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Genetic factors are thought to play an important role in the pathogenesis of Parkinson’s disease (PD), particularly early-onset PD.
-e PRKN gene is the primary disease-causing gene for early-onset PD. -e details of its functions remain unclear. -is study
identified novel compound heterozygous variants (p.T240K and p.L272R) of the PRKN gene in a Han-Chinese family with early-
onset PD. -is finding is helpful in the genetic diagnosis of PD and also the functional research of the PRKN gene.

1. Introduction

Parkinson’s disease (PD) is the second most frequent
neurodegenerative disease after Alzheimer’s disease [1].
Parkinsonism, the core clinical feature of PD, is defined as
slowly progressive bradykinesia combined with rest tremor
or rigidity [2]. -e etiology of PD remains enigmatic, while
environmental and genetic factors are thought to be involved
in [3]. Currently, 23 disease-causing loci and 19 genes have
been identified for PD and recorded in the Online Men-
delian Inheritance in Man (OMIM) [4]. Although PD
mainly affects those over 50, early-onset PD (EOPD) pa-
tients, whose motor disorder symptoms appear before age
40, account for 3–5% of all PD patients worldwide [5].
EOPD’s primary genetic type is autosomal recessive juvenile
parkinsonism (AR-JP, OMIM 600116) caused by homozy-
gous or compound heterozygous mutations in the parkin
RBR E3 ubiquitin protein ligase gene (PRKN) [6]. It has
parkinsonism symptoms, but may be a different disease
entity from late-onset sporadic PD. -is is suggested by
more dystonia at onset, better levodopa responsiveness,

slower disease progression, sleep benefit, and lower fre-
quencies of nonmotor symptoms and Lewy bodies [7–9].

-is gene encodes the parkin protein which could
ubiquitinate numerous mitochondrial outer membrane
proteins resulting in autophagy of damaged mitochondria,
and PRKN mutations caused mitochondrial quality control
deficiencies and neuron death [10]. -e parkin protein has
been intensely studied due to its complex activation
mechanisms and suppressive roles in various tumors
[11, 12]. -is study reports on new compound heterozygous
variants in the PRKN gene in a family with EOPD (Figure 1).
-is finding expands the PRKN-associated PD genetic
spectrum and may provide new insights into parkin protein
structures and functions.

2. Materials and Methods

A Han-Chinese family with EOPD was recruited from
China’s Shandong Province (Figure 1(a)). -e proband, her
brother, and son were examined and diagnosed by two
experienced neurologists. Two hundred unrelated healthy
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Han-Chinese older than 40 were enrolled as controls. -is
study was approved by the Institutional Review Board of the
-ird Xiangya Hospital of Central South University,
Changsha, Hunan, China. After written informed consents
were obtained, peripheral venous blood samples were taken
from all participants. gDNA isolated from the proband (II :
2) was target captured by a PD-associated gene panel.
Subsequently, paired-end sequencing using Illumina HiSeq
X-ten platform (Illumina Inc., USA) was performed. All
potential variants were filtered according to the Single
Nucleotide Polymorphism database, the 1000 Genomes
Project, and the Exome Aggregation Consortium database.

Coding indels, potential splice-site changes, and non-
synonymous single-nucleotide variants in exons with minor
allele frequency <10− 3 were considered as pathogenic can-
didates. Sanger sequencing verified candidate variants using
an ABI3500 sequencer (Applied Biosystems Inc., USA) [13].
Sorting Intolerant from Tolerant (SIFT) and Combined
Annotation Dependent Depletion (CADD) predicted the
potential pathogenic effects of variants. -e Basic Local
Alignment Search Tool analyzed amino acid sequence
conservations. -e methods of targeted sequencing and
Sanger sequencing are detailed in the Supplementary
Materials.
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Figure 1: (a) Pedigree of the family with EOPD. -e arrow indicates the proband. (b) DNA sequencing of the c.719C>A variant in the
PRKN gene. (c) DNA sequencing of the c.815T>G variant in the PRKN gene. (d) Conservation analysis of the parkin p.T240 amino acid
residue. (e) Conservation analysis of the parkin p.L272 amino acid residue.
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3. Results

3.1. Clinical Features. -e age at onset of the proband (II : 2)
was 32 years. -e initial symptoms were slowness and rest
tremor in her right arm, and tightness appeared one year
later. -ese motor symptoms slowly progressed and spread
to the right leg and contralateral limbs over a period of six
years. Levodopa therapy significantly improved motor
symptoms as of her first examination at age 35 years, but
detailed evaluation was not performed. At her latest eval-
uation, at age 39 years, clinically established PD was di-
agnosed on the basis of prominent bradykinesia symptom
and other PD-related symptoms, including rest tremor,
rigidity, face masking, numbness, difficulty falling asleep,
olfactory impairment, constipation, mild cognitive impair-
ment, depression, and anxiety. Her MDS Unified Parkin-
son’s Disease Rating Scale motor score was 9 (on)/14 (off),
and Mini-Mental State Examination score was 22. Skull CT
and MRI results, blood and urine copper levels, and ceru-
loplasmin were all normal. No movement disorders or other
nervous system disorders were found in her son (III : 1) or
older brother (II :1).

3.2. Molecular Findings. After target capture sequencing and
filtering, only the p.T240K (c.719C>A, rs137853054) and
p.L272R (c.815T>G) variants of PRKN gene were considered
as pathogenic candidates in the knownmonogenic PD-causing
genes. Subsequent Sanger sequencing confirmed both in the
proband (Figures 1(b) and 1(c)). -e p.T240K variant was
found in her son (III :1).-e two variants were absent from her
older brother (II :1) and from the 200 normal controls. -e
p.T240K variant has a very low recorded heterozygous state
frequency in the Genome Aggregation Database (gnomAD,

7.954×10− 6). SIFT and CADD predicted the c.719C>A
(p.T240K) variant as damaging (Table 1). -e p.L272R variant
has not been reported in the gnomAD and also has a damaging
prediction in SIFT and CADD analysis (Table 2). Multi-
sequence alignment shows that the leucine at position 272 is
phylogenetically conserved from fruit flies to humans
(Figure 1(e)). -ese data indicate that the compound het-
erozygous variants, p.T240K and p.L272R, are probably dis-
ease-causing for EOPD in this family.

4. Discussion

-e parkin protein is a 465-amino acid E3 ubiquitin ligase of
the RING-between-RING (RBR) family, which could ca-
talyse the transfer of ubiquitin from the E2 conjugating
enzyme to substrate proteins [10]. Numerous recent studies
attempted to determine the relationship between the parkin
protein structure and its functions through in vitro and
animal experiments. -e most direct and compelling evi-
dence for protein structure change effects remains the
mutations, particularly missense mutations detected in
patients. Approximately 25% of all PRKN gene mutations
have been found in the RING1 domain, which is considered
to have a binding site for the E2 conjugating enzyme and be
important to parkin activation due to its interactions with
Ser65-phosphorylated ubiquitin and the UbL domain
(Figure 2) [10, 14, 15, 21–29]. -e detailed molecular
structure of parkin remains unclear, which results in several
different activation and catalysis models [30].

In this study, clinically established EOPD and extensive
nervous system impairment were suggested by the presence
of three cardinal motor symptoms and multiple nonmotor
symptoms in the proband. Two missense variants (p.T240K

Table 1: Reported variants in the 240th codon of the PRKN gene.

Nucleotide change Amino acid change Identifier MAF (gnomAD)
SIFT

CADD scorea Reported patientsb
Score Prediction

c.719C>A p.T240K rs137853054 7.954 × 10−6 0.01 Damaging 23.6 1
c.719C>T p.T240M rs137853054 3.465×10− 4 0.00 Damaging 23.8 13 [6, 14–20]
c.719C>G p.T240R — — 0.00 Damaging 23.4 1 [21]
c.718A>G p.T240A — — 1.00 Tolerated 14.97 2 [15]
c.718A>T p.T240S rs1194371893 7.954×10− 6 0.03 Damaging 21.8 —
c.720G>A p.T240� rs769882260 3.536×10− 5 — — 5.479 —
c.720G>C p.T240� rs769882260 3.977×10− 6 — — 4.599 —
MAF, minor allele frequency; gnomAD, Genome Aggregation Database; SIFT, Sorting Intolerant from Tolerant; CADD, Combined Annotation Dependent
Depletion. aPHRED-scaled CADD score. bReported patients with PRKN variants in homozygous or compound heterozygous states.

Table 2: Reported variants in the 272nd codon of the PRKN gene.

Nucleotide
change

Amino acid
change Identifier MAF

(gnomAD)
Hydropathy

index
SIFT CADD

scorea
Reported
patientsbScore Prediction

c.815T >G p.L272R — — −4.5 0.00 Damaging 29.2 1
c.814C>T p.L272F rs141366047 3.980×10− 6 2.8 0.00 Damaging 25.6 —
c.814C>G p.L272V rs141366047 1.194×10− 5 4.2 0.05 Damaging 24.4 —
c.814C>A p.L272I rs141366047 9.553×10− 5 4.5 0.01 Damaging 25.1 —
c.816C>T p.L272� rs143902760 1.322×10− 3 3.8 — — 9.553 —
MAF, minor allele frequency; gnomAD, Genome Aggregation Database; SIFT, Sorting Intolerant from Tolerant; CADD, Combined Annotation Dependent
Depletion. aPHRED-scaled CADD score. bReported patients with PRKN variants in homozygous or compound heterozygous states.
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and p.L272R) with potential pathogenicity are located in the
RING1 domain and had not been previously reported in PD
patients. Although the sequence conservation of threonine at
position 240 is lower than that of leucine at position 272
(Figures 1(d) and 1(e)), there have been at least 16 reported
PD patients with PRKN p.T240M, p.T240R, or p.T240A
variants in homozygous or compound heterozygous states
(Table 1) [6, 14–21]. -is amino acid is in the first Zn-
binding loop of the RING1 domain which has been regarded
as the E2 binding site of parkin [31]. -e p.T240R mutation
has been found to change the E2 binding interface and
destroy the autoubiquitination activation of parkin protein
and lead to EOPD [31, 32]. -e first α-helix (260–273) of the
RING1 domain was reported as the binding site for the UbL
domain, which adjoins the RING1 domain through hy-
drophobic interaction to block E2 access [10, 33]. -ree
other missense variants (p.L272I, p.L272V, and p.L272F)
and one synonymous variant in the 272nd codon have been
recorded. However, no pathogenic evidence has been

reported for these four variants, which may be due to low
allele frequencies in generating populations and preserva-
tion of hydrophobicity (Table 2). -e p.L272R, resulting in
materially hydrophilic alternation, is more likely to disrupt
protein folding and affect its function, especially in a
compact protein stabilized by numerous hydrophobic in-
teractions such as parkin (Table 2) [34, 35]. Investigating the
structural changes resulting from the p.L272R variant may
contribute to understanding parkin domain interactions and
their potential function. More evidence including segrega-
tion information and functional research is needed to
classify the two variants as pathogenic or likely pathogenic
variants according to the American College of Medical
Genetics and Genomics guidelines for variants in-
terpretation [36].

In conclusion, the novel compound heterozygous vari-
ants of PRKN gene, p.T240K and p.L272R, were identified as
the probable genetic cause for EOPD in a family with
clinically established EOPD. -ese two missense variants
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Figure 2: (a) Domain structure and missense variants associated with autosomal recessive parkinsonism detected in the RING1 domain of
parkin protein [10, 14, 15, 21, 23–28]. Two variants detected in this study are highlighted in bold. β-Strand and α-helix are in dark blue and
pink, respectively. Zinc-binding cysteines are signed with orange dots. (b) Cartoon representation of the p.T240K and p.L272R variants in
parkin protein by PyMOL. Parkin protein crystal structure (PDB code 5C1Z) was used as a template [29]. Variants are shown as red stick
models, and Zn2+ are shown as spheres. pUb, Ser65-phosphorylated ubiquitin.
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both lead to amino acid changes in the RING1 domain. -is
finding has potential value for functional research of the
PRKN gene and genetic diagnosis of PD. Further studies are
warranted to clarify their pathogenicity andmay offer deeper
understanding of the detailed functional effects.
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