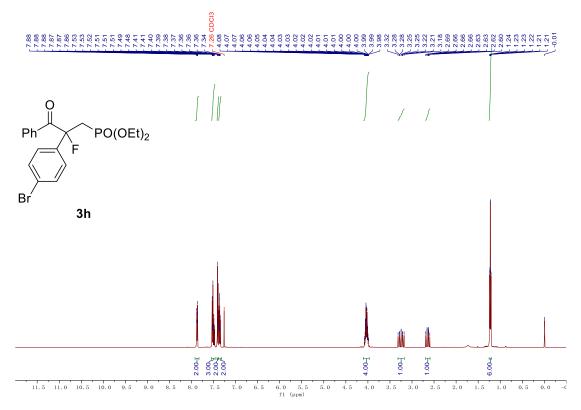

Supplementary Figure 72. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3f

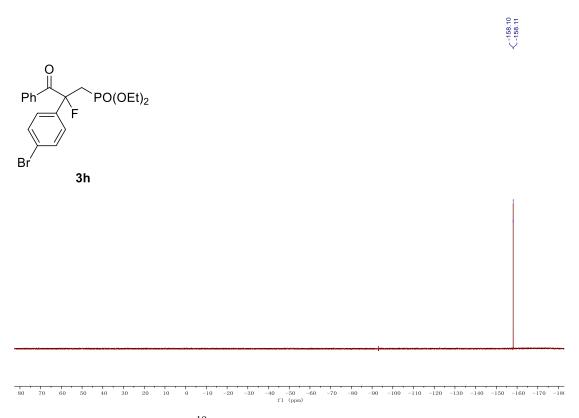

Supplementary Figure 73. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3f

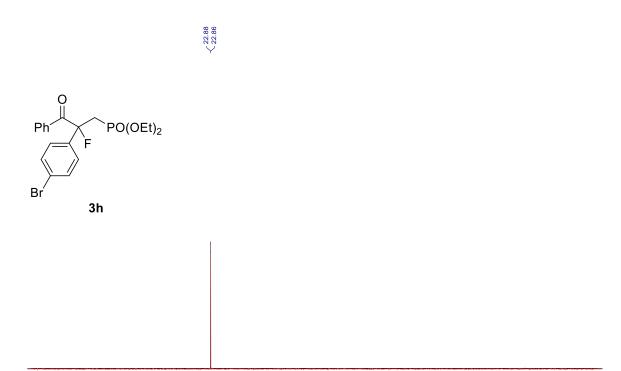

Supplementary Figure 74. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3f

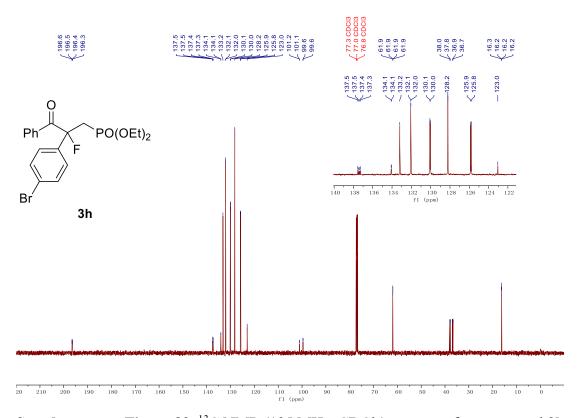

Supplementary Figure 75. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3f

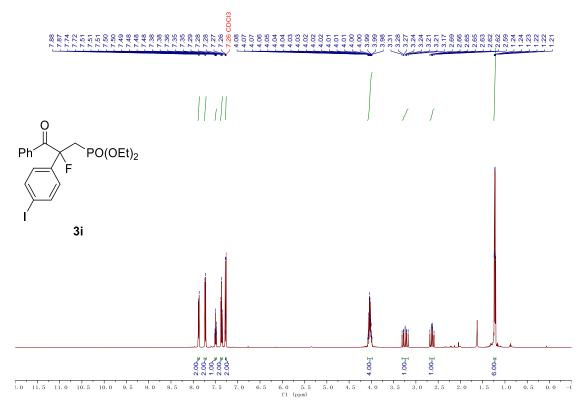

Supplementary Figure 76. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3g

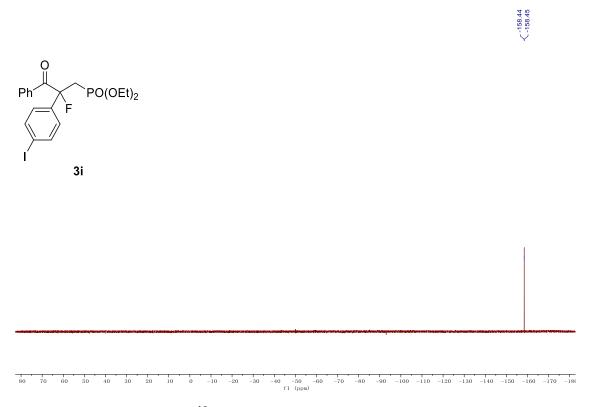

Supplementary Figure 77. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3g


Supplementary Figure 78. 31 P NMR (202 MHz, CDCl₃) spectrum for compound 3g

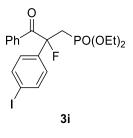

Supplementary Figure 79. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3g

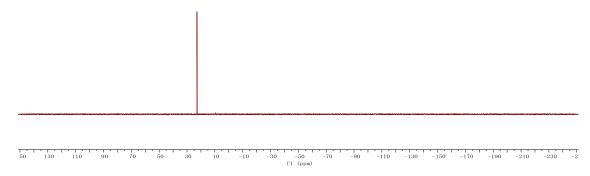

Supplementary Figure 80. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3h

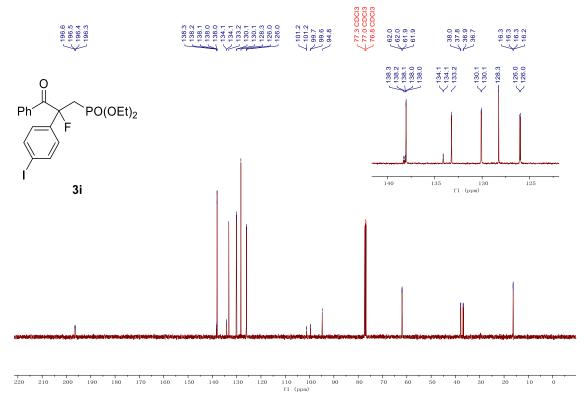

Supplementary Figure 81. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3h

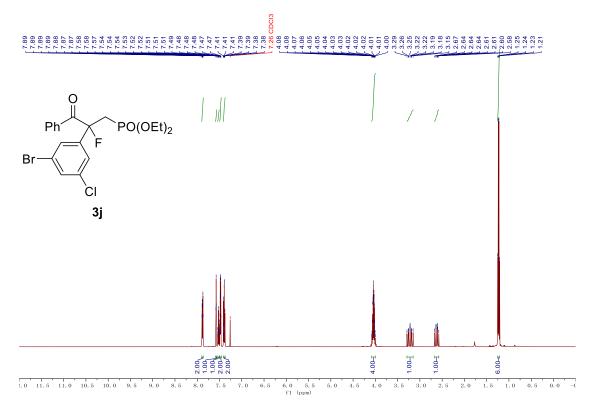

Supplementary Figure 82. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3h

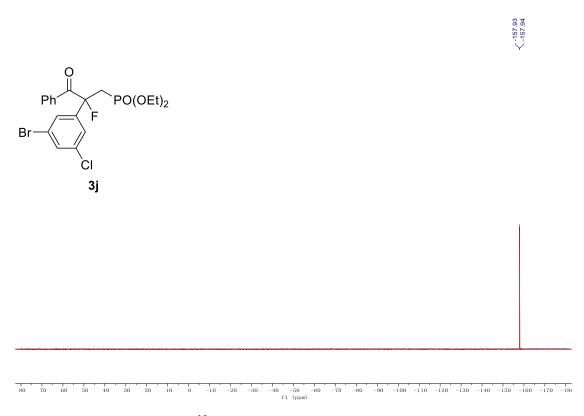
Supplementary Figure 83. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3h

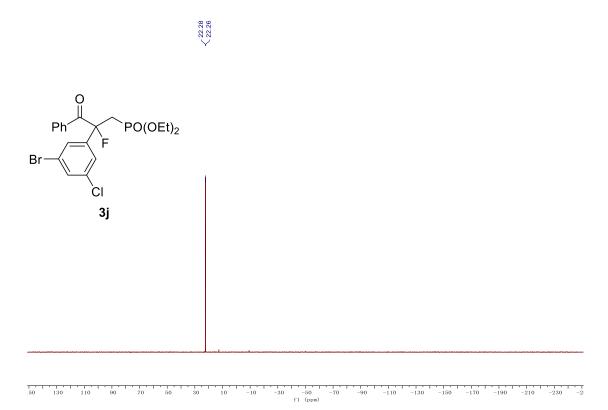


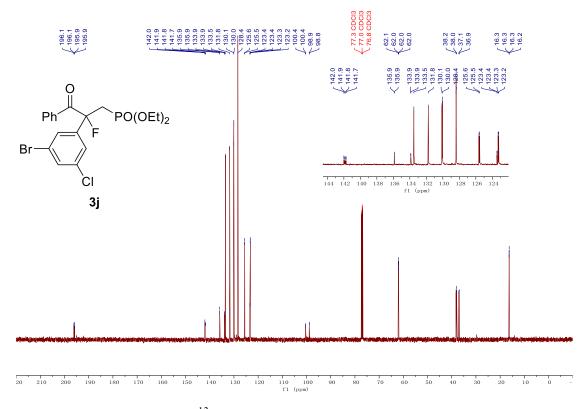

Supplementary Figure 84. $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) spectrum for compound 3i

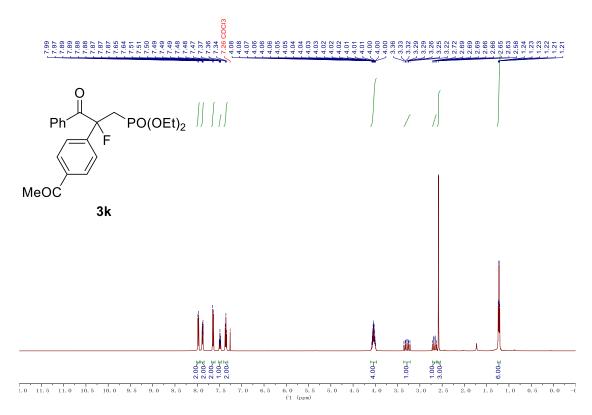

Supplementary Figure 85. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3i

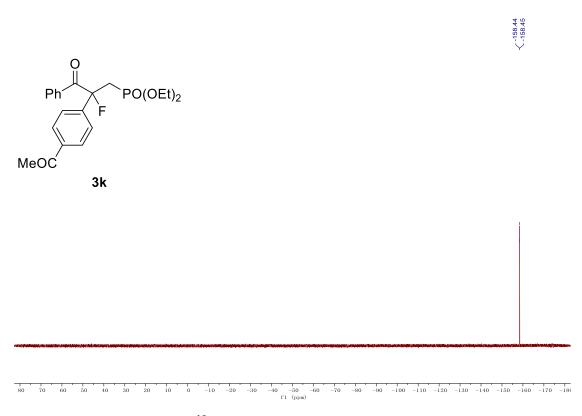


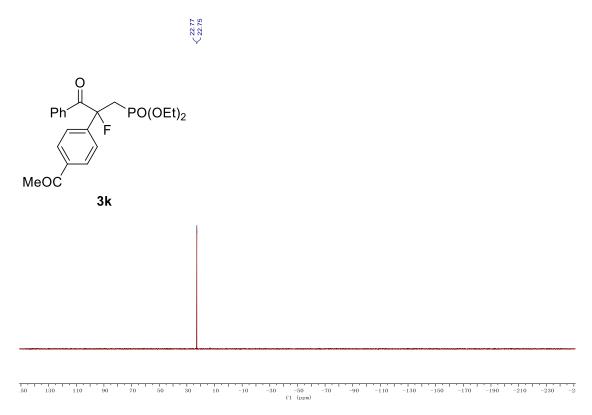

Supplementary Figure 86. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3i

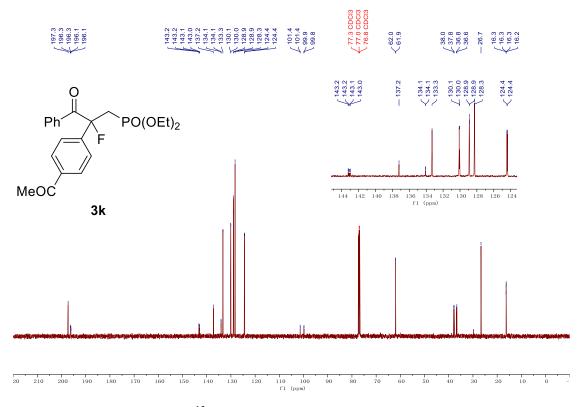

Supplementary Figure 87. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3i

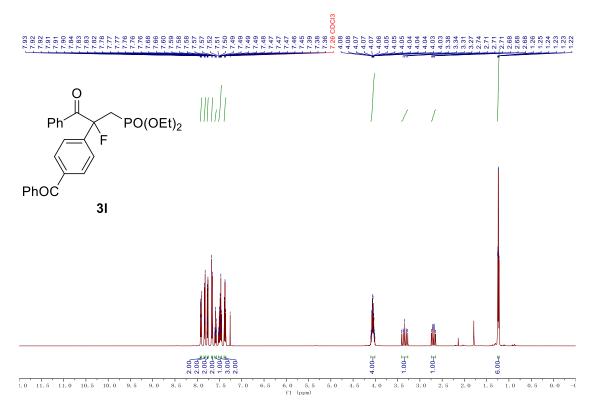

Supplementary Figure 88. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3j

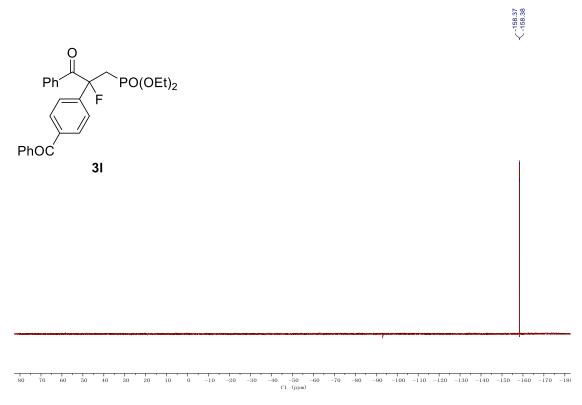

Supplementary Figure 89. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3j

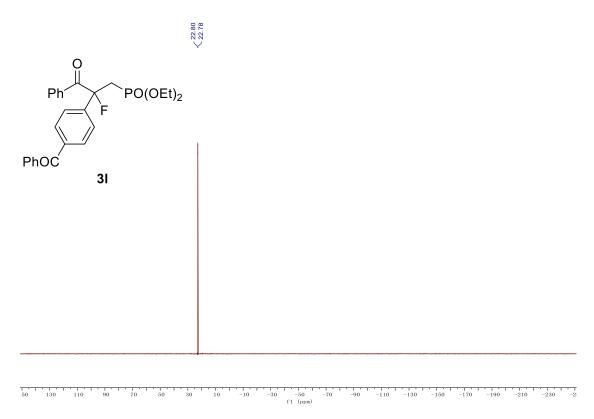

Supplementary Figure 90. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3j

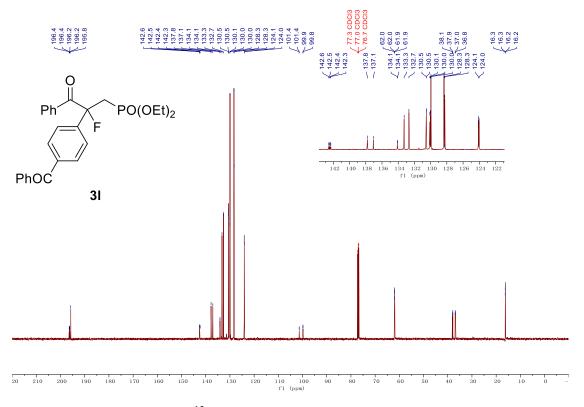

Supplementary Figure 91. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3j

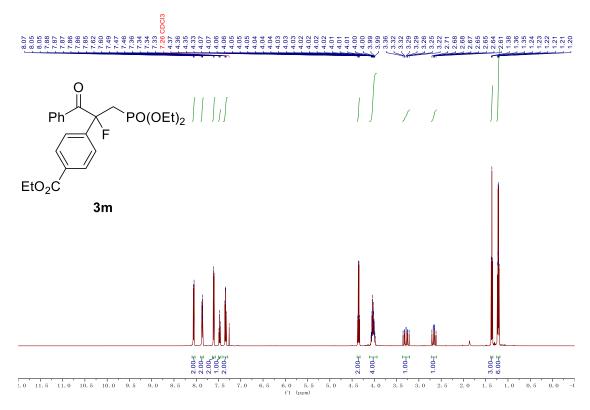

Supplementary Figure 92. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3k

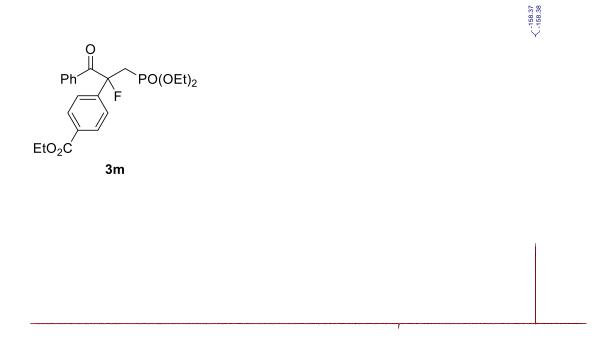

Supplementary Figure 93. ¹⁹F NMR (125 MHz, CDCl₃) spectrum for compound 3k


Supplementary Figure 94. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3k

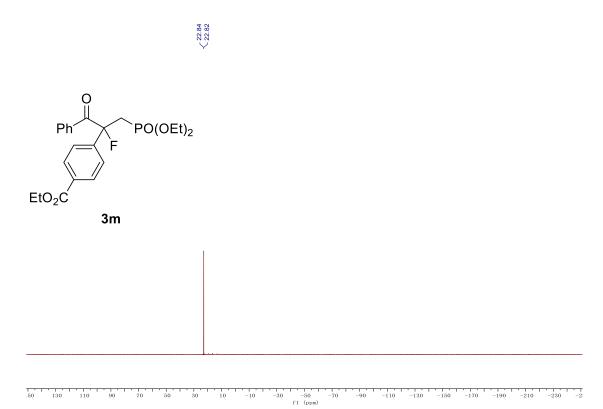

Supplementary Figure 95. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 3k


Supplementary Figure 96. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 31

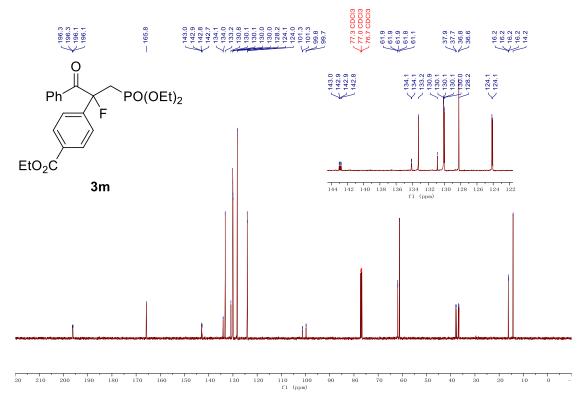

Supplementary Figure 97. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 31


Supplementary Figure 98. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 31

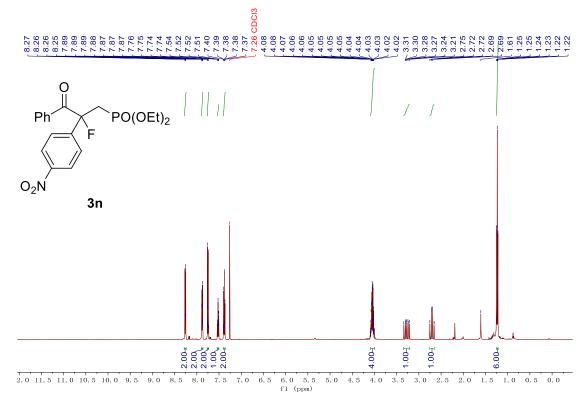
Supplementary Figure 99. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 31

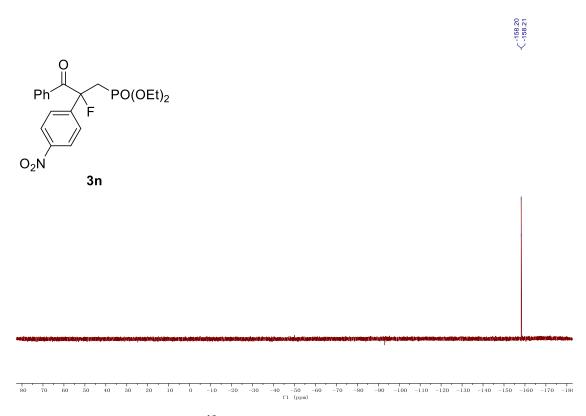


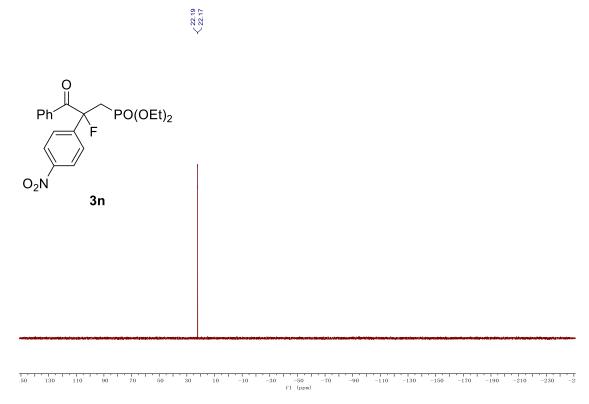
Supplementary Figure 100. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3m

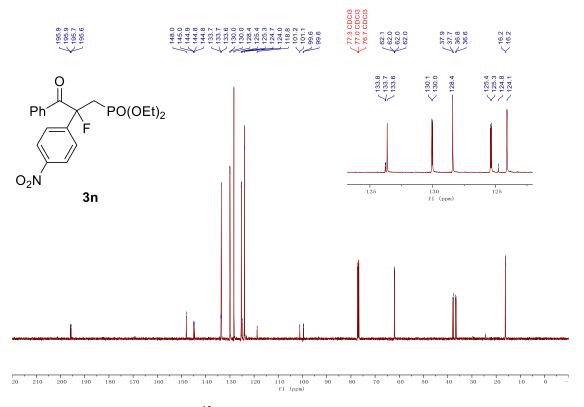


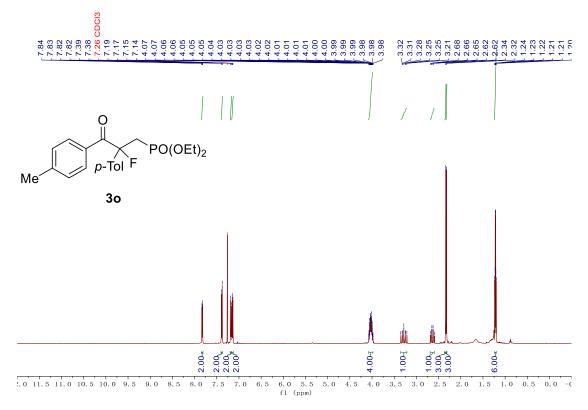
Supplementary Figure 101. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3m

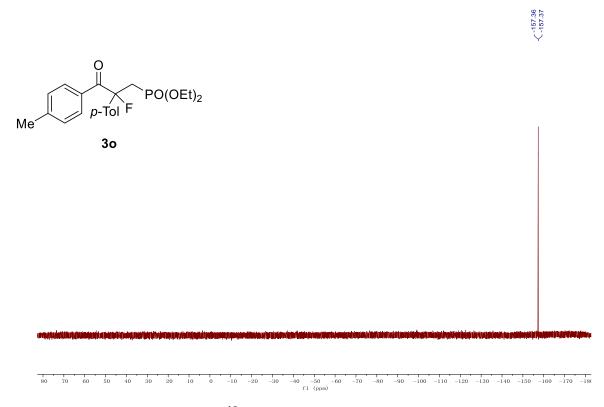

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

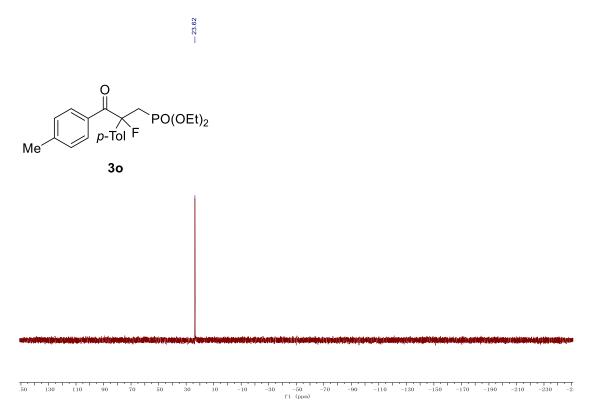

Supplementary Figure 102. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3m

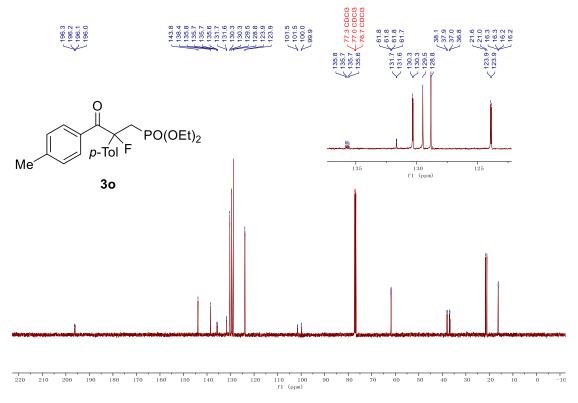

Supplementary Figure 103. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3m

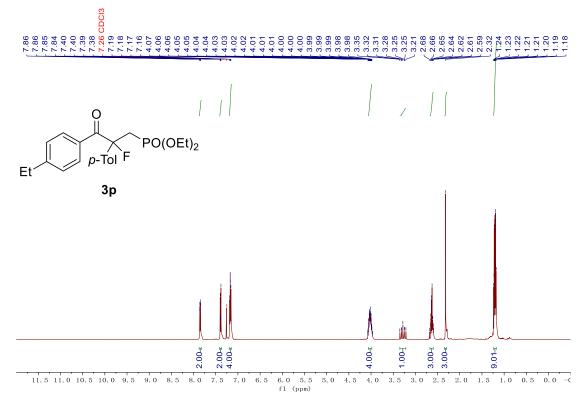

Supplementary Figure 104. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3n

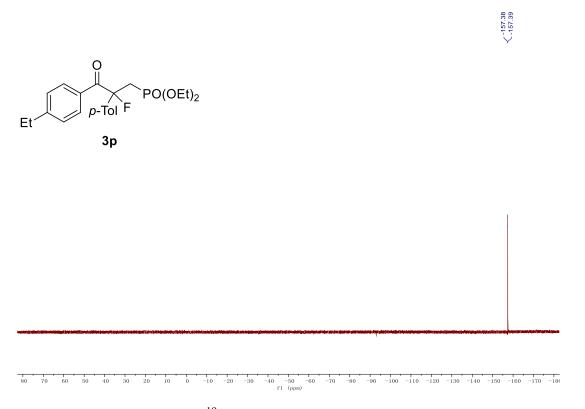

Supplementary Figure 105. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3n

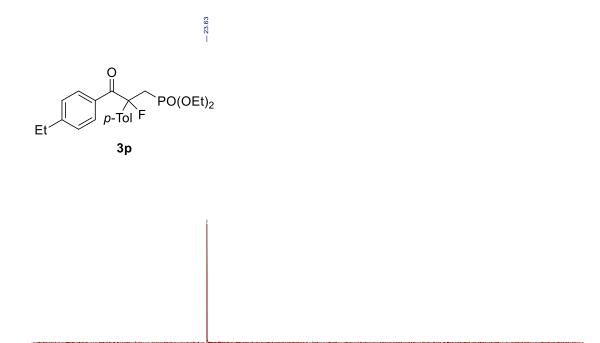

Supplementary Figure 106. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3n


Supplementary Figure 107. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3n

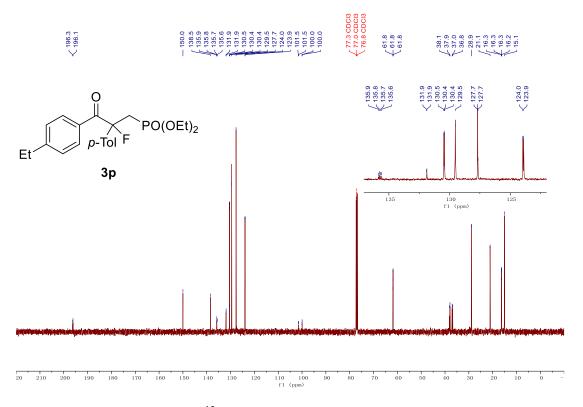

Supplementary Figure 108. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 30


Supplementary Figure 109. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 30

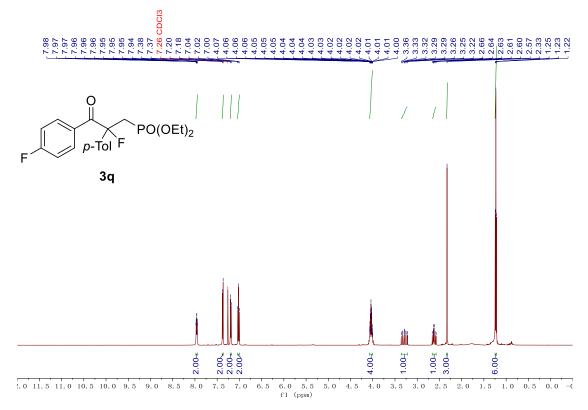

Supplementary Figure 110. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3o


Supplementary Figure 111. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 30

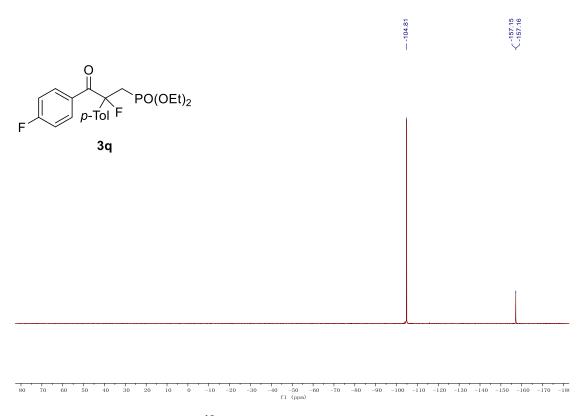
Supplementary Figure 112. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3p

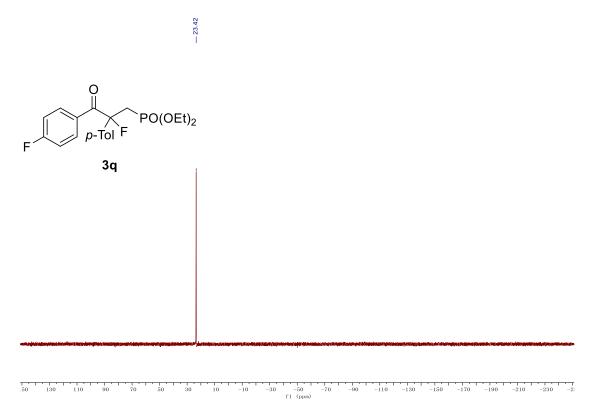


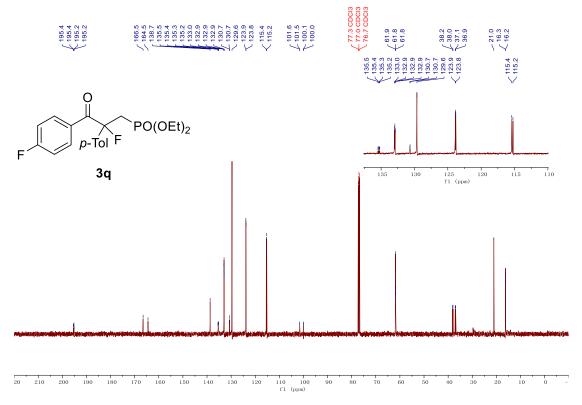
Supplementary Figure 113. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3p

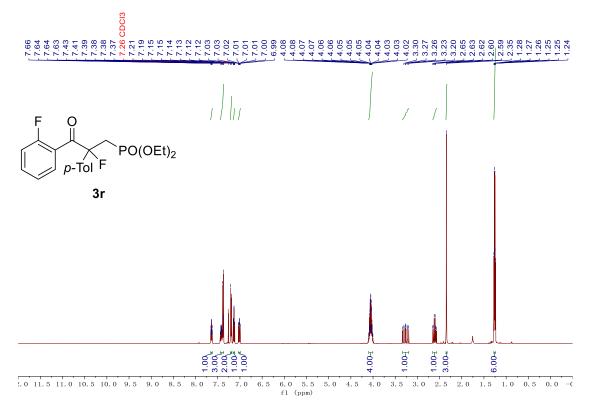


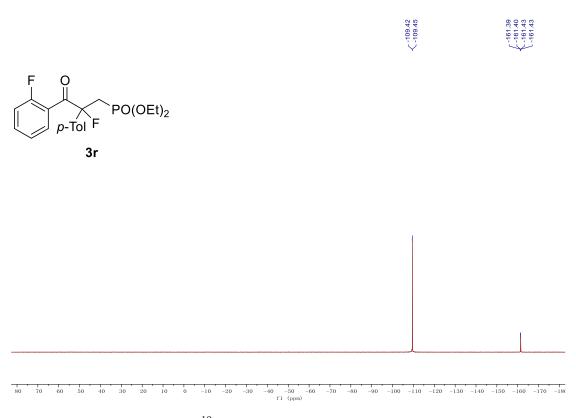
Supplementary Figure 114. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3p


10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

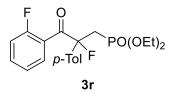

Supplementary Figure 115. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3p

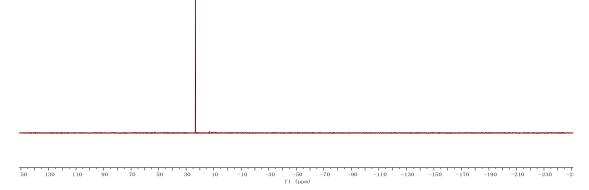

Supplementary Figure 116. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3q

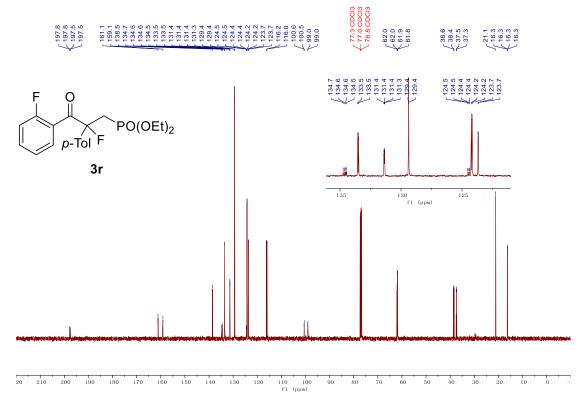

Supplementary Figure 117. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3q

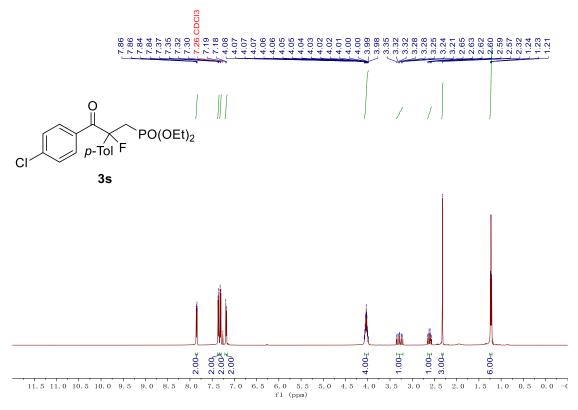

Supplementary Figure 118. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3q

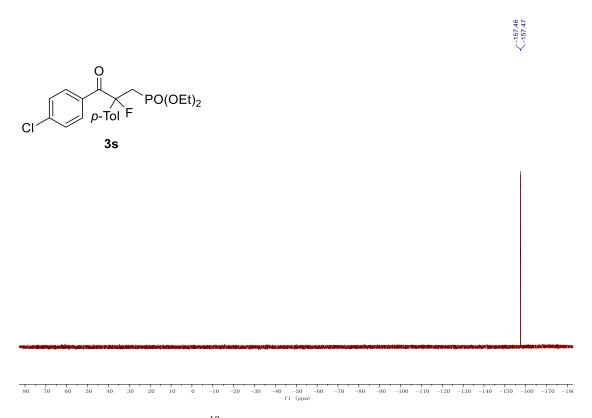
Supplementary Figure 119. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3q

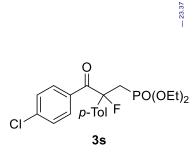


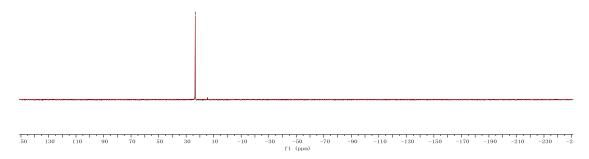

Supplementary Figure 120. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3r


Supplementary Figure 121. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3r




Supplementary Figure 122. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3r

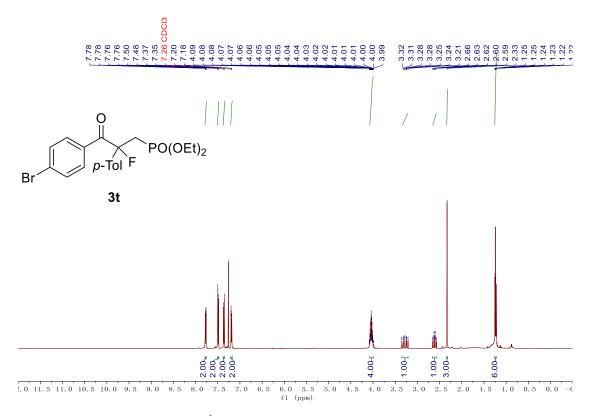

Supplementary Figure 123. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3r

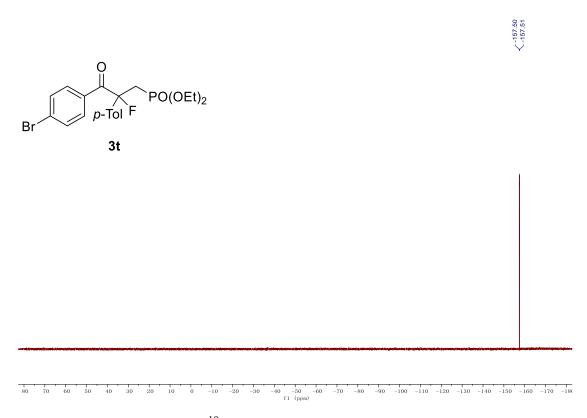


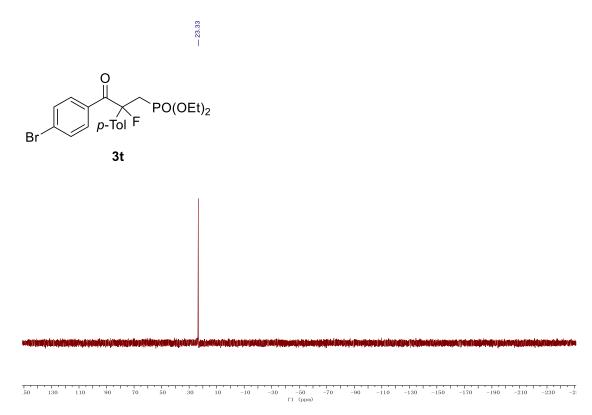
Supplementary Figure 124. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3s

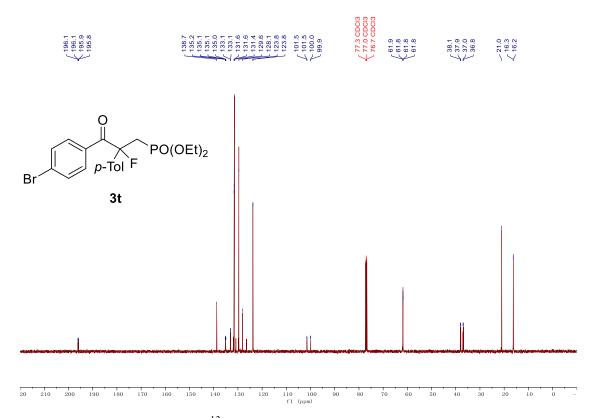


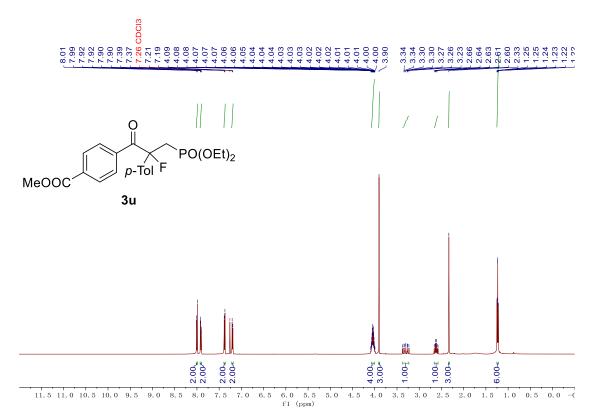
Supplementary Figure 125. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3s

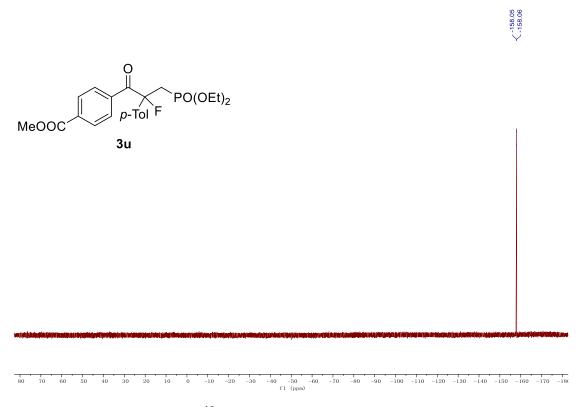


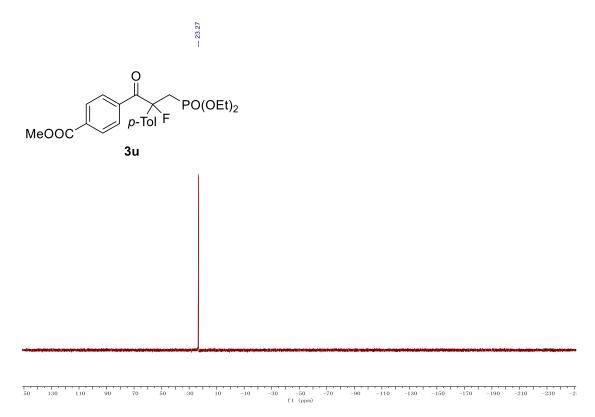

Supplementary Figure 126. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3s


Supplementary Figure 127. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3s

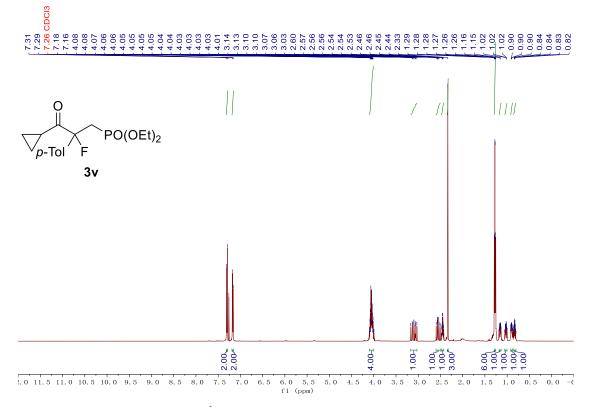

Supplementary Figure 128. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3t


Supplementary Figure 129. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3t

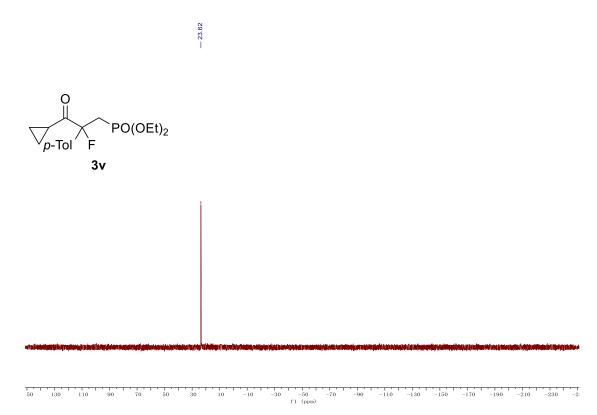

Supplementary Figure 130. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3t

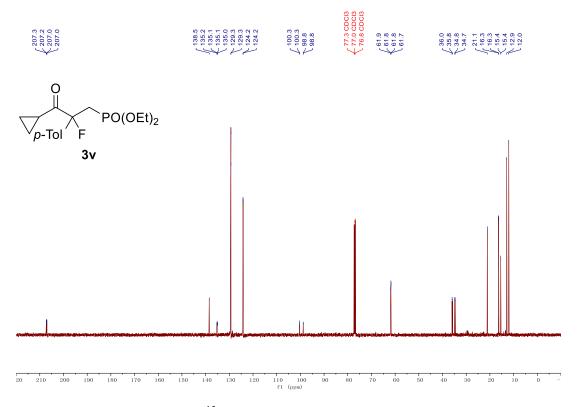

Supplementary Figure 131. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3t

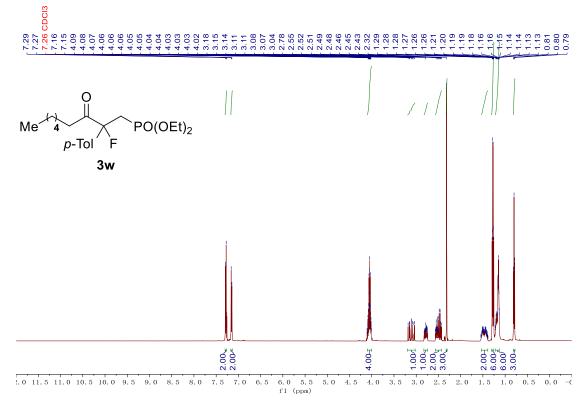
Supplementary Figure 132. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3u


Supplementary Figure 133. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3u

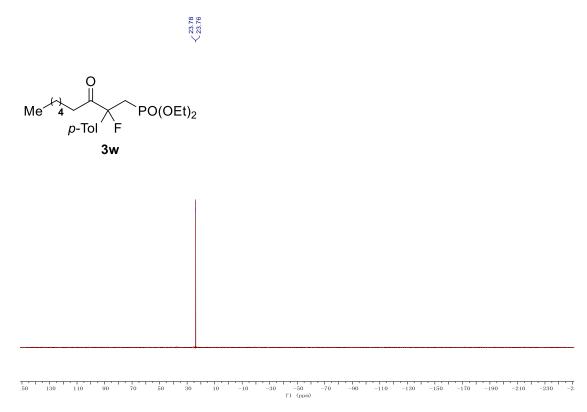
Supplementary Figure 134. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3u

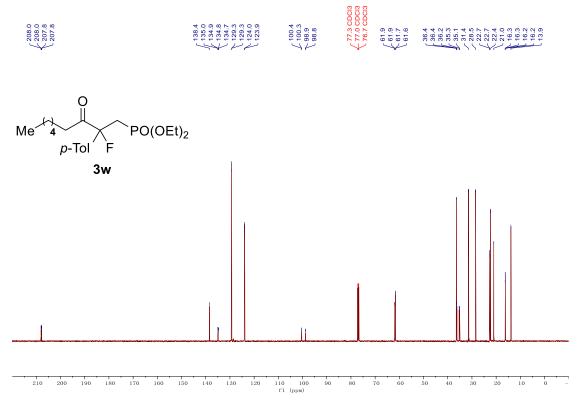

Supplementary Figure 135. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3u

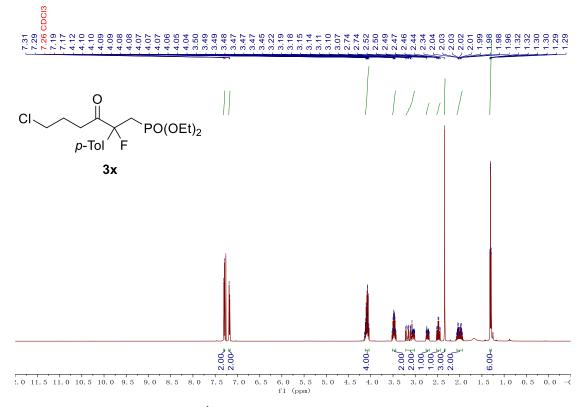

Supplementary Figure 136. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3v

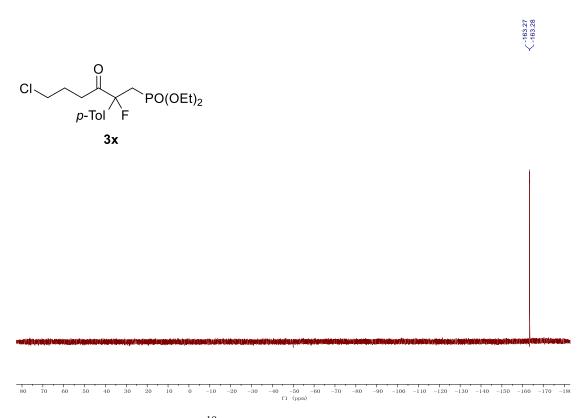

Supplementary Figure 137. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3v

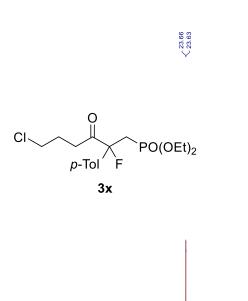

Supplementary Figure 138. ^{31}P NMR (202 MHz, CDCl₃) spectrum for compound 3v


Supplementary Figure 139. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 3v

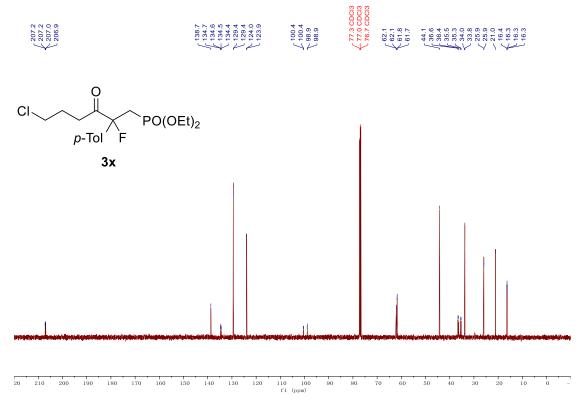

Supplementary Figure 140. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3w


Supplementary Figure 141. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3w

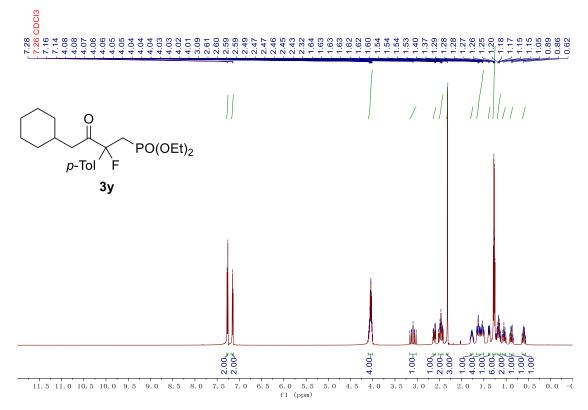

Supplementary Figure 142. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3w


Supplementary Figure 143. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3w

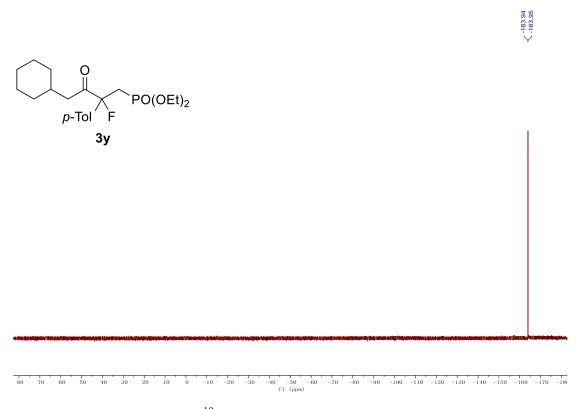
Supplementary Figure 144. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3x

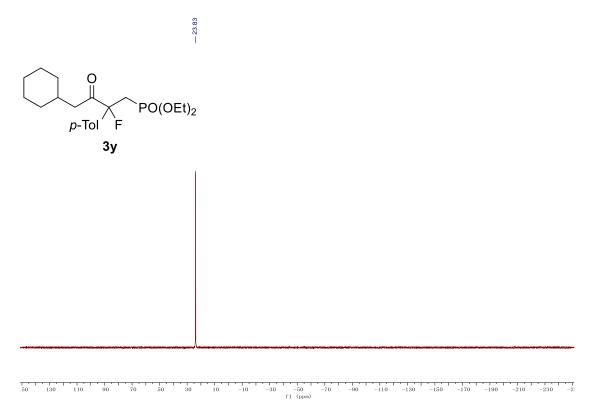


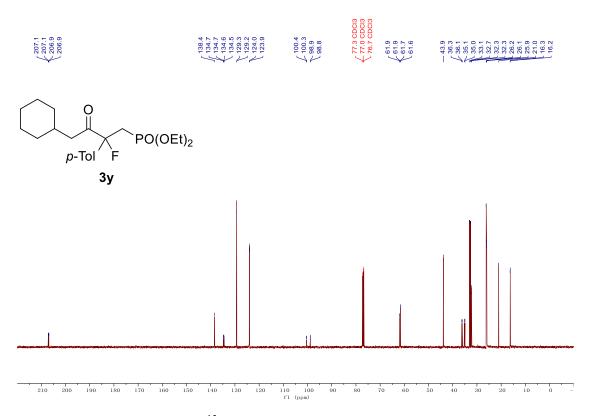
Supplementary Figure 145. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3x

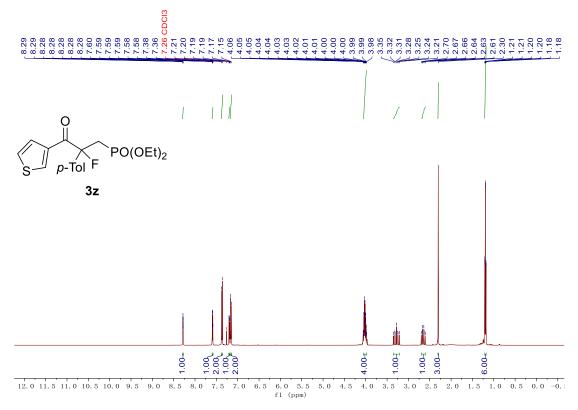


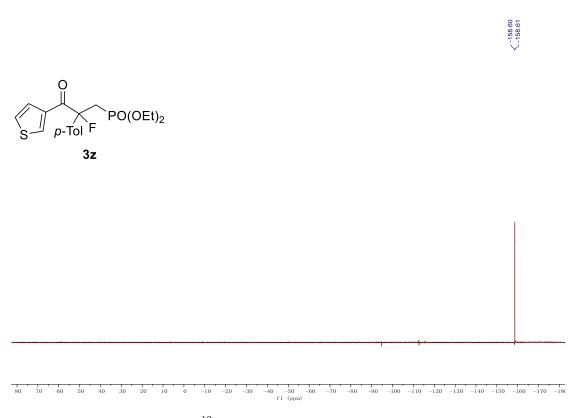
50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

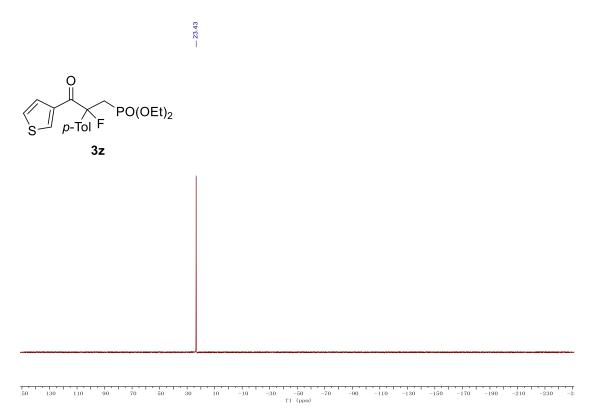


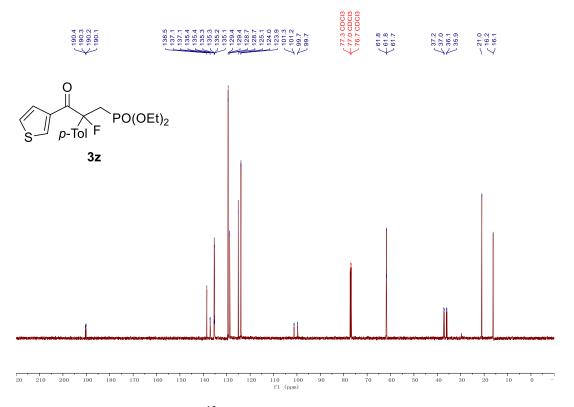

Supplementary Figure 147. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 3x

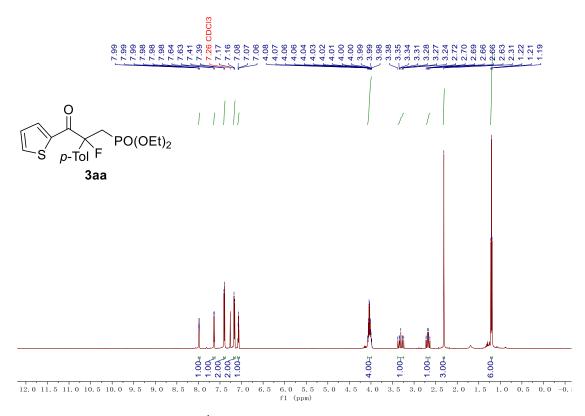

Supplementary Figure 148. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3y

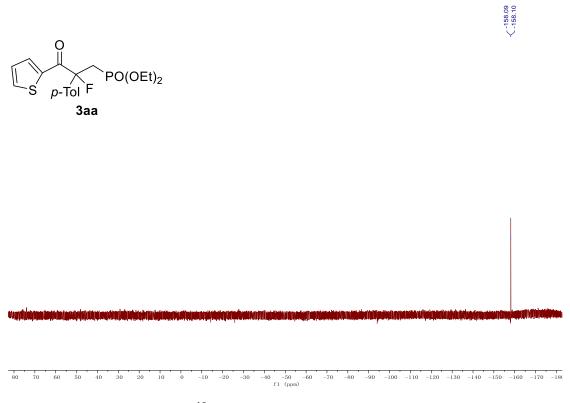

Supplementary Figure 149. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3y

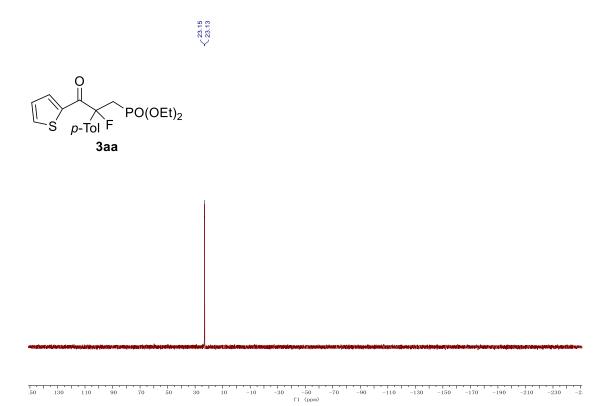

Supplementary Figure 150. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3y

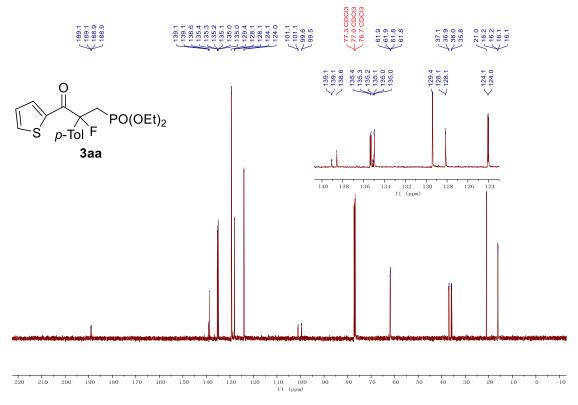

Supplementary Figure 151. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3y

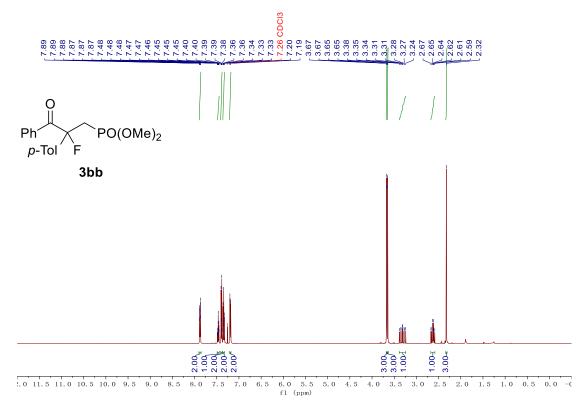

Supplementary Figure 152. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 3z

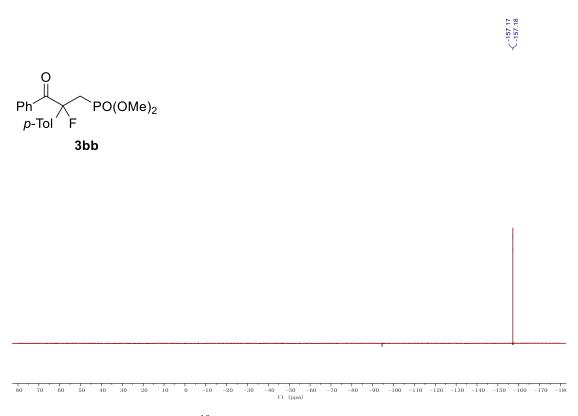

Supplementary Figure 153. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3z

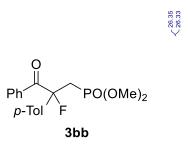

Supplementary Figure 154. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3z

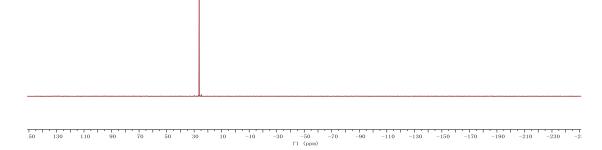

Supplementary Figure 155. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3z


Supplementary Figure 156. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3aa

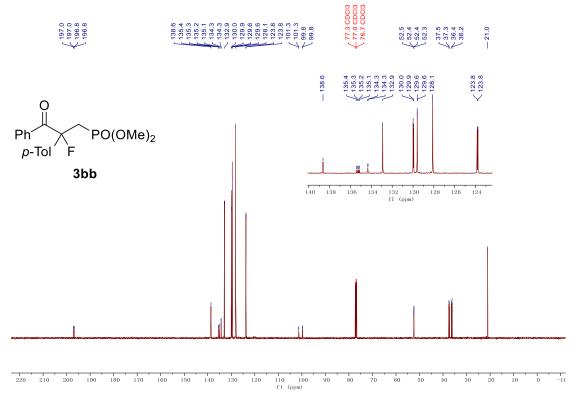

Supplementary Figure 157. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3aa


Supplementary Figure 158. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3aa

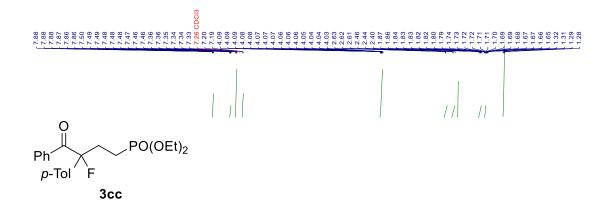

Supplementary Figure 159. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3aa

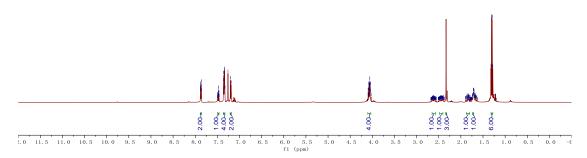


Supplementary Figure 160. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3bb

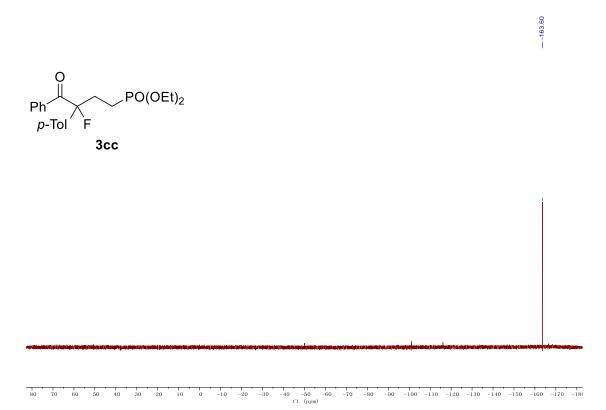


Supplementary Figure 161. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3bb

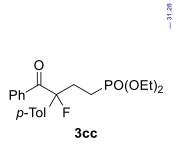


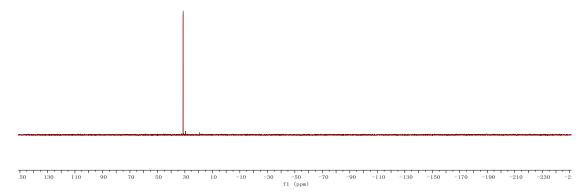


Supplementary Figure 162. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3bb

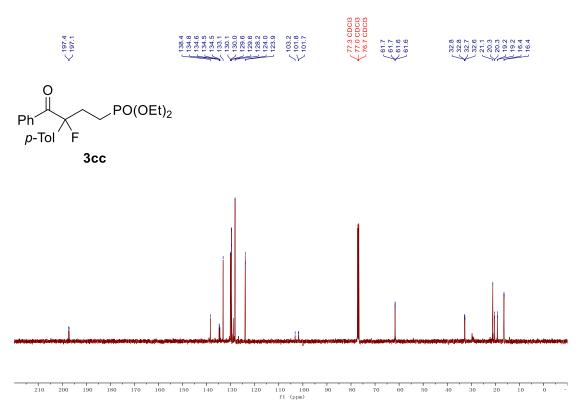


Supplementary Figure 163. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound **3bb**

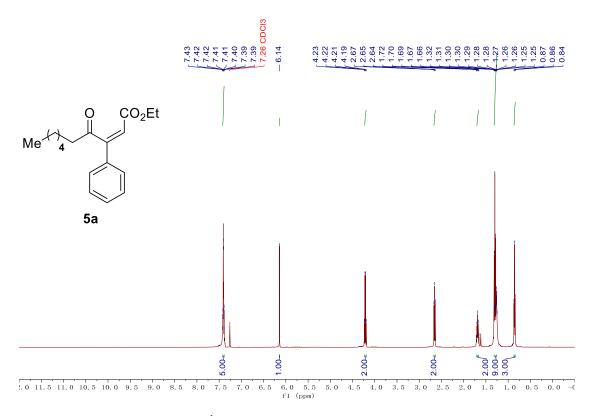


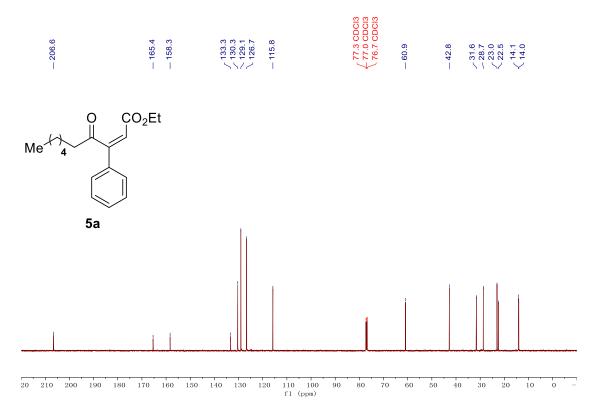


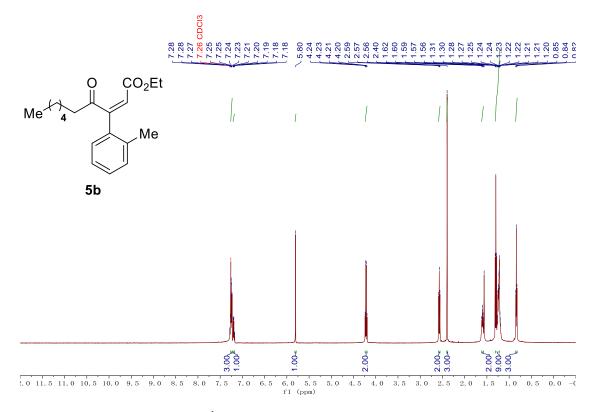
Supplementary Figure 164. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 3cc

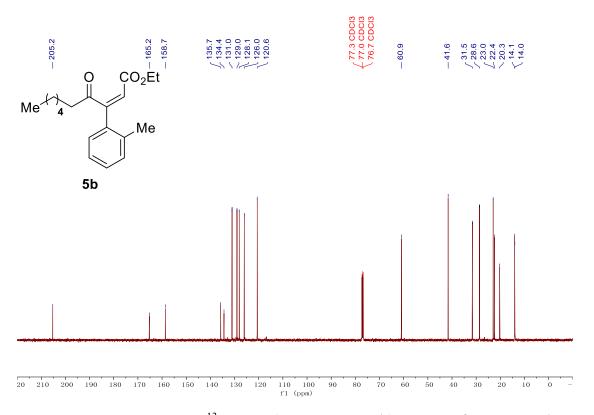


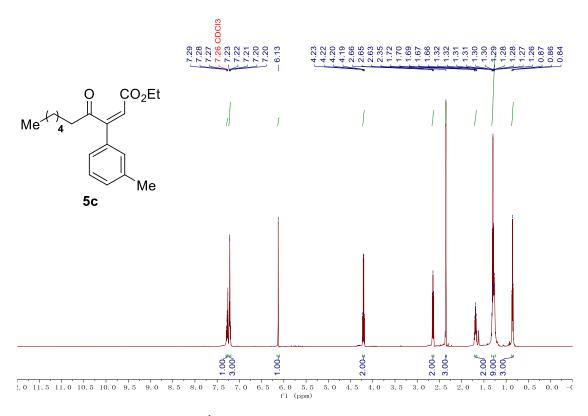
Supplementary Figure 165. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 3cc

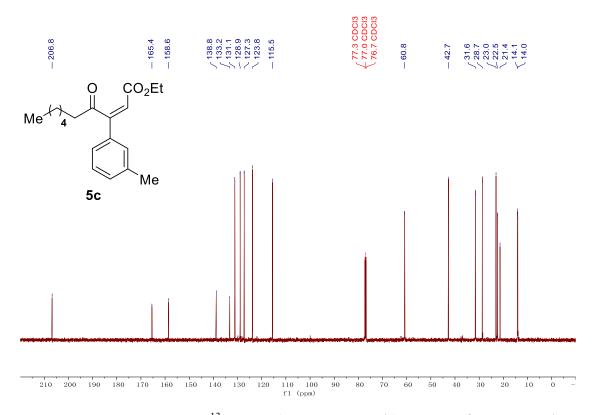


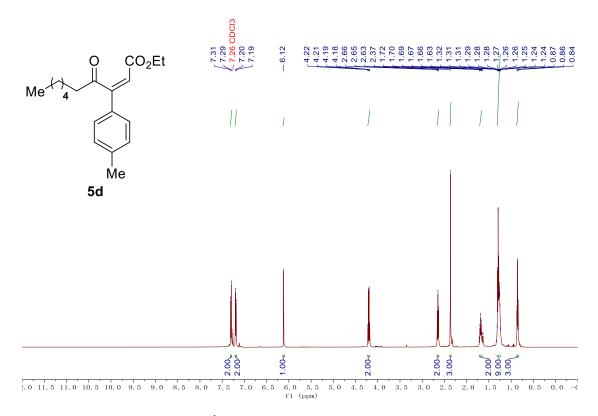

Supplementary Figure 166. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 3cc


Supplementary Figure 167. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 3cc


Supplementary Figure 168. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5a

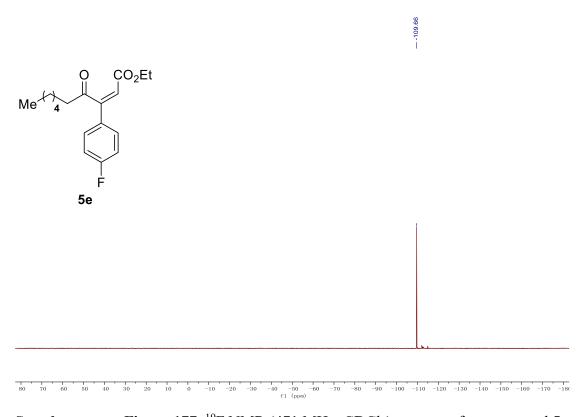

Supplementary Figure 169. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5a

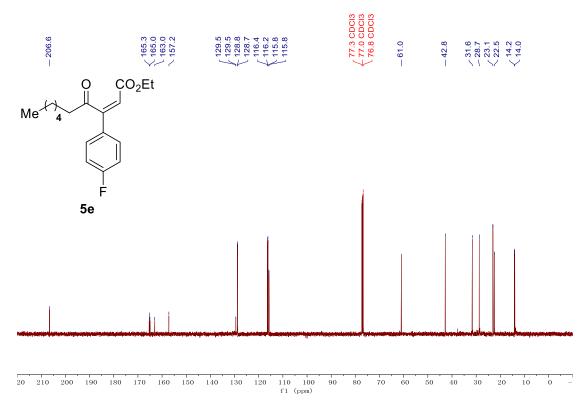

Supplementary Figure 170. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5b

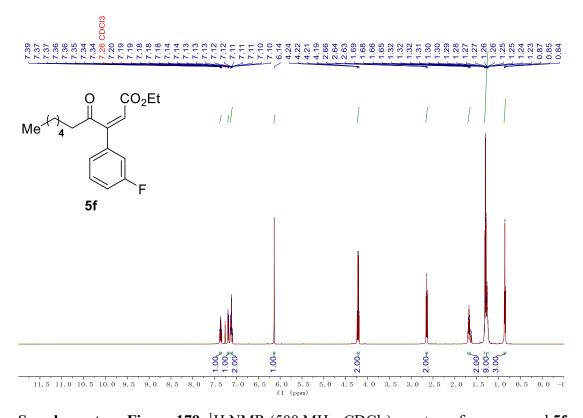

Supplementary Figure 171. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5b

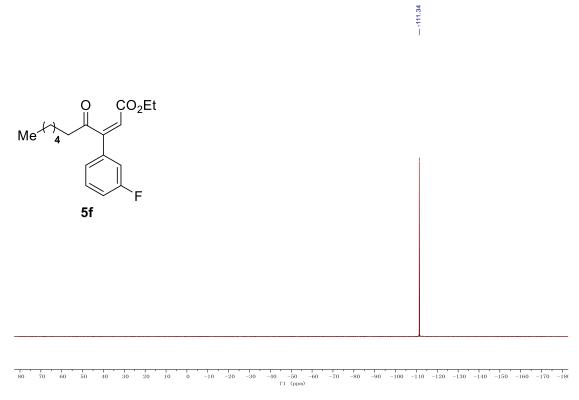
Supplementary Figure 172. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 5c

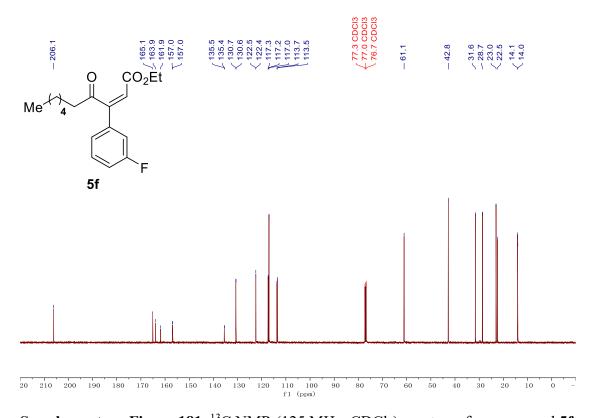
Supplementary Figure 173. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5c

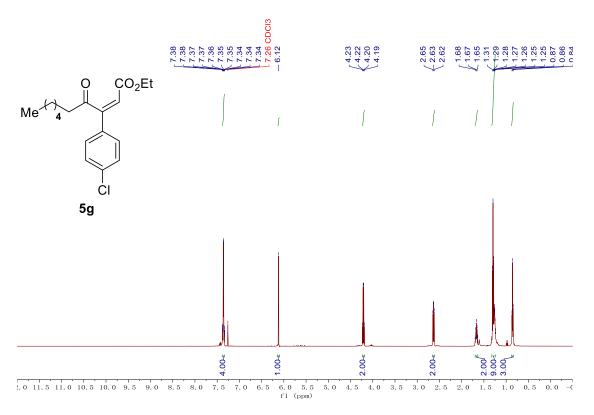

Supplementary Figure 174. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5d

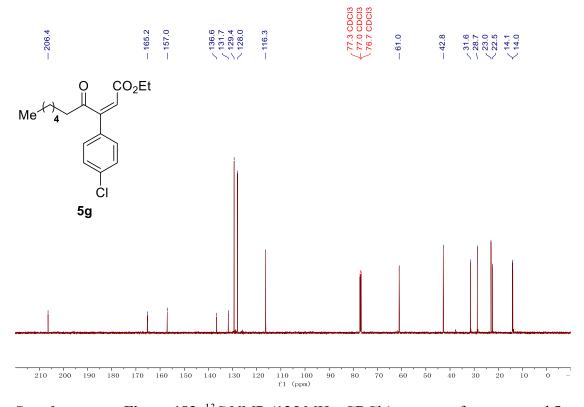

Supplementary Figure 175. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5d

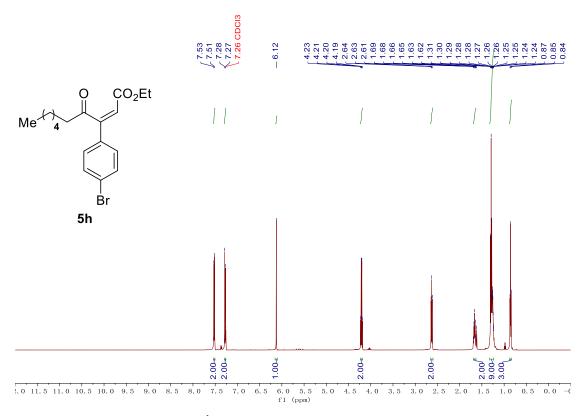

Supplementary Figure 176. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5e

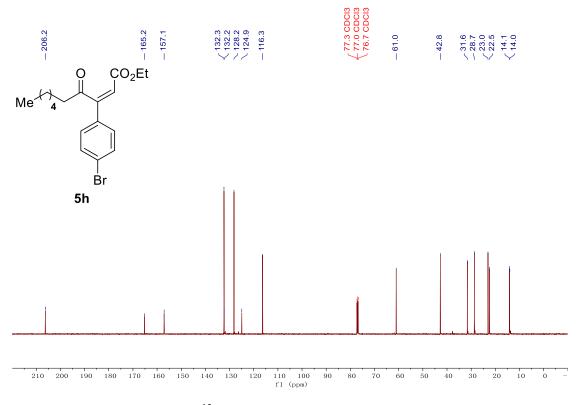

Supplementary Figure 177. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 5e

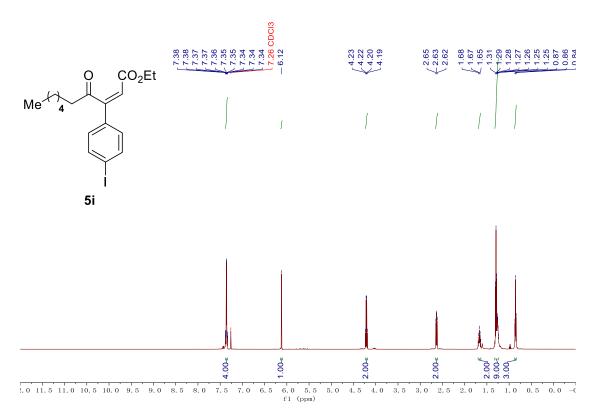

Supplementary Figure 178. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5e

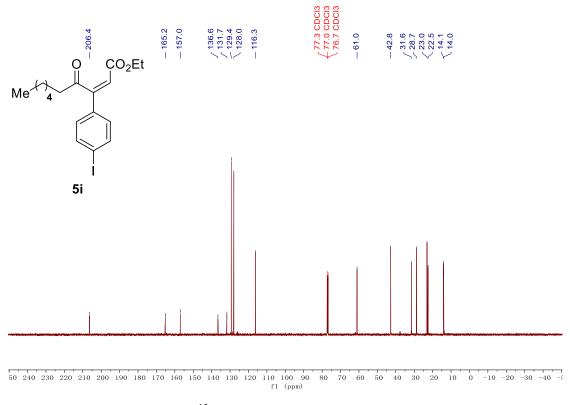

Supplementary Figure 179. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5f

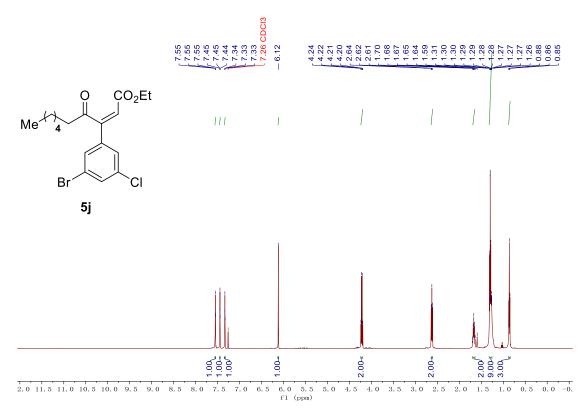

Supplementary Figure 180. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 5f

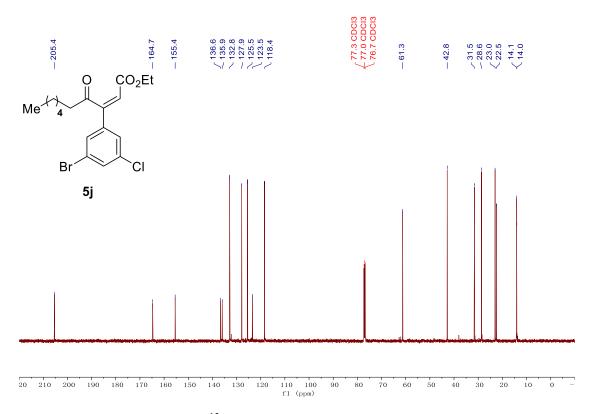

Supplementary Figure 181. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5f

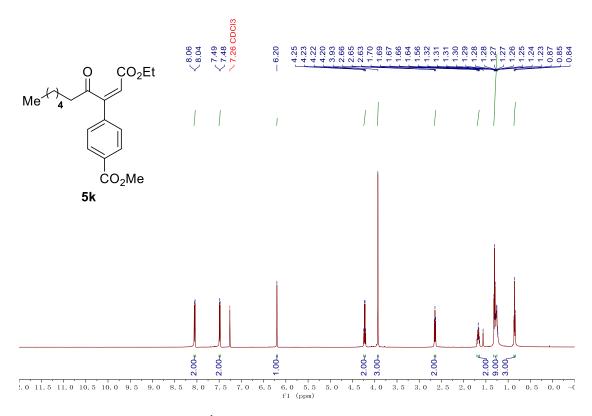

Supplementary Figure 182. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5g

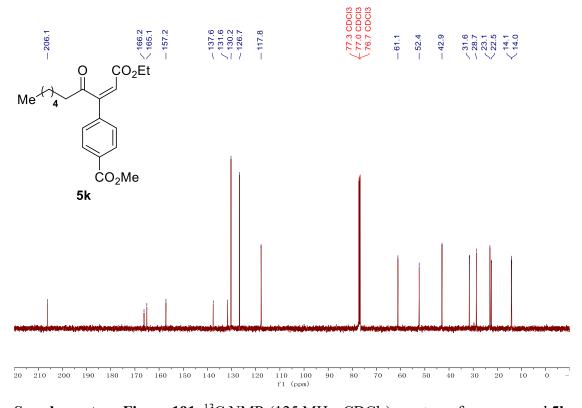

Supplementary Figure 183. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5g

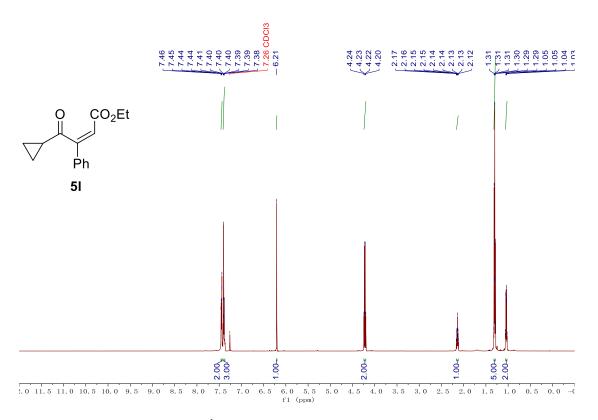

Supplementary Figure 184. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5h

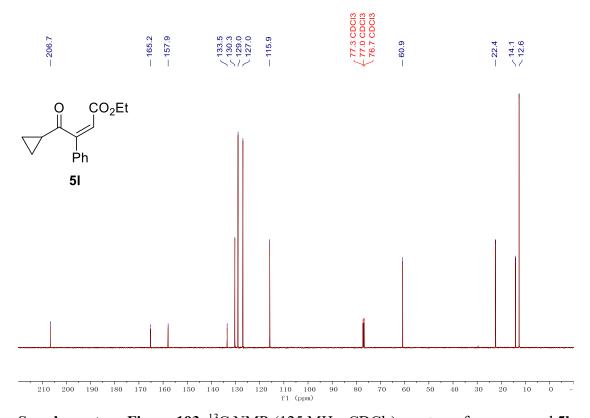

Supplementary Figure 185. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5h

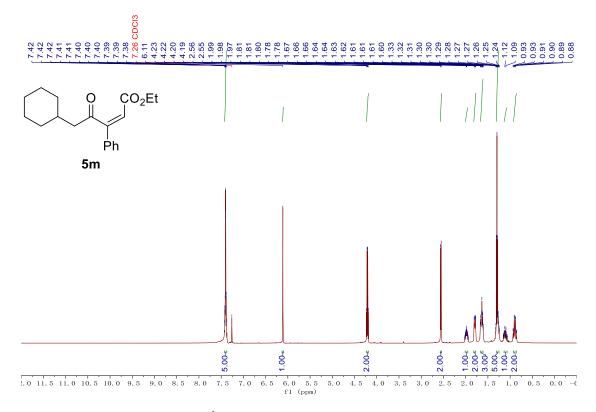

Supplementary Figure 186. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5i

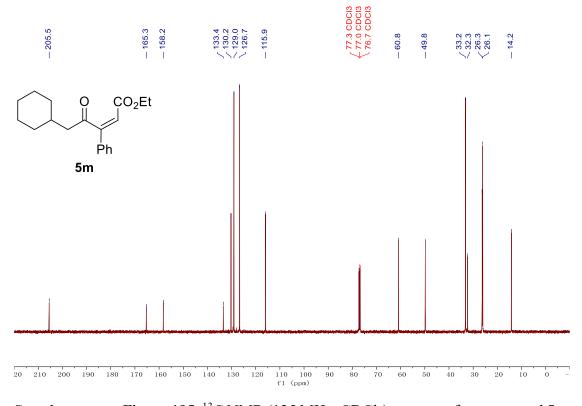

Supplementary Figure 187. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5i

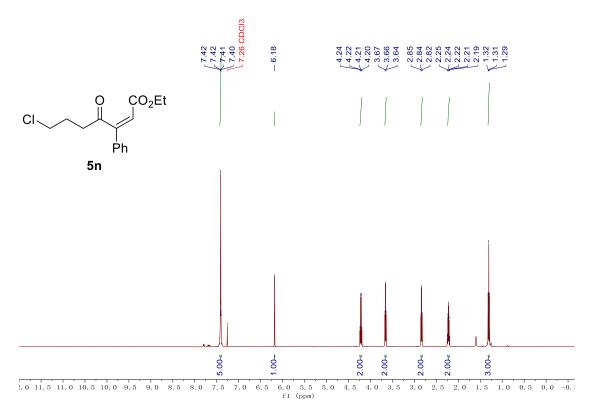

Supplementary Figure 188. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5j

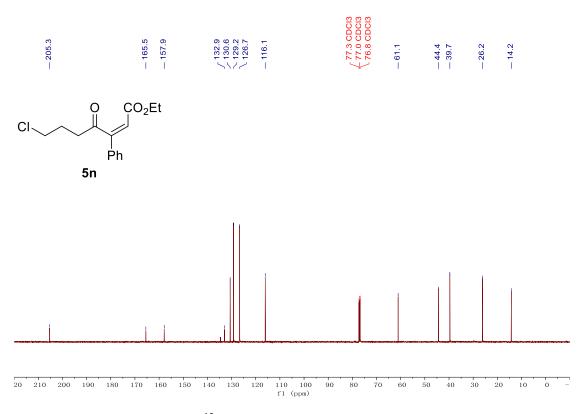

Supplementary Figure 189. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5j

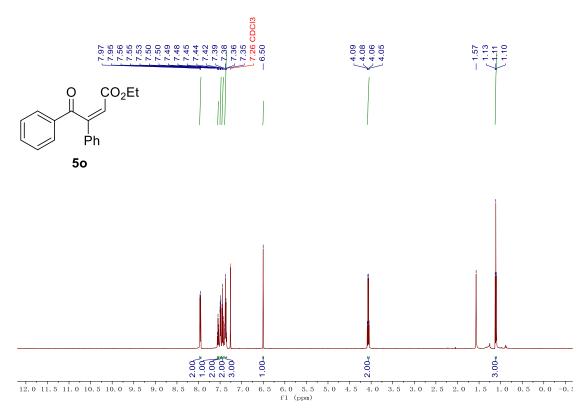

Supplementary Figure 190. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5k

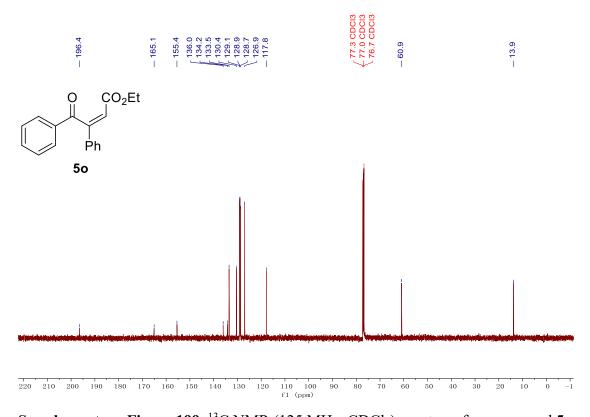

Supplementary Figure 191. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5k

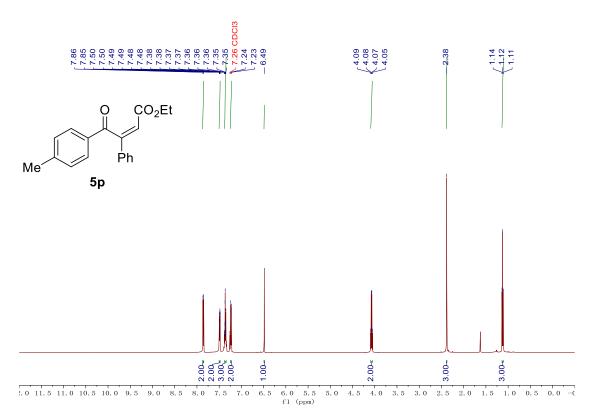

Supplementary Figure 192. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5l

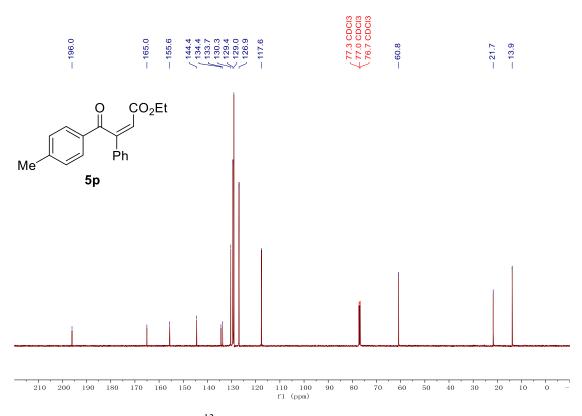

Supplementary Figure 193. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5l

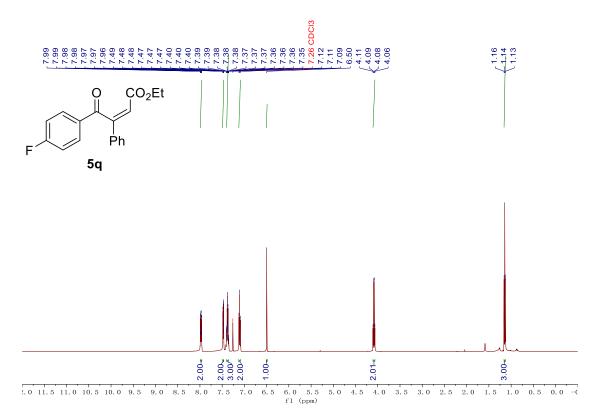

Supplementary Figure 194. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5m

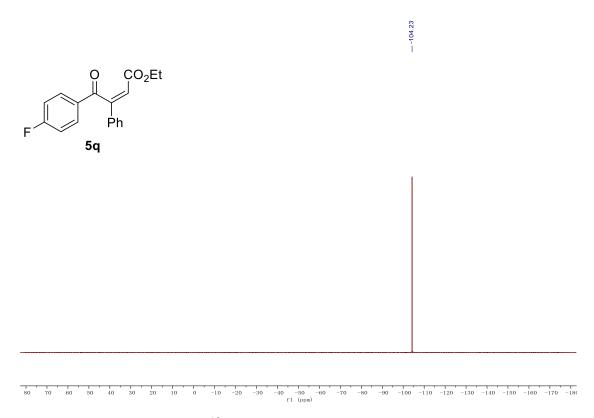

Supplementary Figure 195. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5m

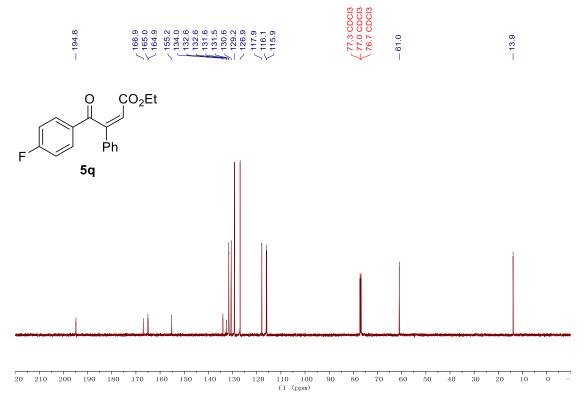

Supplementary Figure 196. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5n

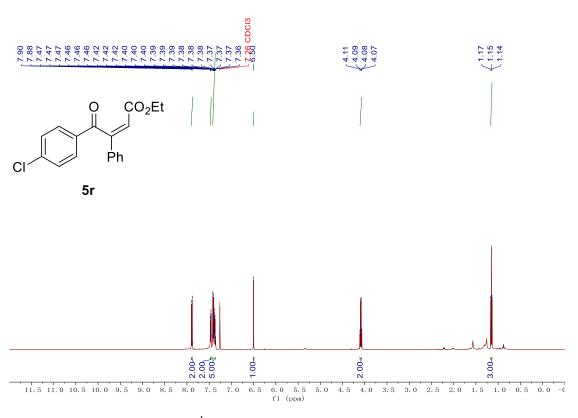

Supplementary Figure 197. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5n

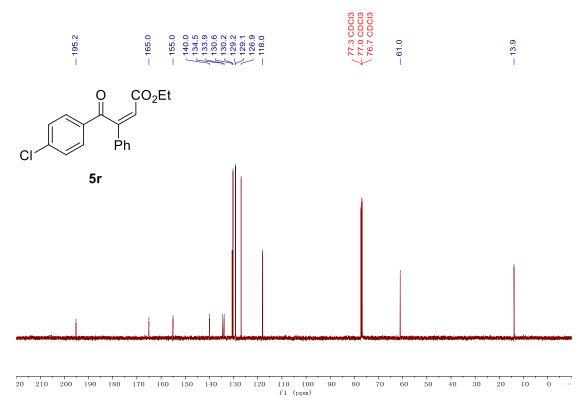

Supplementary Figure 198. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 50

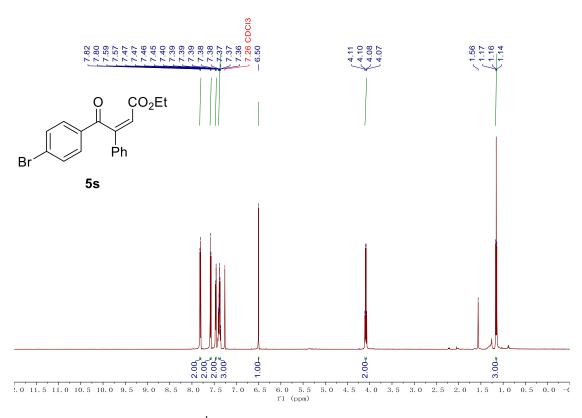

Supplementary Figure 199. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 50

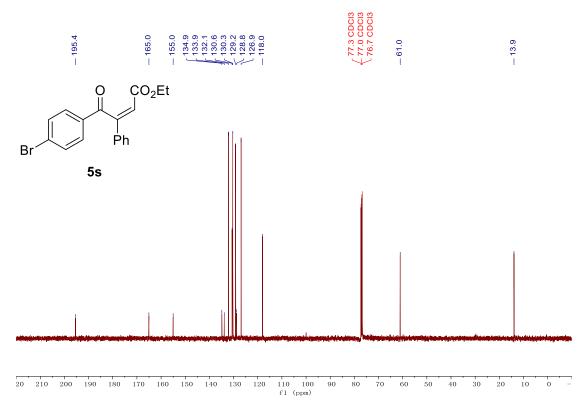

Supplementary Figure 200. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5p

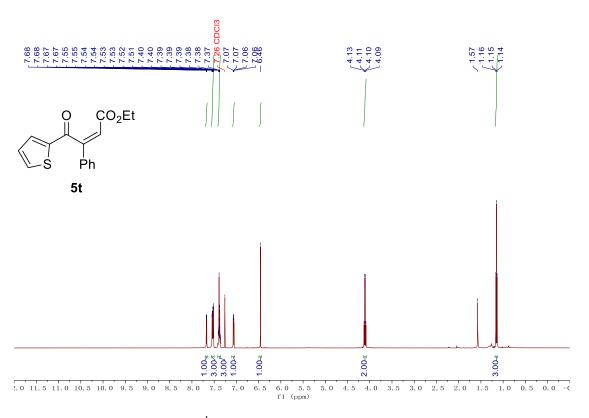

Supplementary Figure 201. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5p

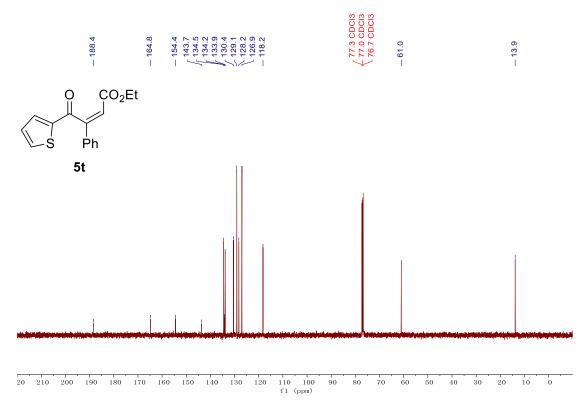

Supplementary Figure 202. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5q

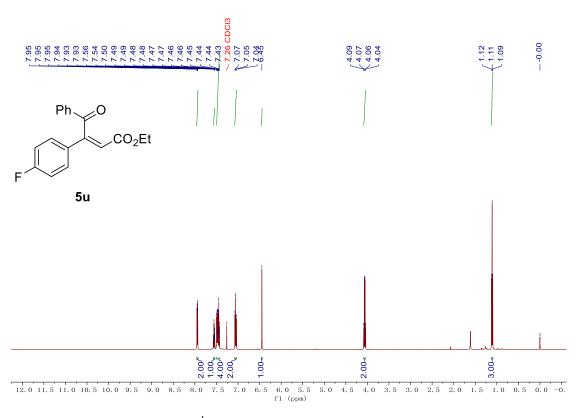

Supplementary Figure 203. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 5q

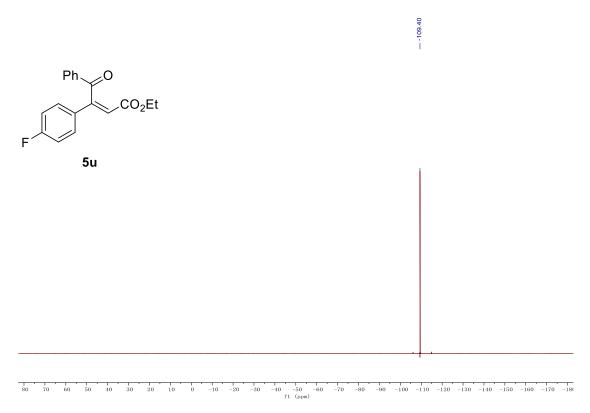

Supplementary Figure 204. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5q

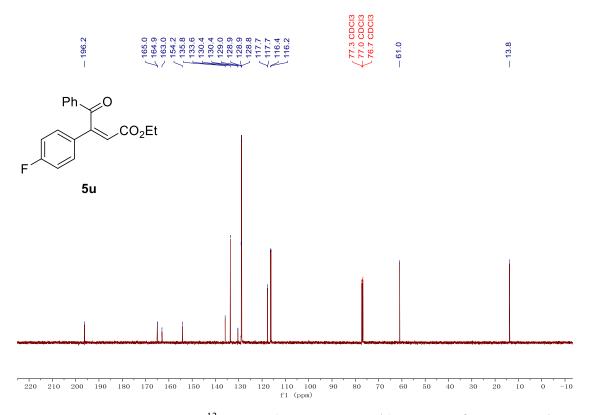

Supplementary Figure 205. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 5r

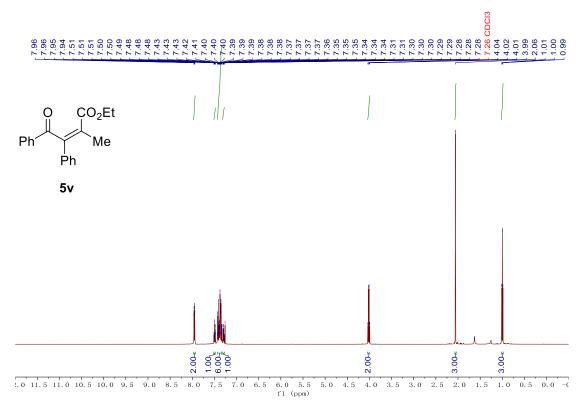

Supplementary Figure 206. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5r

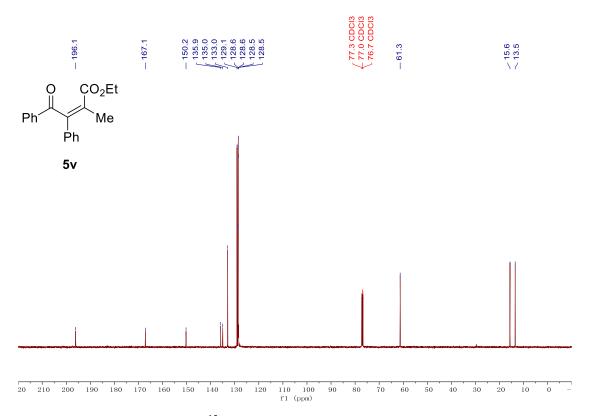

Supplementary Figure 207. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5s

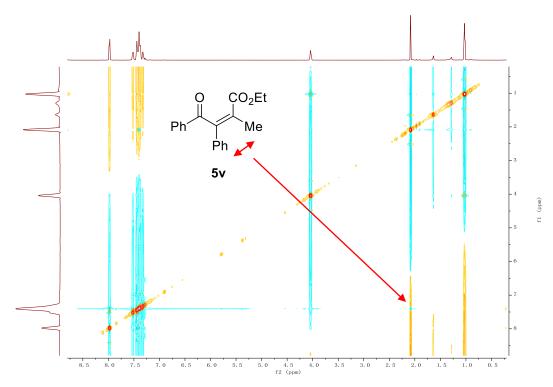

Supplementary Figure 208. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5s

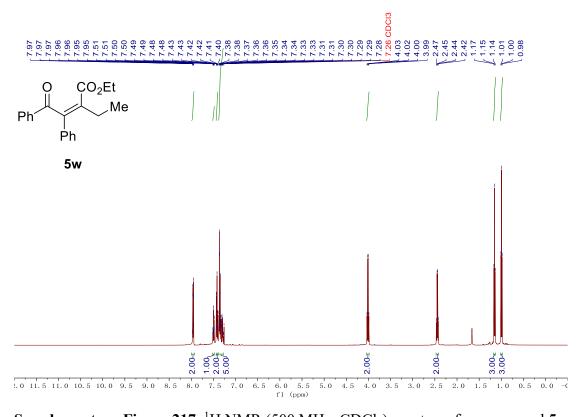

Supplementary Figure 209. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5t

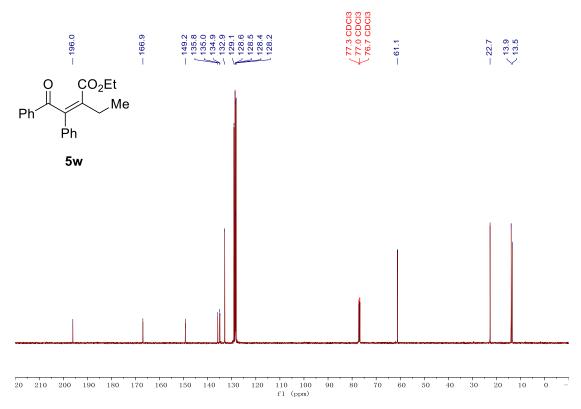

Supplementary Figure 210. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5t

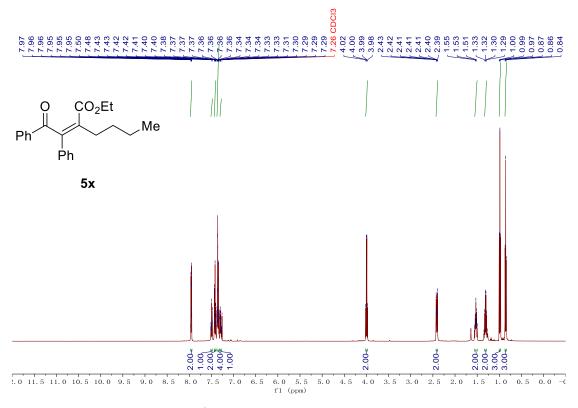

Supplementary Figure 211. 1 H NMR (500 MHz, CDCl₃) spectrum for compound 5u

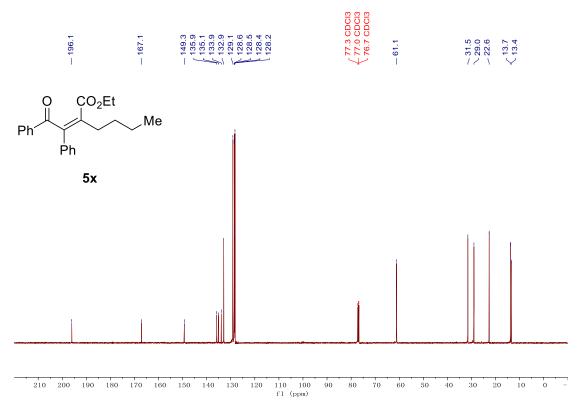

Supplementary Figure 212. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 5u

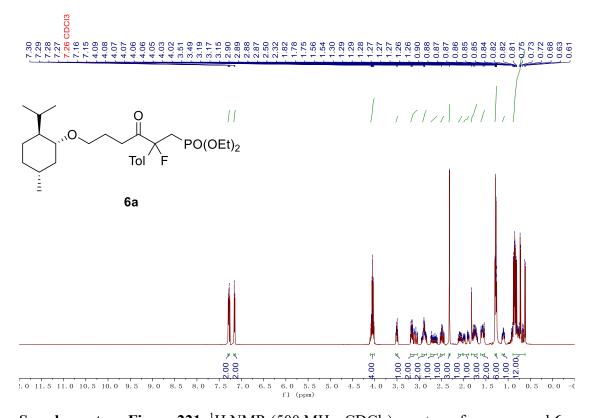

Supplementary Figure 213. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5u

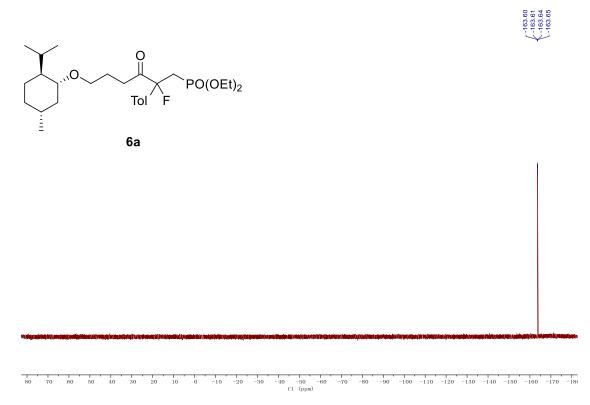

Supplementary Figure 214. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5v

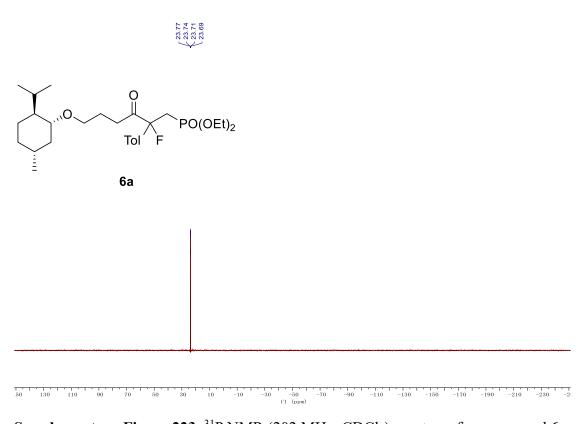

Supplementary Figure 215. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5v

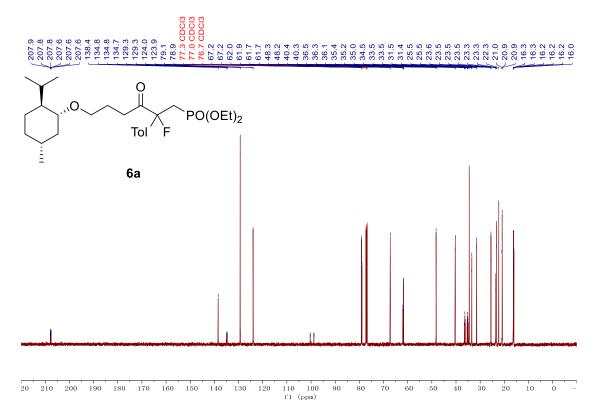

Supplementary Figure 216. $^{1}\text{H-}^{1}\text{H}$, NOESY NMR (600 MHz, CDCl₃) spectrum for compound 5v

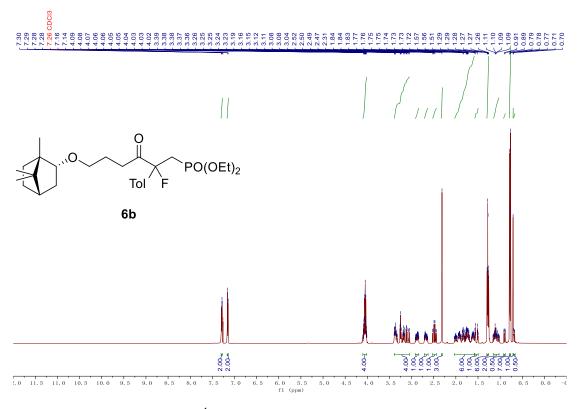

Supplementary Figure 217. ^1H NMR (500 MHz, CDCl₃) spectrum for compound 5w


Supplementary Figure 218. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5w

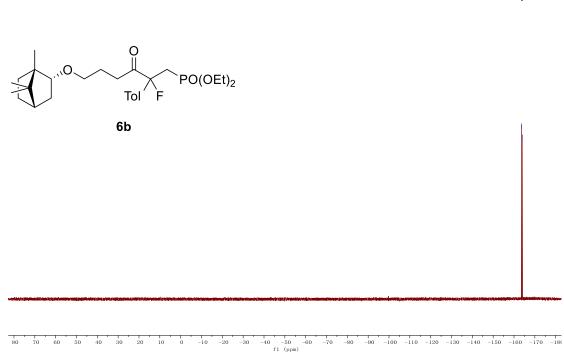

Supplementary Figure 219. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5x


Supplementary Figure 220. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 5x

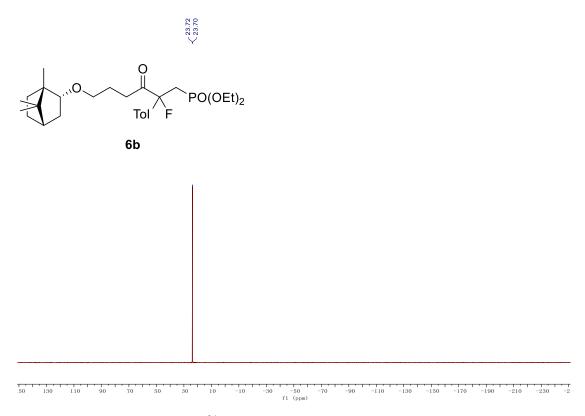

Supplementary Figure 221. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6a


Supplementary Figure 222. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 6a

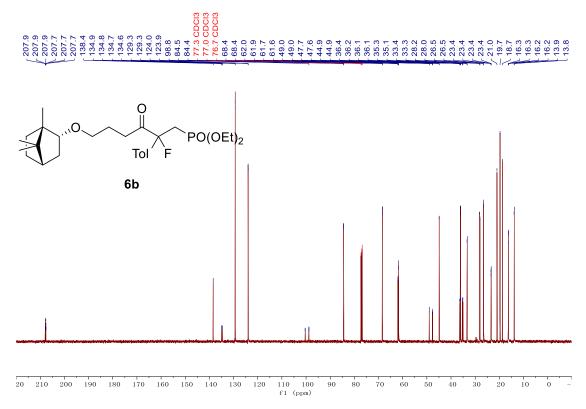
Supplementary Figure 223. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 6a

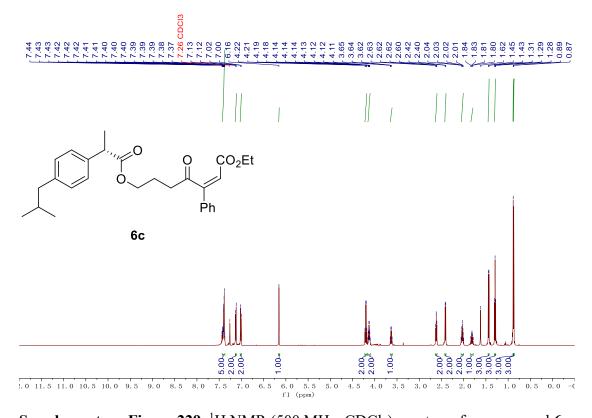


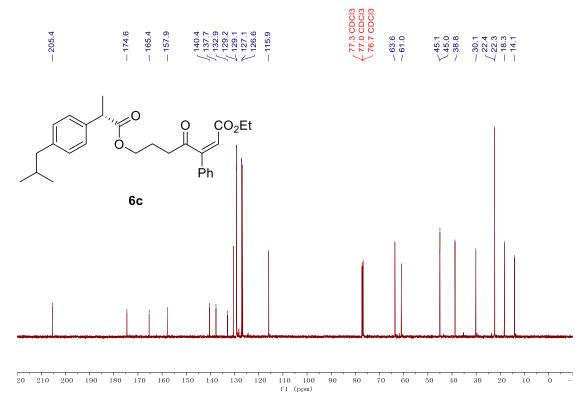
Supplementary Figure 224. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6a

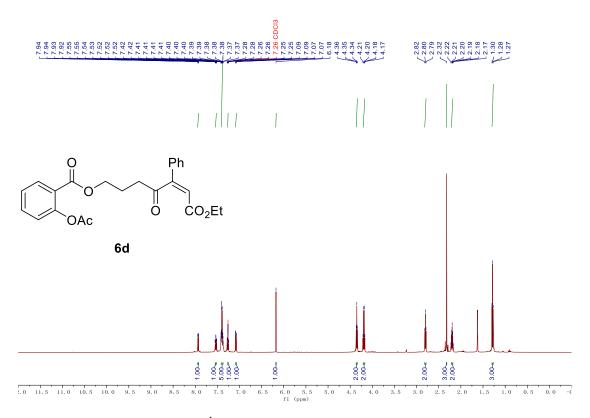


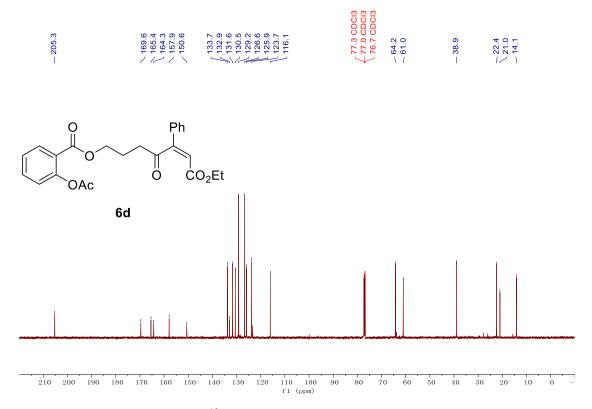
Supplementary Figure 225. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6b

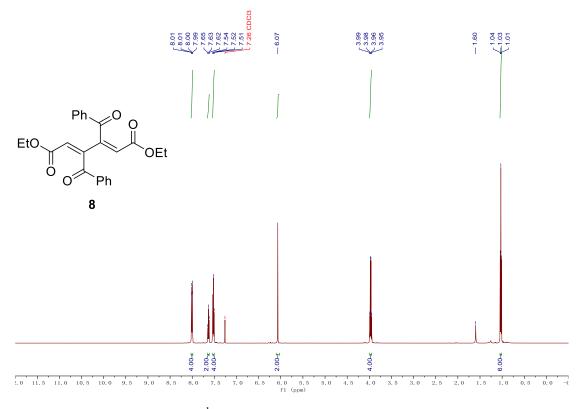


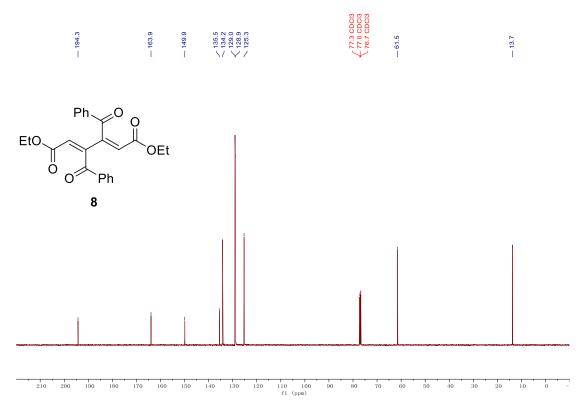

Supplementary Figure 226. ¹⁹F NMR (471 MHz, CDCl₃) spectrum for compound 6b


Supplementary Figure 227. ³¹P NMR (202 MHz, CDCl₃) spectrum for compound 6b


Supplementary Figure 228. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6b


Supplementary Figure 229. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6c


Supplementary Figure 230. 13 C NMR (125 MHz, CDCl₃) spectrum for compound 6c


Supplementary Figure 231. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 6d

Supplementary Figure 232. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 6d

Supplementary Figure 233. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 8

Supplementary Figure 234. ¹³C NMR (125 MHz, CDCl₃) spectrum for compound 8

9. References

- [1] Liao, L.; Zhang, H.; Zhao, X. Selenium-π-Acid Catalyzed Oxidative Functionalization of Alkynes: Facile Access to Ynones and Multisubstituted Oxazoles. *ACS Catal.* **2018**, *8*, 6745–6750.
- [2] Dong, X.; Jiang, W.; Hua, D.; Wang, X.; Xu, L.; Wu, X. Radicalmediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. *Chem. Sci.* **2021**, *12*, 11762–11768.
- [3] Suarez, A.; Fu, G. C. A Straightforward and Mild Synthesis of Functionalized 3-Alkynoates. *Angew. Chem. Int. Ed.* **2004**, *43*, 3580–3582.