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A B S T R A C T

While bats carry a diverse range of ectoparasites, little research has been conducted on the effects these or-
ganisms may have on bat populations. The southern bent-winged bat (Miniopterus orianae bassanii) is a critically
endangered subspecies endemic to south-eastern Australia, whose numbers have declined over the past 50 years
for unknown reasons. As part of a larger study to investigate the potential role of disease in these declines,
southern bent-winged bats from four locations were captured and examined for the presence of bat flies, mites,
ticks and the nematode Riouxgolvania beveridgei (previously associated with skin nodules in bent-winged bats).
Results were compared with those obtained from the more common eastern bent-winged bat (Miniopterus orianae
oceanensis), sampling animals from three different locations. All four types of parasite were found on both
subspecies. There was no correlation between the presence of ectoparasites, body weight or any signs of disease.
However, prevalence of tick and R. beveridgei infections were greater in Victorian southern bent-winged bats
than South Australian southern bent-winged bats and eastern bent-winged bats, possibly indicative of some type
of chronic stress impacting the immune system of this subspecies.

1. Introduction

Historically, the perception among ecologists was that ‘well-
adapted’ parasites do not harm their hosts (McCallum, 2012). However,
models have shown that parasites may be capable of making significant
contributions to species extinctions (de Castro and Bolker, 2005). These
models are supported by clinical evidence of parasites exerting sub-
stantial negative effects, not just on individuals, but also on popula-
tions. Sarcoptic mange, caused by the mite Sarcoptes scabiei, has caused
population declines of 86% in Barbary sheep (Ammotragus lervia) in
Spain (Gonzalez-Candela et al., 2004), 85% in red foxes (Vulpes vulpes)
in Britain (Soulsbury et al., 2007) and local extinctions of common
wombat (Vombatus ursinus) populations (Martin et al., 1998) in Aus-
tralia. Infection with Varroa destructor, a parasitic mite of the Asian
honeybee (Apis cerana), has caused the collapse of European honeybee
(Apis mellifera) colonies worldwide due to its consumption of haemo-
lymph and transmission of pathogens, such as the deformed wing virus
(Rosenkranz et al., 2010).

Bats, often seen as carriers of many disease agents (Wibbelt et al.,
2010), have also experienced the negative consequences of infectious
and parasitic diseases. The recent appearance of white nose syndrome

(caused by the fungus, Pseudogymnoascus destructans) has caused mass
mortalities of insectivorous bats in North America (Blehert, 2012).
Angiostrongyliasis (caused by the rat lungworm, Angiostrongylus can-
tonensis) was diagnosed as a cause of neurological disease and death in
flying foxes in Australia (Barrett et al., 2002).

Bent-winged bats are small, cave-roosting, insectivorous bats
(Richards and Reardon, 2008). In south-eastern Australia there are two
subspecies of the large bent-winged bat (Miniopterus orianae) that form
separate maternity colonies (Cardinal and Christidis, 2000). The
southern bent-winged bat (M. orianae bassanii) occurs only in south-
western Victoria and south-eastern South Australia (SA). There are
three maternity caves, one near Warrnambool, one near Cape Bridge-
water (both in Victoria) and the other near Naracoorte in SA. In the last
50 years, the size of the Naracoorte population of southern bent-winged
bats has declined from an estimated 100,000–200,000 in 1963 (Dwyer
and Hamilton-Smith, 1965) to 25,000–35,000 in 2011 (Lear, 2012).
The Warrnambool population is thought to have declined from 15,000
to 10,000 over the same time period (DELWP, 2017). The subspecies
was listed as critically endangered under the Environment Protection and
Biodiversity Conservation Act in 2007. The eastern bent-winged bat (M.
orianae oceanensis) is more common and widespread, being distributed
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along the east coast of Australia (Richards and Reardon, 2008). Al-
though numbers appear to be stable in Victoria, the subspecies is listed
as vulnerable due to the use of a single maternity site in this state.

While disease has been identified as a possible cause for the declines
in southern bent-winged bat populations (DELWP, 2017), there has
been only one published disease investigation of this subspecies: in
2009, southern bent-winged bats with pale nodular cutaneous lesions
were detected at Naracoorte (McLelland et al., 2013). These were
caused by Riouxgolvania beveridgei, a nematode from the Order Muspi-
ceida. Muspicioid parasites have been found previously in bats, rodents,
deer, kangaroos, humans and crows (Anderson, 2000), but Riouxgol-
vania are only parasitic on bats (Hasegawa et al., 2012). Larvae leave
the parent worm by migrating between layers of the cuticle of the head,
and ultimately escape by perforating the cuticle. This kills the parent,
which remains within the nodule (Bain and Chabaud, 1979; Rausch and
Rausch, 1983). The nodule formed by the worm in the skin of the bat
contains a tiny opening, which allows the larvae to emerge onto the
skin. Infection of hosts presumably occurs by direct contact between
bats, leading to larval skin penetration (Anderson, 2000). Pathogenicity
for bats is unknown, but related parasites have caused severe poly-
myositis in humans (McKelvie et al., 2013).

Insectivorous bats are also known to host many other ectoparasites,
such as bat flies, mites and ticks. Bat flies are a highly specialised group
of dipteran ectoparasites that are related to the sheep ked and hippo-
boscid flies (Dick and Patterson, 2006). They are only found on bats,
consuming the blood of their hosts (referred to as haematophagy).
There are no reports of bat fly infections causing anaemia, but they
have been associated with weight loss (Linhares and Komeno, 2000),
increased grooming behaviour (Obame-Nkoghe et al., 2016) and the
transmission of potential pathogens, such as dengue virus (Abundes-
Gallegos et al., 2018), rhabdoviruses (Goldberg et al., 2017), Bartonella
spp. (Wilkinson et al., 2016) and Polychromophilus spp. (Obame-Nkoghe
et al., 2016). Transmission of these agents can potentially occur via the
feeding activity of the bat flies or by ingestion of the ectoparasites by
their bat hosts (Ramanantsalama et al., 2018). There are two families,
the Streblidae and the Nycteribiidae (which are wingless) (Maa, 1971).
Bat flies reproduce via viviparous puparity, in which eggs are fertilized
internally and all larval stages develop within the female (Dick and
Patterson, 2006). Larvae moult twice inside the female, and gravid fe-
males deposit a single, third instar larva on the roosting substrate. Once

deposited, the larva immediately forms a puparium. Following a pupal
stage that lasts three to four weeks, an adult fly emerges, which must
locate and colonize a bat host (Dick and Patterson, 2006).

Bent-winged bats are parasitised by a number of species of mites.
The most common family is the mesostigmatid Spinturnicidae, which is
found only on bats, but a number of other mesostigmatid
(Rhinonyssidae and Macronyssidae) and prostigmatid (Myobiidae) fa-
milies are also known to be parasitic on Australian bent-winged bats
(Domrow, 1987, 1991). Spinturnix mites remain on the bats year round,
including during hibernation, are only present on the wing membranes
and consume blood. Minimal pathology has been attributed to mite
infections on bats, but recent studies found that they increase grooming
behaviour (Godinho et al., 2013) and could act as mechanical vectors of
P. destructans (Lucan et al., 2016).

Ticks also parasitise bats, with Ixodes holocyclus, the paralysis tick,
causing high mortality and morbidity in flying foxes in northern
Australia (Olsson and Woods, 2008). This species of tick has not been
found on bent-winged bats, but other Ixodes species have, without
causing any apparent ill effects (Arthur, 1956; Roberts, 1970).

As part of a larger disease investigation (Holz et al., 2018a, 2018b),
the aims of this study were to compare the presence of each of these
parasites in southern bent-winged bats with the more common eastern
bent-winged bats and to determine whether there is an association
between the parasites and bat health.

2. Material and methods

2.1. Study population and sites

Sampling was undertaken during summer (January–February), au-
tumn (March–April), late winter (August) and early spring (September),
between April 2015 and August 2017. Trapping for southern bent-
winged bats occurred at the Naracoorte (36.9602° S, 140.7413° E)
breeding cave, but, because of the difficult access to the breeding cave
near Warrnambool, no trapping occurred there. Instead, those southern
bent-winged bats were trapped at nearby non-breeding caves
(Allansford (38.3861° S, 142.5931° E) and Portland 1 and 2 (38.3609°
S, 141.6041° E)). Eastern bent-winged bats were trapped at abandoned
mines at Christmas Hills (37.6515° S, 145.3173° E) and Eildon
(37.2343° S, 145.8976° E) and the only Victorian breeding cave near

Table 1
Prevalence (%) of ectoparasites in southern and eastern bent-winged bats in south-east Australia by species, location and month. All bats are adults unless indicated.
Some individuals were infected with multiple species of the same parasite group. n= bat sample size; ND= species not determined (the presence of bat flies and
mites on bats were recorded but no specimens were collected for species determination).

Southern Bent-winged Bats Eastern Bent-winged Bats

Allansford Portland 1 Portland 2 Naracoorte Christmas Hills Eildon Lakes Entrance

Sep 2015 Sep 2016 Feb 2017 Aug 2017 Jan 2016 Sep 2016 Apr 2015 Sep 2015 Sep 2016 Mar 2017

n=32 n=45 n=44 n=67a n=63 n=75 n=35 n=26 n=39 n=51b

Bat Flies 19 36 52 21 87 17 6 15 18 29
Penicillidia tectisentis 6 18 27 ND 48 16 0 0 0 0
P. oceanica 0 0 0 ND 0 0 6 8 15 18
Nycteribia parilis vicaria 13 7 32 ND 37 3 0 0 3 16
Species not determinedc 0 13 0 21 19 0 0 8 0 0

Mites 9 4 95 43 95 8 0 12 0 82
Spinturnix loricata 0 4 86 ND 89 1 0 0 0 0
S. psi 0 0 0 ND 0 0 0 4 0 82
Ichoronyssus miniopteri 3 0 20 ND 3 7 0 0 0 10
Macronyssus aristippe 3 0 0 ND 2 0 0 0 0 0
Species not determinedc 3 0 0 43 6 0 0 8 0 0

Ixodes simplex 16 27 0 3 2 5 0 0 26 0
Riouxgolvania beveridgei 44 53 9 54 6 11 0 8 0 0

a A 68th bat was examined for bat flies but escaped before being checked for other ectoparasites.
b 20 juvenile and 31 adult bats.
c It was not possible to determine the species of some of the bat flies and mites collected.
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Lakes Entrance (37.8511° S, 147.9958° E) in eastern Victoria. [Note that
due to concerns that members of the public may enter caves and disturb
bats, this paper uses a generic description of the cave locations, rather
than the specific name of each cave.] For details on sampling periods
and sample sizes see Table 1.

2.2. Sample collection

Individuals were caught as they flew out of the caves/mines, using
harp traps (Austbat, Bairnsdale, Victoria (Tidemann and Woodside,
1978)) set at dusk at the entrances. Traps were monitored continually
with the bats either left in the harp trap bag, or transferred in small
numbers to cloth bags, prior to sampling. All bats were examined for
any external signs of disease, aged as juveniles or adults (based on the
presence or absence of a cartilaginous core at the metacarpal-pha-
langeal joint (Brunet-Rossinni and Wilkinson, 2009)), sexed, forearm
length measured from carpus to elbow, and weighed. As adults were the
focus of this study, much of the sampling occurred outside of the
breeding season (October to March), with only a small number of ju-
veniles sampled in March at Lakes Entrance (Table 1).

The body and wings of each bat were scanned for the presence of bat
flies, mites and ticks by parting the fur and extending both wings.
Where found, a sample of these were removed and placed in an
Eppendorf tube containing 70% ethanol. The species of bat fly was
determined under a stereo microscope (Nikon SMZ 745T, Tokyo,
Japan) using a morphological key (Maa, 1971). Mites were placed on a
glass slide, cleared over at least 48 h in lactophenol, and species de-
termined under a compound microscope (Olympus BH-2, Tokyo, Japan)
using morphological keys (Domrow, 1971, 1987). Tick species was
determined under a stereo microscope using a morphological key
(Roberts, 1970). All identifications were undertaken in conjunction
with taxon experts.

Nodules found on wings and legs appeared similar grossly to those
reported previously from southern bent-winged bats from Naracoorte
(McLelland et al., 2013). To confirm their identity, nodules were mi-
croscopically examined from six southern bent-winged bats from
Portland 1 cave. Bats were anaesthetised by mask induction using iso-
flurane (Forane, Baxter, Old Toongabbie, Australia) and oxygen. Once
anaesthetised, a single nodule was surgically removed from each bat
and placed in 70% ethanol. Skin was closed using tissue glue (Vetbond,
3M, St. Paul, USA).

2.3. Statistical analyses

A range of potential internal and external predictor variables were
screened for association with presence of infection with bat flies, mites,

ticks, and R. beveridgei using univariable logistic regression (using
maximum likelihood estimates) and calculating Odds Ratios (OR)
(using Wald estimates). Internal variables examined here included lo-
cation group (South Australian southern bent-winged bat, Victorian
southern bent-winged bat and Victorian eastern bent-winged bat), body
weight, sex, age (adult or juvenile) and absence/presence of co-in-
festation with bat flies, mites, ticks, and R. beveridgei nodules (internal
factors). Season (spring, summer, autumn, winter) was the only ex-
ternal factor included. The effect of age could only be examined for
mites, as this was the one parasite where sufficient numbers were found
on juveniles (no ticks and R. beveridgei, and only two juveniles with bat
flies) to enable comparisons. Similarly, there were no cases of infection
with R. beveridgei or ticks in autumn, so for those two parasites, the
predictor “season” included winter, spring and summer only. Residuals
were examined to check that model assumptions were met. All factors
significant at p < 0.20 were subsequently included in a multivariable
logistic regression model, using backward stepping. The final model
only included those variables significant at p < 0.05; again, residuals
were examined to check that model assumptions were met. All statistics
were performed using Minitab 18 (Minitab, USA).

3. Results

None of the bats examined showed external evidence of clinical
disease, such as low body weight, fur loss or dermatitis. The nodules
removed from the six bats at the Portland 1 cave all contained parasites
that were identified morphologically as R. beveridgei (Bain and
Chabaud, 1979), the same species as that described from the Naracoorte
bats. As a result of these findings, all nodules were assumed to represent
infection with R. beveridgei due to their similar appearance and location
on affected bats.

Bat fly, mite, tick and R. beveridgei prevalence varied widely be-
tween the various bat groups, with 6–87% (bat flies), 0–95% (mites),
0–27% (ticks) and 0–54% (R. beveridgei) of the sampled bats infected,
depending on location group and sampling period (Table 1).

Three species of bat flies were identified: Penicillidia tectisentis
(Fig. 1) was only found on southern bent-winged bats (at all locations
this subspecies was sampled); Penicillidia oceanica (Fig. 2) was only
found on eastern bent-winged bats (at all locations that subspecies was
sampled); while Nycteribia parilis vicaria was found on both bat sub-
species and at all locations sampled, except Christmas Hills. Mite spe-
cies identified were Spinturnix loricata (Fig. 3), found on southern bent-
winged bats at three of the four locations sampled, and Spinturnix psi
(Fig. 4), found on eastern bent-winged bats at two of the three locations
sampled. While these represented the majority of mites found, two
other species were also detected: Ichoronyssus miniopteri and

Fig. 1. Dorsal view of Penicillidia tectisentis. Note notopleural setae (Arrow).

Fig. 2. Dorsal view of Penicillidia oceanica. Note absence of notopleural setae
(Arrow).
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Macronyssus aristippe (Table 1). All ticks were identified as Ixodes sim-
plex.

After univariable screening, a range of predictors were significant at
the p < 0.20 level. However, in the final, multivariable models, body
weight and co-infection with other ectoparasites were not significant
(p < 0.05) predictors of infection with any of the parasites examined.
The final, multivariable, models showed significant associations be-
tween the presence of ectoparasites and age, season and location group
(for details on ORs, confidence intervals and p-values of all models, see
Table 2). None of the 20 juvenile bats examined were found to carry
ticks or R. beveridgei, and only two juveniles were parasitised by bat
flies. However, mite infections were more common on juvenile bats
than adults (OR=9.3). Season was a significant predictor of all ecto-
parasite infections (all p < 0.001). Infection with bat flies and mites
was most likely in summer, and while there were no infections in au-
tumn, tick infections were most prevalent in spring, and R. beveridgei
infections least prevalent in summer (Table 2). Sex was only sig-
nificantly associated with infection with R. beveridgei, with males more
likely to be parasitised (OR=2.1). While bat fly and mite infections
were not associated with location, Victorian southern bent-winged bats
were more likely than South Australian southern bent-winged bats to
carry ticks (OR=6.4) and R. beveridgei (OR=6.1). Eastern bent-
winged bats were less likely to be infected with R. beveridgei than either
of the southern bent-winged bat groups, however, they were more

likely to carry ticks than the South Australian southern bent-winged
bats (Table 2).

4. Discussion

The aim of this study was to compare parasite types and prevalence
between two bent-winged bat subspecies, in order to detect differences
and possible associations with indicators of clinical disease that may
have contributed to the population decline of the southern bent-winged
bat. Both subspecies were found to carry bat flies, mites, ticks and R.
beveridgei, with location and season significantly affecting occurrence.
None of the bats demonstrated any correlation between infection, low
body weight or obvious clinical signs of disease.

While low body weight was not associated with parasitic infections
in our study, shortened periods of rest and sleep, as a result of increased
time spent grooming, can lead to decreased survival and reproductive
success (Giorgi et al., 2001). This has been reported to occur for bat fly
and mite infections (Giorgi et al., 2001; Godinho et al., 2013; Linhares
and Komeno, 2000; Lucan, 2006; ter Hofstede and Fenton, 2005), but
not for ticks or R. beveridgei (Evans, 2009; McLelland et al., 2013). In-
creased grooming reduces the amount of time bats spend resting and
increases their metabolic rate (Giorgi et al., 2001). Southern bent-
winged bats at Naracoorte have been found to spend 16% of their
roosting time grooming, with 62% at rest, and 22% active (Codd et al.,
2003). Grooming activity was not assessed in the current study but it is
possible for bat fly and mite infections to have significant consequences
for their hosts without necessarily causing weight loss. It is also possible
that only very heavy levels of infestation produce clinical disease and,
once clinical disease becomes apparent on external observation, mor-
tality is rapid making it difficult to detect affected bats.

A greater proportion of juvenile bats than adults were infected with
mites in this study. Mite and bat fly reproduction has been reported to
be synchronised with bat reproduction leading to greater parasitic
burdens in juveniles and pregnant and lactating females (Lourenço and
Palmeirim, 2008; Zahn and Rupp, 2004). This is due to decreased
grooming behaviour (an energy expensive activity that declines to
compensate for the demands of lactation) and lower immunity in young
bats and lactating females, leading to potentially very high burdens
(Christe et al., 2000; McLean and Speakman, 1997). Unfortunately only
20 juveniles (none of which were positive for ticks or R. beveridgei and
only two were positive for bat flies) were sampled during the breeding
season at Lakes Entrance (Mar 2017), so it was not possible to de-
termine any association between parasite infection rate and juvenile
body weight.

The seasonality of bat fly and mite infections we observed was also
consistent with synchronisation with bat reproduction as mentioned
above (Lourenço and Palmeirim, 2008), exposing the greatest number
of new hosts to parasitic colonisation. Southern and eastern bent-
winged bats give birth in late spring/early summer, depending on lo-
cation (Dwyer and Hamilton-Smith, 1965), probably resulting here in
the significantly increased prevalence of bat fly and mite infections
found during the summer season (Tables 1 and 2). However, exceptions
to the increased parasite prevalence associated with reproductive cycle
hypothesis also occur. Gould's wattled bats (Chalinolobus gouldii) in
Melbourne, Victoria, which usually give birth in late spring, were more
heavily infected with Trichonyssus womersleyi mites during winter
(Evans, 2009). Tick infections in our and the Evans (2009) study, were
most common in spring, and R. beveridgei infections were most pre-
valent in winter and spring. Clearly, parasitic infection prevalence is
influenced by multiple factors and determinants likely vary between
parasite species.

Environmental conditions, for example, may significantly affect
parasite abundance. Ticks require high environmental humidity in
order to develop (Randolph and Storey, 1999). Evans (2009) speculated
that high humidity during winter may permit nymphal tick develop-
ment, with a peak in adult numbers occurring during spring. Humidity

Fig. 3. Ventral view of idiosoma of female Spinturnix loricata. Rectangle in inset
photograph denotes position of sternal shield. Note elongate sternal shield
(Arrow).

Fig. 4. Ventral view of idiosoma of female Spinturnix psi. Rectangle in inset
photograph denotes position of sternal shield. Note subcircular sternal shield
(Arrow).
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measured in August 2015 in the Victorian breeding cave and in Sep-
tember 2015 in the nearby Allansford cave was above 80% (un-
published data). However, humidity measured in September 2014 in
the South Australian breeding cave was around 60%, and did not climb
above 80% until 31 October. Therefore, if humidity is a significant
factor in tick development, these climatic differences could explain why
significantly more Victorian southern bent-winged bats carried ticks in
the spring compared with South Australian southern bent-winged bats.
If there were differences in humidity within eastern bent-winged bat
roosts this might also explain why the population sampled at Christmas
Hills in the spring was negative for ticks, while 26% of the group at
Eildon was positive. Unfortunately, humidity data for these study sites
was not available.

Little is known about the life history of R. beveridgei, including its
prepatent period. The prepatent period of Muspicea borreli, a related
parasite found in mice, is 50–60 days (Spratt et al., 2002). It is possible
that R. beveridgei transmission may have occurred during summer or
autumn but the parasite did not develop to the point of producing
visible skin nodules until later in the year, hence the peaks observed in
winter and spring. The only previous survey of R. beveridgei infection in
bent-winged bats, undertaken during spring 2009, found a higher pre-
valence of R. beveridgei (45%) in the South Australian bent-winged bats
(McLelland et al., 2013) than the in the bats sampled during spring in
our study (11%). Due to a dearth of information about the parasite's life
cycle, it is not possible to determine why prevalence has declined, or
why it was significantly higher for the Victorian southern bent-winged
bats in the current study compared with the other two bent-winged bat
populations.

In conclusion, significant differences were detected between bent-
winged bat populations for tick and R. beveridgei prevalence, and be-
tween seasons for all parasite groups. While there was no correlation
between these findings and any obvious detrimental effects, factors
such as grooming behaviour and resting times were not assessed. These
should be examined in future work to determine if ectoparasite infec-
tions could be influencing these activities leading to potentially reduced
survival and breeding rates.

Previous work has shown that bats living in fragmented habitat can
suffer chronic stress leading to reduced immune function (Seltmann
et al., 2017) and higher parasite burdens (Christe et al., 2000, 2007;
Lourenço and Palmeirim, 2008). The habitat occupied by southern
bent-winged bats is highly fragmented. Only 16% of the original native
vegetation remains in the South Australian range of the species (South
East Natural Resources Management Board, 2010), while the Victorian

southern bent-winged bat habitat contains only 17% of its original
vegetation (Glenelg Hopkins Catchment Management Authority, 2013).
This compares with native vegetation percentages of 45–62% for the
eastern bent-winged bat environments (Victorian Environmental
Assessment Council, 2010). While the current study examined parasite
prevalence, it did not assess parasite burdens on individual bats or their
immunocompetence. The difficulties inherent in estimating immune
function and ectoparasite load in live animals would make these types
of studies problematic. However, the results could inform future man-
agement decisions as they may reveal a correlation between habitat
quality, parasite infection rates and burdens and bat immune cap-
ability.

5. Permits
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Veterinary and Agricultural Science Animal Ethics Committee,
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(permit number 37/2015) and the Department of Environment, Water
and Natural Resources, South Australia (permit number Q26488-1).
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Table 2
Multivariable logistic regression models for bat flies, ticks, mites and Riouxgolvania beveridgei infections in southern (SBWB) and eastern (EBWB) bent-winged bats
from Victoria (Vic) and South Australia (SA), for variables significant at the p < 0.05 level.

Variable Bat Flies Ticks Mites R. beveridgei

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Location Group 0.003 < 0.01
Vic EBWB vs
SA SBWB

4.7 1.2, 18.1 0.20 0.04, 0.95

Vic SBWB vs
SA SBWB

6.4 1.8, 22.8 6.1 2.9, 12.8

Vic SBWB vs
Vic EBWB

1.3 0.56, 3.2 30.1 6.8, 132.6

Juvenile vs Adult 9.3 2.5, 34.9 <0.01
Male vs Female 2.1 1.2, 3.7 0.009
Season < 0.01 < 0.01 <0.01 < 0.01
Spr vs Aut 0.8 0.4, 1.5 0.06 0.02, 0.15
Sum vs Aut 5.6 2.9, 10.8 14.3 6.4, 31.8
Win vs Aut 1.1 0.5, 2.3 1.2 0.6, 2.4
Sum vs Spr 7.0 4.1, 11.8 0.08 0.01, 0.59 229.1 89.3, 587.8 0.1 0.06, 0.35
Win vs Spr 1.3 0.7, 2.6 0.12 0.03, 0.56 19.5 8.3, 45.9 1.1 0.56, 2.1
Win vs Sum 0.2 0.1, 0.4 1.6 0.14, 18.4 0.11 0.03, 0.40 7.3 3.0, 18.1

OR=odds ratio; CI – confidence interval; Spr= Spring; Sum=Summer; Aut=Autumn; Win=Winter; significant OR values in bold.
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