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Overexpression of KDM4 lysine demethylases disrupts the
integrity of the DNA mismatch repair pathway
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ABSTRACT

The KDM4 family of lysine demethylases consists of five members,

KDM4A, -B and -C that demethylate H3K9me2/3 and H3K36me2/3

marks, while KDM4D and -E demethylate only H3K9me2/3. Recent

studies implicated KDM4 proteins in regulating genomic instability and

carcinogenesis. Here, we describe a previously unrecognized

pathway by which hyperactivity of KDM4 demethylases promotes

genomic instability. We show that overexpression of KDM4A-C, but

not KDM4D, disrupts MSH6 foci formation during S phase by

demethylating its binding site, H3K36me3. Consequently, we

demonstrate that cells overexpressing KDM4 members are defective

in DNA mismatch repair (MMR), as evident by the instability of

four microsatellite markers and the remarkable increase in the

spontaneous mutations frequency at the HPRT locus. Furthermore,

we show that the defective MMR in cells overexpressing KDM4C is

mainly due to the increase in its demethylase activity and can be

mended by KDM4C downregulation. Altogether, our data suggest that

cells overexpressing KDM4A-C are defective in DNA MMR and this

may contribute to genomic instability and tumorigenesis.
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INTRODUCTION
A decade ago, two families of lysine demethylases (KDM) have

been identified, confirming that lysine methylation is a reversible

and dynamically regulated process (Klose et al., 2006a; Shi et al.,

2004; Whetstine et al., 2006). One family is referred to as

the Jumonji C (JmjC)-domain-containing proteins. The crystal

structure of the JmjC catalytic domain was solved and found to

form an enzymatically active pocket that coordinates the two main

co-factors needed for the radical-based oxidative demethylation

reaction, ferrous oxide (Fe(II)) and a-ketoglutarate (Chen et al.,

2006; Shi and Whetstine, 2007; Tsukada et al., 2006).

The human KDM4A-E family (also known as JMJD2A-E)

consists of five members, which specifically catalyze the

demethylation of H3K9me2/me3. Furthermore, KDM4A, -B

and -C, but not KDM4D and -E, demethylate H3K36me2/me3

and H1.4K26me2/me3 (Chen et al., 2006; Labbé et al., 2013;

Trojer et al., 2009). KDM4A-E proteins are involved in multiple

cellular processes including gene expression regulation (Kim

et al., 2012; Mallette and Richard, 2012; Shin and Janknecht,

2007a; Wissmann et al., 2007; Zhang et al., 2005), DNA

replication (Black et al., 2010; Black et al., 2012), and DNA

damage response (Khoury-Haddad et al., 2014; Mallette et al.,

2012; Palomera-Sanchez et al., 2010; Young et al., 2013; Black,

2012), worm development and germ cell apoptosis (Whetstine

et al., 2006), renewal of embryonic stem cells (Loh et al., 2007),

and male life span in drosophila (Lorbeck et al., 2010).

Interestingly, increasing number of reports implicate KDM4

misregulation in promoting genomic instabilities and

carcinogenesis (Berdel et al., 2012; Berry and Janknecht, 2013;

Black et al., 2013; Cloos et al., 2006; Ehrbrecht et al., 2006;

Italiano et al., 2006; Kawazu et al., 2011; Labbé et al., 2013; Li

et al., 2011; Liu et al., 2009; Luo et al., 2012; Northcott et al.,

2009; Shi et al., 2011; Vinatzer et al., 2008; Wissmann et al.,

2007; Yang et al., 2000; Zack et al., 2013).

A recent report implicated H3K36me3 mark in DNA mismatch

repair (MMR). It demonstrated that the mismatch recognition

protein hMutSa binds H3K36me3 during early S phase to ensure

intact DNA MMR (Li et al., 2013). These observations prompted us

to investigate the role of KDM4 proteins in DNA MMR. Here, we

describe a previously unrecognized pathway by which upregulation

of KDM4 proteins promotes genomic instability. We show that

overexpression of KDM4 impairs the integrity of DNA mismatch

repair (MMR) and thus leading to microsatellite instability (MSI)

and to an increase in the frequency of spontaneous mutations.

Interestingly, we show that downregulation of KDM4C expression

restores the integrity of DNA MMR. Collectively, our data provide

a new pathway by which KDM4A-C amplification may lead to

genomic instability and tumorigenesis.

RESULTS AND DISCUSSION
KDM4A-C overexpression disrupts MSH6 foci formation
during S-phase
KDM4A-C proteins, but not KDM4D, demethylate H3K36me3

mark as we and others have shown (Couture et al., 2007;

Hillringhaus et al., 2011; Klose et al., 2006b; Kupershmit et al.,

2014; Shin and Janknecht, 2007b; Whetstine et al., 2006).

H3K36me3 is involved in DNA MMR as it provides a binding

site for the MMR protein MSH6 and enables MSH6 foci

formation during S phase (Li et al., 2013). Therefore, we

sought to assess whether overexpression of KDM4A-C proteins

affects MSH6 foci during S phase. Toward this end, we used

U2OS-TetON cell lines that conditionally express functional

EGFP-KDM4A-C fusions upon the addition of doxycycline

(Ipenberg et al., 2013; Kupershmit et al., 2014). Importantly, the

expression levels of EGFP-KDM4A-C fusions are comparable to

the levels of the endogenous KDM4A-C proteins found in human

Department of Biology, Technion – Israel Institute of Technology, Haifa 3200003,
Israel.

*Author for correspondence (ayoubn@technion.ac.il)

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution
and reproduction in any medium provided that the original work is properly attributed.

Received 19 November 2014; Accepted 20 January 2015

� 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 498–504 doi:10.1242/bio.201410991

498

B
io

lo
g

y
O

p
e

n

mailto:ayoubn@technion.ac.il
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


breast adenocarcinoma cell line, MCF7, known to have elevated
levels of KDM4 proteins (Berry and Janknecht, 2013; Berry et al.,

2012) (Fig. 1A). The cells were synchronized at G1/S border using
double-thymidine block; samples were collected at 3 hr after the
removal of thymidine and subjected to both fluorescence-activated
cell sorter (FACS) and immunofluorescence (IF). Results show

that 3 hr after thymidine removal the majority of the cells (83%)
were at S phase (supplementary material Fig. S1). IF analysis
shows that overexpression of EGFP-KDM4A-C fusions (green)

diminished the intensity of H3K36me3 signal (gray) and impaired
MSH6 foci during S phase (red) (Fig. 1B–D). On the other hand,
U2OS-TetON cells expressing EGFP-KDM4D fusion (Khoury-

Haddad et al., 2014), which does not demethylate H3K36me3,
show no detectable effect on H3K36me3 levels and MSH6 foci
(Fig. 1E). Quantitative measurements of the MSH6 foci reveal that

KDM4A-C overexpression leads to 6–9 fold decrease comparing to

control U2OS cell line or cells overexpressing KDM4D (Fig. 1F).
We concluded therefore that EGFP-KDM4A-C overexpression

leads to a dramatic reduction in H3K36me3 and impairs MSH6
foci during the S phase of the cell cycle. Our results are consistent
with a recent report showing that MSH6 foci during S phase is
impaired following the inhibition of H3K36me3 methylation by

knocking down SETD2 methyltransferase (Li et al., 2013).

Overexpression of KDM4 members impairs the integrity of
DNA mismatch repair
It was shown that H3K36me3-MSH6 interaction is essential for
intact DNA MMR (Li et al., 2013). We predicted therefore that the

removal of H3K36me3 mark following KDM4A-C overexpression
should disrupt the integrity of DNA MMR. Given that microsatellite
instability (MSI) is a common hallmark of MMR-defective cells

(Boland et al., 1998; Bocker et al., 1997; Ellegren, 2004; Hsieh and

Fig. 1. Overexpression of KDM4A-C, but not KDM4D,
proteins impairs MSH6 foci formation during S-phase.
(A) Western blot analysis shows the levels of EGFP-KDM4A-C
fusions in U2OS-TetON cell lines in comparison to the levels of
the endogenous KDM4A-C proteins in MCF7 cell line. Protein
extracts were prepared from MCF7 cell line and from
doxycycline-treated U2OS-TetON cells expressing EGFP-
KDM4A-C fusions and immunoblotted using the indicated
antibodies. b-actin is used as a loading control. EGFP-KDM4A-
C fusions and the endogenous KDM4A-C proteins are indicated
by arrowheads and stars, respectively. (B–E) Shows that
overexpression of EGFP-KDM4A-C, but not EGFP-KDM4D,
catalyzes the removal of H3K36me3 methylation and impairs
MSH6 foci formation during S phase. Cells were fixed and
subjected to immunofluorescence analysis using antibodies
against MSH6 (red) and H3k36me3 (gray). DNA is stained with
DAPI (blue) and EGFP-KDM4A-D fusions are in green. Results
shown in (B–E) are typical of two independent experiments and
represent at least 30 different cells each. (F) Graph shows the
number of MSH6 foci in untransfected U2OS cells and in U2OS
cells expressing EGFP-KDM4A-D fusions (n530 cells). Foci
were counted by eye. Error bars represent SD from two
independent experiments. Scale bars510 mm (B,C,E); 5 mm
(D).
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Yamane, 2008), we sought to test the stability of the
mononucleotide (BAT25, BAT26) and the dinucleotide (D2S123,

D5S346) microsatellite markers in U2OS-TetON cell lines
overexpressing EGFP-KDM4A-D proteins. MSI assay was
performed on genomic DNA, which was extracted from 20
clones derived from different single cells of each cell line. Results

show that cells overexpressing KDM4A-C, but not KDM4D,

exhibit MSI as evidence by the appearance of new repeat species
(marked by *) and complete deletions of the tested markers

(marked by D). As shown in Fig. 2A, 40% (8/20 clones), 55% (11/
20) and 30% (6/20) of the clones expressing KDM4A, B and C
respectively, show either deletion or novel microsatellite mark. On
the other hand, no detectable alterations in the length of the

four tested microsatellite markers were obtained in clones

Fig. 2. Overexpression of KDM4A-C, but not KDM4D, displays MSI phenotype. (A–E) Microsatellite instability (MSI) assay showing the analysis of PCR
product patterns of four microsatellite markers in subclones derived from U2OS-TetON expressing EGFP fused to KDM4A (A), KDM4B (B), KDM4C (C),
KDM4D (D) and U2OS-TetON control cells (E). To determine the microsatellite stability, genomic DNA was extracted from 20 single clones derived from different
single cells of each cell line. The indicated microsatellite markers were then amplified using specific primers pairs, resolved by polyacrylamide-urea
electrophoresis and visualized by SYBR-Gold staining. D and * show clones exhibiting complete deletion of the tested microsatellite markers or new repeat
species, respectively.
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overexpressing KDM4D (Fig. 2D) and only one clone shows
deletion in the control U2OS-TetON cells (Fig. 2E).

Clones with two or more abnormal microsatellite marker are
scored as MSI-high (MSI-H), while MSI-low clones have only
one unstable marker (Boland et al., 1998; Haydon and Jass, 2002;
Merok et al., 2013). Based on this classification, we observed that

U2OS-TetON-EGFP-KDM4A cells contain two MSI-H clones,
clone #7 (shows instability in 2 out of 4 markers) and clone#17
(shows instability in 3 out of 4 markers) (Fig. 2A). Further,

U2OS-TetON-EGFP-KDM4B cells contain 4 MSI-H clones,
clone #2, clone#13, clone#15 and clone#18 (each shows
instability in 2 out of 4 markers) (Fig. 2B). Further, clone#20

of U2OS-TetON-EGFP-KDM4C cells shows instability in all
four tested markers (Fig. 2C). On the other hand, no MSI-H
clones were observed in U2OS-TetON-EGFP-KDM4D (Fig. 2D)

and in U2OS-TetON control cells (Fig. 2E).
Notably, the sizes of the observed new microsatellite alleles are

similar (Fig. 2). This could be due to continuous overexpression
of KDM4A-C protein for prolong time (2–3 weeks) which leads

to selective growth advantage of clones with a certain length of
microsatellite markers. To address this possibility, we repeated
the MSI assay on cells that overexpressed EGFP-KDM4C for

four days only. Results show that 85% of the clones are MSI-H.
Interestingly, unlike the situation in Fig. 2C, we observed novel
alleles with heterogeneous repeat length, suggesting that indeed

prolong expression of KDM4C may lead to the appearance of
novel alleles with uniform size (supplementary material Fig. S2).
Altogether, our data suggest that overexpression of KDM4A-C,

but not KDM4D, disrupts the integrity of DNA MMR and leads
to MSI.

A second readout of a defective DNA MMR is the increase in
the spontaneous mutation frequency (Albertini, 2001; Branch

et al., 1995; Eshleman et al., 1995). Therefore we performed
HPRT mutability assay to determine the mutation frequency at
the HPRT locus in cells overexpressing KDM4A-D members (see

Materials and Methods; supplementary material Fig. S3). Results
show that KDM4A-C overexpression leads to a dramatic increase
in the mutation frequency which is between ,500–1000 folds

comparing to the control U2OS-TetON cells (Table 1).
Surprisingly, cells overexpressing KDM4D show also
significant increase in the mutation frequency (32.5 fold
increase), however it is at least 15 fold less than the increase

observed in cells overexpressing KDM4A-C fusions (Table 1).

Altogether, we concluded that overexpression of KDM4A-C
proteins leads to a remarkable increase in the mutation frequency,

highlighting the key role of H3K36me3 in regulating the DNA
MMR pathway. In addition, the increased mutation frequency in
cells overexpressing KDM4D suggests that methylation marks
other than H3K36me3 might be also implicated in regulating the

fidelity of DNA MMR. Interestingly, the proteins levels of the
four key MMR genes MSH6, MSH2, MLH1 and PMS2 are not
reduced in cells overexpressing KDM4 proteins (supplementary

material Fig. S4), suggesting that the defective DNA MMR is not
due to decrease in the levels of the tested key MMR proteins.
Notably, overexpression of KDM4A-D proteins leads to 1.9 and

1.5 fold increase in the protein levels of MLH1 and MSH6,
respectively.

Overactivity of KDM4C demethylase disrupts the integrity of
DNA MMR
We show that the decrease in H3K36me3 levels following
KDM4A-C overexpression impairs MSH6 foci formation and

disrupts the integrity of DNA MMR (Figs 1, 2 and Table 1).
These findings suggest that the levels of H3K36me3 have a
critical role in regulating DNA MMR pathway. To further

validate this, we monitored the integrity of MMR in cells
overexpressing KDM4C demethylase-dead mutant. Previously,
we have established a catalytically inert KDM4C-S198M mutant

that does not demethylate H3K9me3 (Kupershmit et al., 2014).
Here, we validated by western blot that KDM4C-S198M
overexpression also has no effect on the levels of H3K36me3

(Fig. 3A). To assess the integrity of MMR, cells overexpressing
KDM4C-S198M were subjected to MSI and HPRT mutability
assays. The MSI results show no MSI-H clones and only one out
of the 20 tested clones overexpressing KDM4C-S198M shows

complete deletion of BAT25 marker (Fig. 3B). In addition, the
HPRT mutability assay shows that the mutation frequency in cells
overexpressing KDM4C-S198M is ,7 fold less than in cells

overexpressing KDM4C-WT (Table 1). Nonetheless, KDM4C-
S198M overexpression shows significant increase in the mutation
frequency (,75 fold) at the HPRT locus comparing to U2OS-

TetON cells. Altogether, our findings confirm that the defective
DNA MMR in cells overexpressing KDM4 results mainly from
the increase in the demethylase activity. However,
overexpression of the catalytically inert mutant has also a

relatively minor effect on the integrity of DNA MMR. This

Table 1. KDM4A-D overexpression increases the mutation frequency at the HPRT locus

Cell line Mutation frequency (61027)
Fold of increase in mutation
frequency P value

U2OS-TetON 361.7 1
U2OS-TetON-KDM4A 2376.3674.3 781.7 ,0.0001
U2OS-TetON-KDM4B 3160.2 663.3 1039.5 ,0.0001
U2OS-TetON-KDM4C 1505.0622.5 495.1 ,0.0001
U2OS-TetON-KDM4D 98.868.9 32.5 0.0001
U2OS-TetON-KDM4C-S198M 227.1622.9 74.7 0.0002
U2OS-TetON-KDM4C(after dox removal) 56.9617.3 18.7 0.0029

Shows the mutations frequency at the HPRT locus in control U2OS-TetON cells, U2OS-TetON cells expressing either EGFP-KDM4A-D fusions or EGFP-
KDM4C-S198M catalytically inactive mutant and in U2OS-TetON-EGFP-KDM4C after doxycycline removal. The indicated cell lines were cultured in media
containing HAT to select for HPRT wild-type cells. Next, cells were treated with doxycycline to induce the expression of EGFP-KDM4A-D fusions and subjected
to 6-thioguanine (6-TG) selection, which eliminates HPRT wild-type cells. The plating efficiency was determined by culturing cells in the absence of 6-TG. After
2–3 weeks HPRT mutant colonies were visualized by staining with crystal violet. The mutation frequency was determined by dividing the number of 6-TG-
resistant colonies by the total number of plated cells after being corrected for the colony-forming ability. All data are presented as means6standard deviation
(SD). The P values were determined by one-tailed unpaired Student t test.
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result suggests that one mechanism by which KDM4C-S198M
interferes with MMR might be by competing with MSH6 on
binding to H3K36me3.

The KDM4C-dependent MMR defect is mended by KDM4C
downregulation
Here, we asked whether the defective MMR in cell
overexpressing KDM4C could be repaired by KDM4C
downregulation. To address this question, we treated cells

with doxycycline for five days to trigger EGFP-KDM4C
overexpression and disrupt DNA MMR. Next, EGFP-KDM4C
expression was shutdown by doxycycline removal and cells were
subjected to HPRT mutability assay (Fig. 4A). To validate the

shutting down of EGFP-KDM4C expression, we performed
western blot before and after doxycycline removal (Fig. 4B).
The HPRT mutability showed that the removal of doxycycline

leads to a decrease of ,26 fold in the mutation frequency
comparing to cells overexpressing KDM4C protein (Table 1).
This result strongly suggests that KDM4C downregulation

restores the integrity of DNA MMR. Given that Microsatellite-
stable (MSS) and MSI tumors display distinct responses to certain
antitumor agents (Merok et al., 2013; Ribic et al., 2003; Vilar
et al., 2008; Vilar and Tabernero, 2013), we speculate that small

molecule inhibitors of KDM4C may restore the integrity of DNA
MMR and alter the sensitivity to anticancer drugs.

Here we reveal a previously unrecognized role of KDM4A-C
upregulation in modulating the fidelity of DNA MMR pathway.
The model that emerges from our results suggests that defective
MMR in cells overexpressing KDM4A-C is primarily due to the

elevation of their demethylase activity, which is accompanied by
a dramatic decrease in the levels of H3K36me3 and loss of MSH6
foci formation during S phase (Fig. 4C). Our observations are

consistent with previous report showing that depletion of SETD2
methyltransferase reduces H3K36me3 levels, impairs MSH6 foci
formation and disrupts DNA MMR (Li et al., 2013).

Interestingly, while KDM4D overexpression has no detectable
effect on the stability of the four tested microsatellite markers
(Fig. 2D), it leads to 32.5 fold increase in the mutation frequency

at the HPRT locus (Table 1). This increase is independent of
H3K36me3-MSH6 interactions because H3K36me3 levels are
not affected by KDM4D overexpression (Fig. 1E). The KDM4D-
dependent increase in the mutation frequency might be related to:

(i) changes in the methylation marks of either histone other than
H3K36me3 and/or non-histone proteins. Indeed, it was recently
shown that KDM4D demethylates H3K56me3 (Jack et al., 2013)

and non-histone substrates (Ponnaluri et al., 2009; Yang et al.,
2011). (ii) Changes in the expression patterns of KDM4D target
genes that might be implicated in the DNA MMR pathway.

Future studies will be required to further clarify this issue.

MATERIALS AND METHODS
Cell lines and growth conditions
All cell lines were grown in Dulbecco’s modified Eagle’s medium

(DMEM) as previously described (Ipenberg et al., 2013; Khoury-Haddad

et al., 2014; Kupershmit et al., 2014).

Cell synchronization
U2OS-TetON-EGFP-KDM4A-D cells were synchronized at G1/S by

double thymidine block as previously described (Lee et al., 2004).

Flow cytometry
FACS analysis was performed as previously described (Khoury-Haddad

et al., 2014). DNA content was analyzed using flow cytometry of 10,000

events on a BD LSR-II flow cytometer (Becton Dickinson), equipped with

FCS Express software. Data were analyzed using ModFit LT 3.3 software.

Western blotting
Western blotting was performed as previously described (Khoury-

Haddad et al., 2014). Briefly, protein lysates were prepared using hot-

lysis and immunoblotted using the appropriate antibodies (a complete list

of antibodies and their dilutions used in this study are described in

supplementary material Table S1). Membranes were developed using

Quantum ECL detection kit (K-12042-D20, Advansta).

Immunofluorescence
Cells were grown on coverslips and subjected to immunofluorescence as

previously described (Khoury-Haddad et al., 2014). Cells were stained

with the appropriate antibodies (supplementary material Table S1). Slides

were visualized using the inverted Zeiss LSM 700 confocal microscope

with 406 oil EC Plan Neofluar objective.

Microsatellite instability assay (MSI)
U2OS-TetON control cell line and U2OS-TetON cell lines expressing

EGFP-KDM4A-D and EGFP-KDM4C-S198M fusions were plated at

limiting dilutions for an average density of 100–500 cells into 15 cm

plates. By 2–3 weeks after plating, genomic DNA was extracted from 20

single clones of each cell line using the NucleoSpin Tissue XS kit. MSI

Fig. 3. KDM4C over-activity disrupts DNA MMR. (A) Western blot analysis
showing that overexpression of EGFP-KDM4C-S198M has no detectable effect
on the levels of H3K36me3. Protein extracts were prepared from U2OS-TetON
cells expressing either EGFP-KDM4C-WT or EGFP-KDM4C-S198M and
immunoblotted using the indicated antibodies. (B) MSI assay was performed as
described in Fig. 2 except that genomic DNA was extracted from 20 single
clones derived from U2OS-TetON cells expressing KDM4C-S198M. Results
show that only one clone out of 20 clones shows instability in a single marker. D
shows clones exhibiting complete deletion of the tested microsatellite markers.
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assay was performed as previously described (Bocker et al., 1997; Boland

et al., 1998). In brief, four microsatellite markers (BAT25, BAT26,

D2S123 and D5S346) were amplified using PCR, the amplified PCR

products were resolved by electrophoresis in an 8% polyacrylamide gel

containing 7.7 M urea, stained with SYBR Gold (Life Technologies

1308457) and visualized using the Gel Doc2 XR+ imaging system.

HPRT mutability assay
The HPRT mutability assay was performed as described in (Glaab et al.,

1998; Glaab and Tindall, 1997; Kat et al., 1993), except for the following

changes. Cells were cultured in growth medium containing 100 mM

hypoxanthine, 0.4 mM aminopterin and 16 mM Thymidine (HAT) for 5

days to eliminate the pre-existing HPRT mutant cells. Next, the cells

were transferred to HAT-free medium and treated with doxycycline for 3

days to trigger the expression of the EGFP-KDM4 fusions. Afterward,

96106 cells were plated in medium containing 5 mM 6-Thioguanine (6-

TG; Sigma#A4660) and 1 mg/ml doxycycline at a density of 36106 per

10 cm dish. In addition, 1.56103 cells were plated at a density of 500

cells per 6 cm dish containing doxycycline but without 6-TG to

determine plating efficiency. The plates were incubated at 37 C̊ in

humidified incubator for 21–30 days. The colonies were visualized by

staining with 0.005% crystal violet and colonies containing more than

,50 individual cells are counted using a stereomicroscope. The mutation

frequency (MF) was calculated according to the following equation:

MF5a/(961066[b/1.56103]). a5total number of 6-TG resistant colonies

and b5total number of colonies observed in the plating efficiency plates.
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