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Background
Mercury (Hg) and other persistent organic pollutants (POPs) 
are environmental chemicals that are ubiquitous, persistent, and 
accumulate in marine mammals, with well-documented poten-
tial for developmental toxicity. Strong epidemiologic evidence 
suggests that many of these chemicals are neurotoxicants with 
potential to harm the developing brain, therefore resulting in 
long-lasting neurodevelopmental sequels.1,2 The large majority of 
environmental epidemiology studies typically adopt a single pol-
lutant-at-a-time approach, considering each chemical separately 
when assessing the potential neurotoxic effects of chemicals; 
therefore, providing only limited insights on the real environment 
and health associations. Indeed, biomonitoring studies of envi-
ronmental chemicals demonstrate that the general population 
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Background: Exposure to mercury (Hg) is associated with adverse developmental effects. However, Hg occurs with a multitude 
of chemicals. We assessed the associations of developmental exposure to multiple pollutants with children’s neurodevelopment 
using a novel approach.
Methods: Hg, polychlorinated biphenyls (PCBs), and perfluoroalkyl substances (PFASs) were measured in maternal and children’s 
blood at 5 years (n = 449 and 419). At 7 years, children were administered Boston Naming Test (BNT) and the Strengths and 
Difficulties Questionnaire (SDQ). We used the G-formula combined with SuperLearner to estimate independent and joint effects of 
chemicals at both ages. We constructed flexible exposure-response relationships and assessed interactions.
Results: Most chemicals showed negative relationships with BNT scores. An interquartile range (IQR) increase in maternal Hg and 
perfluorooctanoic acid (PFOA) was associated with 0.15 standard deviation (SD) (95% confidence interval [CI] = –0.29, –0.03) and 
0.14 SD (95% CI = –0.26, –0.05) lower scores in BNT, whereas a joint IQR increase in the mixture of chemicals was associated with 
0.48 SD (95% CI = –0.69, –0.25) lower scores in BNT. An IQR increase in PFOA was associated with 0.11 SD (95% CI = 0.02, 0.26) 
higher total SDQ difficulties scores. Maternal ∑PCBs concentrations were associated with lower SDQ scores (β = –0.09 SD; 95% CI 
= –0.19, 0), whereas 5 years ∑PCBs showed a negative association (β = –0.09 SD; 95% CI = –0.21, 0). Finally, a joint IQR increase 
in the mixture was associated with 0.22 SD (95% CI = 0.04, 0.4) higher SDQ scores.
Conclusions: Using a novel statistical approach, we confirmed associations between prenatal mercury exposure and lower cogni-
tive function. The potential developmental effects of PFASs need additional attention.
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What this study adds
Strong epidemiologic evidence suggests that early life exposure 
to certain chemicals impairs brain development, and therefore 
lead to decreased cognitive function. However, the majority of 
previous studies used a single pollutant-at-a-time approach, 
considering each chemical separately when assessing the poten-
tial effects of chemicals. In this study, we jointly investigated 
the potential neurodevelopmental effects of maternal and child 
5-year exposure to mercury (Hg), perfluoroalkyl substances 
(PFASs), and polychlorinated biphenyls (PCBs) using a novel 
approach that combines the SuperLearner with G-computation. 
We found evidence that higher maternal Hg and PFOA concen-
trations were associated with decreases in cognitive function. 
The joint effect of the mixtures of chemicals was stronger, but 
no potential for synergistic effects was observed.
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experiences exposure to multiple chemicals from many differ-
ent sources and at varying levels. Traditionally, chemical mix-
tures have been studied via. multivariable parametric regression 
approaches that mutually adjust for mixture components and 
estimate the independent effect of each component, while adjust-
ing for the others. Recently, several statistical methods have been 
proposed to estimate health effects of environmental mixtures, 
often with an emphasis on variable selection.3 These methods 
include environmental-wide association studies (EWAS),4 penal-
ized regression methods (e.g., least angle selection and shrinkage 
operator [LASSO]),5 dimension reduction methods, and expo-
sure-response surface methodology such as generalized additive 
models (GAMs)and kernel regression methods.3,6

In this article, we investigated the potential independent and 
joint neurodevelopmental effects of maternal and child 5-year 
exposure to seven major marine pollutants in a population of 
Faroese children 7 years of age. We propose to use an ensemble 
machine learning technique called Super Learner7 that offers 
greater flexibility in approximating the data generating mech-
anism, and we combine it with G-computation,8,9 a causal infer-
ence approach that can yield valid causal effect estimates. This 
proposed approach can mitigate the problems of multicollinear-
ity and model misspecification, with nonparametric prediction 
algorithms fitting complex exposure-response curves (Oulhote 
et al).32 We apply this approach to estimate valid exposure-re-
sponse relationships and detect potential interactions.

Methods

Study population

The birth cohort was formed from 656 consecutive pregnan-
cies recruited at the last antenatal examination at week 32 of 
pregnancy at the National Hospital in Tórshavn, Faroe Islands, 
during 1997–2000.10 The cohort can be considered reason-
ably representative of Faroese births. The Faroe Islands are 
located in the North Atlantic Ocean, between Norway and 
Iceland. The Faroese population is fairly homogeneous mainly 
of Scandinavian origin.11 Populations in the Faroese have 
depended on a traditional diet that includes fish, pilot whale, 
sheep, and birds. Therefore, concentrations of mercury and per-
sistent organic pollutants in Faroese residents have been shown 
to be elevated compared with other populations especially due 
to dietary intake of pilot whale.11,12 Given the fairly homoge-
nous population in terms of genetics and socioeconomic status 
(SES), and an exposure to POPs and related contaminants that 
covers a range of over 100-fold, this population offer a unique 
opportunity to study health effects of environmental contami-
nants with a limited potential for confounding.

Of the 656 pregnancies, 640 singleton births were included. 
Obstetric variables, including date of birth, birth weight, parity, 
and maternal age, were obtained from obstetrical and medical 
records. Information on prepregnancy weight and height, so-
cioeconomic status, maternal smoking, and alcohol use during 
pregnancy were self-reported. The birth cohort underwent a pro-
spective follow-up at age 7 years. A maternal interview informed 
questions concerning current health and past medical history, life-
style, duration of breastfeeding, behavior, and other characteristics.

The study protocol was approved by the ethical review com-
mittee serving the Faroe Islands and by the institutional review 
board at the Harvard School of Public Health, and written in-
formed consent was obtained from all mothers.

Assessment of children’s cognitive and behavioral 
functions at 7 years of age

For the purpose of this explorative investigation, we restricted 
the outcomes’ assessment to two neuropsychological tools are 
as follows: (1) the Boston Naming Test (BNT) that has been 

shown to be particularly sensitive to methylmercury exposure 
and 2) the Strengths and Difficulties Questionnaire (SDQ) for 
which we previously reported associations with environmental 
exposures in single pollutant approaches.13–17 A total of 567 chil-
dren underwent neuropsychological assessment at age 7 years.

Boston Naming Test

The 60-item BNT18 is a visual confrontation naming test 
which measures the word retrieval or word finding performance 
of a subject. Stimuli are line drawings of a wide category of 
objects of increasing difficulty. Scores are obtained for number 
of correct items without cueing, and correct number of items 
after stimulus and phonemic cueing by the examiner.17

Strengths and Difficulties Questionnaire

The Parent’s version of the SDQ19 is comprised of 25 items 
scored on a 3-point Likert scale. Five behavioral subscales with 
a score range of 0 to 10 are calculated from the 25 SDQ items: 
emotional symptoms, conduct problems, hyperactivity/inatten-
tion, peer relationship problems, and prosocial behavior. A total 
difficulties score ranging from 0 to 40 was calculated by sum-
ming four of the subscales (emotional, conduct, hyperactivity, 
and peer). Higher total SDQ scores indicate higher behavioral 
difficulties.

Exposure assessment

Maternal exposures were assessed at the last antenatal exami-
nation at week 32 of pregnancy; 5-year exposure was assessed 
from the child blood at age 5.

Total mercury (Hg) concentration in whole blood was de-
termined on a Direct Mercury Analyzer (DMA-80; Milestone 
Inc, Sorrisole, Italy).20 Serum polychlorinated biphenyls (PCBs) 
concentrations were measured after solid-phase extraction 
(SPE) using gas chromatography equipped with an electron cap-
ture detector (μ-ECD).21 To avoid problems with congeners not 
assessed and concentrations below the detection limit, a sim-
plified ΣPCB concentration was calculated as the sum of major 
congeners CB-138, CB-153, and CB-180 multiplied by 2.22 The 
concentrations of PCBs are expressed in relation to the total 
lipid concentration determined using the Cypress Diagnostics 
kit (Langdorp, Belgium). Perfluorooctanoic acid (PFOA), per-
fluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic 
acid (PFHxS), perfluorononanoic acid (PFNA), and perfluoro-
decanoic acid (PFDA) concentrations were measured using on-
line solid-phase extraction and analyzed using high-pressure 
liquid chromatography with tandem mass spectrometry.23 The 
analysis of mercury, PCB’s, and PFAS’s were all conducted at 
Department of Environmental Medicine, Institute of Public 
Health, University of Southern Denmark.

In children with neuropsychological test scores at age 7 years, 
complete measurements of chemicals concentrations were avail-
able for 465 and 503 children respectively for maternal and 
5-year exposures. Additionally, complete measurements for both 
maternal and 5-year exposures were available for 430 children 
with neuropsychological test scores (Supplemental Material; 
Figure S1; http://links.lww.com/EE/A53).

Covariates and potential confounders

We collected sociodemographic and lifestyle factors and med-
ical history during pregnancy and at delivery via. administered 
questionnaires. At the 5-year follow-up visit, duration of exclu-
sive breastfeeding was reported. We considered the following po-
tential covariates in our models: child’s exact age (in months), 
sex (boy; girl), birth weight (grams), maternal age at pregnancy, 
prepregnancy body mass index (body mass index [BMI], kg/m2), 

http://links.lww.com/EE/A53


Oulhote et al. • Environmental Epidemiology (2019) 3:e063 www.environmentalepidemiology.com

3

parity (nulliparous; primipara; and multiparous), duration of ex-
clusive breastfeeding (months), maternal intelligence (RAVEN 
scores), maternal socioeconomic status (SES) during pregnancy 
based on education (low: ≤10 years of education; intermediate: 
school leaving certificate and above including technical studies; 
and high: university studies), alcohol consumption during preg-
nancy (never; ever), and smoking during pregnancy (no; 1–5 
cigarettes/day; more than 5 cigarettes/day). Final models for pre-
natal pollutant exposures included age, sex, maternal age, pre-
pregnancy BMI, parity, maternal RAVEN scores, socioeconomic 
status, and alcohol and smoking during pregnancy. Models for 
child 5-year exposures further included prenatal pollutant expo-
sures, duration of exclusive breastfeeding and birth weight.

Statistical analyses

Complete data on exposures, outcomes, and covariates were 
available for 449 and 419 children, respectively, for maternal and 
5-year exposures (See supplemental material; Figure S1; http://
links.lww.com/EE/A53). We did not conduct any imputations 
as the methods presented in this article could not be conducted 
on multiply imputed datasets. Mercury, PFASs, and ∑PCBs con-
centrations were logarithmically (base 10) transformed and 
centered. Initial exploratory data analyses included descriptive 
statistics and univariate associations between exposures and out-
comes and potential covariates of interest. Neuropsychological 
outcomes were standardized with a mean of 0 and standard 
deviation (SD) of 1 in analyses investigating associations be-
tween multiple contaminants and neuropsychological functions. 
Estimates therefore represent the SD change in the outcome re-
lated to an interquartile range (IQR) increase in exposures.

To estimate individual and joint estimates of the associa-
tions between environmental exposures and neuropsycholog-
ical scores, we first generated a valid prediction of the outcomes 
using the SuperLearner algorithm. SuperLearner is a data-adap-
tive approach that has been proposed by van der Laan et al.7,24,25 
It uses cross-validated risks to find an optimal combination of 
predictions from a list of algorithms supplied by the user that 
minimizes a given loss function (e.g., squared error). We included 
a set of prediction algorithms in the library that can cover a 
large range of exposure-response relationships: the generalized 
linear regression model (GLM) and generalized additive models 
(GAM), elastic net regularization,26 multivariate adaptive poly-
nomial spline regression,27 support vector machine,28 gradient 
boosting,29 random forests,30 and artificial neural networks.31,32

After obtaining a valid model for the outcome given the con-
current exposures and other covariates using SuperLearner, the 
resulting model was used to predict the neuropsychological test 
scores under specified exposure scenarios using G-computation.8,9 
The marginal effect (hereafter called naïve average causal effect 
[NACE]) is estimated by calculating the sample average of the 
model predictions if exposure is set to the 75th percentile of ex-
posure for all individuals minus the sample average of the model 
predictions if exposure is set to the 25th percentile of exposure 
for all individuals, while leaving the values of the remaining 
covariates at their observed values. For instance, the NACE for 
an IQR increase in maternal blood Hg is expressed as follows: 

NACE | Hg Q75 Hg , | Hg Q25 Hg ,Hg Hg Hg= = − =− −E Y X Y X( )  ( ) { } , 

where Q75 and Q25 are respectively the 75th and 25th percen-
tiles of Hg distribution and X –Hg  includes all the remaining 
covariates (including exposures and confounders) required for 
the identifiability of the effect estimate. The same strategy was 
applied to investigate the joint effect of the chemical mixture by 
replacing all exposures of interest first by the 75th percentile for 
all individuals in the cohort and then by the 25th percentile in 
a second time. In both cases, predictions of the outcome were 
calculated for all individuals, and we reported the difference be-
tween the sample averages of both sets of predictions.

In the absence of a theoretical formula for the asymptotic dis-
tributions of these parameters within the SuperLearner, we used 
bootstrapping (N = 200) to approximate the 95% confidence 
intervals (CIs).33,34

Since the NACE cannot reveal nonlinearities, we therefore 
constructed dose-response relationships for each exposure. We 
used SuperLearner to predict test scores when replacing ex-
posure values by a specific percentile of that exposure for all 
subjects while keeping the values of the other exposures and 
covariates at their observed levels. We calculated the sample av-
erage of those predictions to obtain the predicted response at 
a given exposure percentile, and the process was repeated for 
several exposure percentiles. The resulting values were used to 
plot a curve of the partial relationship between Y and Xj, which 
we called fX

�
j . The average partial relationship between Xj and 

Y can be therefore expressed as follows: f f X XX
� �

j N

N

j j= ( )∑ −
1

1

, , 

where Xj is the exposure of interest, X− j is the remaining set of 
exposures and covariates, N is the number of observations and 
f
�
 denotes predictions from the SuperLearner.

Finally, to investigate the presence of potential interactions 
between exposures or effect modification by other covariates, 
we used individual conditional expectations (ICEs) for each 
exposure.35 The ICE was calculated for each individual in the 
dataset separately for each exposure. For a given exposure, the 
ICE of a subject was calculated by replacing the value of that ex-
posure by a given exposure percentile and computing the model 
predictions while keeping the values of the other exposures and 
covariates at his/her observed levels. Repeating the process for 
several exposure percentiles, we obtained the curve for that in-
dividual and exposure. The process was then repeated for all 
exposures and individuals. We therefore plotted N estimated 
conditional expectation curves, each reflecting the individual 
predicted response as a function of the exposure Xj, conditional 
on the observed X− j

.35

We did not perform any null hypothesis significance testing 
since we are not making any decisions. Rather, we rely on in-
terval estimation for statistical inference and present the result-
ing estimates for all the exposures with their 95% CI based on 
nonparametric 2.5% and 97.5% percentiles.

Results

Mean age at examination was 89.9 months (IQR: 89–91), and 
there was a comparable number of boys and girls (49% and 
51%, respectively). Most of the children had an older sibling 
(75%), and 32% were exclusively breastfed for 6 months or 
longer (Supplemental Material: Table S1; http://links.lww.com/
EE/A53). Maternal age at delivery was 29.5 years (IQR: 26–33), 
and 8% of mothers reported a prepregnancy BMI higher than 
30. Twenty-seven percent of the mothers reported ever smoking 
during pregnancy, and 41% reported ever consuming alcohol 
during pregnancy. Finally, mean maternal Raven intelligence score 
was 48.6 (IQR: 45–53). The 449 and 419 children included re-
spectively in the prenatal and 5-year analyses did not significantly 
differ from the overall children included in the neuropsycholog-
ical assessment at 7 years in terms of important characteristics 
(Supplemental Material; Table S1; http://links.lww.com/EE/A53).

Table 1 describes univariate associations between neuropsy-
chological endpoints and important characteristics of the study 
population for the 449 included children. Mean score for BNT 
without cues (number of correct items without cueing) was 27.4 
and mean BNT with cues (number of correct items after stim-
ulus and phonemic cueing) was 30.3. Mean SDQ total difficul-
ties was 6.4. BNT scores with and without cues were higher 
among children with no older siblings, of mothers with high SES 
and high Raven scores, and who reported ever drinking during 
pregnancy. Total SDQ difficulties scores were higher (indicating 

http://links.lww.com/EE/A53
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more problems) in children of younger mothers, with low SES, 
and who reported ever smoking during pregnancy.

Table 2 shows distributions of maternal and 5-year environ-
mental exposures. Among PFASs, PFOS showed the highest 
serum concentrations at all timepoints, followed by PFOA and 
PFHxS. Maternal PFOS and PFHxS concentrations were higher 
in comparison to 5-year child concentrations, whereas PFOA, 
PFNA, and PFDA concentrations were comparable between 
maternal and children at 5 years. Blood Hg concentrations 
were also higher in maternal blood compared with children’s 
blood, whereas ∑PCB concentrations were comparable.

Figure 1 presents a heat map plot of within (at the same time 
point) and between (exposure between maternal and 5 years) expo-
sures correlations. The highest within correlations (Spearman’s ρ) 
were observed between serum concentrations of PFDA and PFNA 
(ρ = 0.79 at both maternal and 5 years), whereas the lowest correla-
tions were observed between serum PFOA and Hg concentrations at 
5 years (ρ = –0.04). The highest between-correlation was observed 

between maternal and 5 years serum ∑PCB concentrations (ρ = 
0.58), whereas the lowest correlation was observed between ma-
ternal and 5 years serum PFHxS concentrations (ρ = 0.09).

Univariate associations

Maternal Hg, PFOS, and 5 years PFHxS concentrations were 
negatively associated with BNT scores. Maternal PFOS concen-
trations were also associated with higher (poorer) total SDQ 
scores, whereas 5-year ∑PCB concentrations were associated 
with lower total SDQ scores (Supplemental Material: Figure S1; 
http://links.lww.com/EE/A53).

Insights from SuperLearner cross-validation

Figure  2 shows the distribution of the 10-fold cross-validated 
minimum squared error (MSE) for each included algorithm and 

Table 1

Univariate associations between neuropsychological endpoints and important characteristics of the study population included in the 
prenatal analyses

Population 
characteristic N (%)

BNT without  
cues scores (SD)

BNT with cues  
scores (SD)

Total SDQ  
scores (SD)

SDQ internalizing 
scores (SD)

SDQ externalizing 
scores (SD)

Total 449 27.4 (5.3) 30.3 (5.4) 6.4 (4.7) 2.7 (2.6) 3.7 (3.0)
Sex  0.28 0.05 0.6 0.01 0.002
                Boys 227 (50.6) 27.2 (0.3) 29.8 (0.4) 6.5 (0.3) 2.4 (0.2) 4.1 (0.2)
                Girls 222 (49.4) 27.7 (0.3) 30.8 (0.4) 6.3 (0.3) 3.1 (0.2) 3.2 (0.2)
Age; months  0.83 0.8 0.62 0.22 0.95
                84–89 186 (41.4) 27.3 (0.4) 30.2 (0.4) 6.2 (0.3) 2.6 (0.2) 3.6 (0.2)
                90 150 (33.4) 27.4 (0.4) 30.6 (0.5) 6.3 (0.4) 2.6 (0.2) 3.7 (0.3)
                91–94 113 (25.2) 27.7 (0.5) 30.3 (0.5) 6.8 (0.4) 3.1 (0.3) 3.7 (0.3)
Birth weight; g  0.73 0.9 0.45 0.43 0.63
                ≤3,750 229 (51) 27.3 (0.3) 30.4 (0.3) 6.2 (0.3) 2.6 (0.2) 3.6 (0.2)
                >3,750 220 (49) 27.5 (0.4) 30.3 (0.4) 6.6 (0.3) 2.8 (0.2) 3.7 (0.2)
Maternal age at delivery; 
years

 0.74 0.38 0.03 0.02 0.21

                16–27 174 (38.8) 27.7 (0.4) 30.6 (0.4) 7.1 (0.4) 3.2 (0.2) 3.9 (0.2)
                28–32 146 (32.5) 27.2 (0.4) 30.2 (0.4) 6.2 (0.4) 2.5 (0.2) 3.6 (0.2)
                33–43 129 (28.7) 27.3 (0.5) 30.1 (0.5) 5.7 (0.4) 2.4 (0.2) 3.3 (0.2)
Maternal prepregnancy 
BMI

 0.44 0.18 0.68 0.54 0.92

                <25 310 (69) 27.5 (0.3) 30.5 (0.3) 6.3 (0.3) 2.7 (0.1) 3.6 (0.2)
                25–30 105 (23.4) 27.5 (0.6) 30.2 (0.6) 6.7 (0.5) 3.0 (0.3) 3.8 (0.3)
                >30 34 (7.6) 26.3 (0.9) 28.7 (0.9) 6.1 (0.8) 2.5 (0.4) 3.6 (0.6)
Parity  0.07 0.08 0.21 0.03 0.95
                No siblings 114 (25.4) 28.2 (0.5) 31.1 (0.5) 6.9 (0.5) 3.2 (0.3) 3.7 (0.3)
                ≥1 siblings 335 (74.6) 27.2 (0.3) 30.1 (0.3) 6.2 (0.2) 2.6 (0.1) 3.7 (0.2)
Maternal educationa  <0.001 <0.001 <0.001 0.02 0.002
                Low 208 (46.3) 26.6 (0.4) 29.4 (0.4) 7.2 (0.3) 3.1 (0.2) 4.1 (0.2)
                Medium 127 (28.3) 27.3 (0.4) 30.2 (0.4) 6.3 (0.4) 2.6 (0.2) 3.7 (0.2)
                High 114 (25.4) 29.1 (0.5) 32.1 (0.5) 5.1 (0.4) 2.2 (0.2) 2.8 (0.2)
Maternal Raven scores  <0.001 <0.001 0.42 0.78 0.36
                <48 177 (35.3) 26.1 (0.5) 28.7 (0.5) 6.9 (0.4) 2.9 (0.2) 3.9 (0.2)
                48–52 189 (37.6) 28.4 (0.4) 31.3 (0.4) 6.3 (0.4) 2.7 (0.2) 3.5 (0.2)
                >52 136 (27.1) 28.3 (0.5) 31.4 (0.5) 6.1 (0.5) 2.7 (0.2) 3.4 (0.3)
                Missing 53 — — — — —
Maternal smoking during 
pregnancy

 0.91 0.51 0.03 0.65 0.003

                No 329 (73.3) 27.4 (0.3) 30.4 (0.3) 6.1 (0.2) 2.7 (0.1) 3.4 (0.1)
                Yes 120 (26.7) 27.4 (0.5) 30.0 (0.5) 7.2 (0.5) 2.8 (0.3) 4.4 (0.3)
Alcohol consumption 
during pregnancy

 <0.001 <0.001 0.48 0.62 0.5

                Never 267 (59.5) 26.7 (0.3) 29.6 (0.3) 6.5 (0.3) 2.8 (0.2) 3.7 (0.2)
                Ever 182 (40.5) 28.4 (0.4) 31.4 (0.4) 6.2 (0.3) 2.7 (0.2) 3.6 (0.2)
Exclusive breastfeeding 
duration; months

 0.36 0.39 0.38 0.81 0.24

                <6 304 (67.7) 27.3 (0.3) 30.2 (0.3) 6.5 (0.3) 2.8 (0.1) 3.8 (0.2)
                ≥6 145 (32.3) 27.8 (0.4) 30.6 (0.4) 6.1 (0.4) 2.7 (0.2) 3.4 (0.2)

aLow: ≤10 years of education; intermediate: school leaving certificate and above including technical studies; and high: university studies.
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for the SuperLearner. The figure also shows the distribution of the 
weighting coefficients of the convex combination applied to min-
imize the prediction error for each algorithm. The SuperLearner 
and the Elastic net algorithms yielded the lowest average MSE, 
although the differences were small with the other methods. 
However, Elastic net highly contributed to the convex combina-
tion that yielded the best predictions with a median weighting 
coefficient of 0.56. All the remaining algorithms included in the 
SuperLearner had a median weighting coefficient of 0.

The Elastic net algorithm outperformed all the other included 
algorithms, which points to two main insights: (1) the expo-
sure-response relationships are likely linear and (2) the absence 
of potential interactive effects between exposures and between 
exposures and potential confounders.

Associations between chemical exposures and 
neuropsychological outcomes

Table  3 shows the estimates resulting from the G-computation 
method combined with SuperLearner predictions. An IQR in-
crease in maternal Hg concentrations was associated with 0.08 SD 
(95% CI = –0.18, 0) and 0.15 SD (95% CI = –0.29, –0.03) lower 
scores in the BNT without and with cues, respectively. Maternal 
PFOA concentrations were also associated with lower BNT scores 
(β = 0.07 SD; 95% CI = –0.16, 0 and 0.14 SD; 95% CI = –0.26, 
–0.05 for BNT without and with cues, respectively). Finally, an 
IQR increase in maternal PFOS concentrations was associated 
with 0.11 SD (95% CI = –0.27, 0.01) lower BNT with cues scores 
(Table 3). A joint IQR increase in the mixture concentrations was 
associated with 0.15 SD (95% CI, –0.41, 0.13) and 0.48 SD (95% 
CI = –0.69, –0.25) lower scores in the BNT without and with cues. 
Regarding SDQ scores, an IQR increase in maternal PFOS and 
PFOA concentrations were associated with 0.15 SD (95% CI = 
0.08, 0.23) and 0.11 SD (95% CI = 0.02, 0.26) higher total SDQ 
scores, whereas an IQR increase in maternal ∑PCBs concentra-
tions was associated with 0.09 SD (95% CI = –0.19, 0) lower SDQ 
scores. A joint IQR increase in the mixture concentrations was 
associated with 0.19 SD (95% CI = –0.11, 0.42) higher total SDQ 
scores. No other pattern of associations was observed.

Regarding child 5-year exposures, we observed both positive 
and negative associations with BNT scores. An IQR increase in 
5 years ∑PCB concentrations was associated with 0.09 SD (95% 
CI = –0.21, 0) lower BNT with cues scores, whereas an IQR 
increase in 5 years PFHxS concentrations was associated with 
0.16 SD (95% CI = 0.03, 0.35) higher BNT with cues scores 
(Table3). No association was observed for a joint increase in the 
chemical mixture. Regarding SDQ scores, an IQR increase in 
5-year PFNA concentrations was associated with 0.09 SD (95% 

CI = 0.02, 0.17) higher total SDQ scores. Finally, a joint IQR in-
crease in the mixture of chemicals was associated with 0.22 SD 
(95% CI = 0.04, 0.45) higher total SDQ scores.

Figure 3 shows the individual conditional expectations and expo-
sure-response relationships for maternal exposure to individual 
chemicals and the mixture of chemicals. Most observed associa-
tions showed a linear pattern, however, some associations showed 
patterns of nonlinear relationships. The association between ∑PCBs 
and BNT with cues showed a slight increase after the 80th percen-
tile, whereas the association for the joint effect of chemicals with 
BNT scores showed a steeper decrease after the 30th percentile for 
BNT with cues and after the 60th percentile for BNT without cues. 
Predictions for individuals showed mainly parallel patterns, which 
points to a lack of potential interactions with other exposures or 
covariates in the models. At age 5 years, exposure-response relation-
ships exhibited a linear pattern (data not shown).

Discussion
In this study, we introduce a novel approach combining 
SuperLearner and G-computation to estimate the associations be-
tween both prenatal and child 5-year environmental exposures 
and child cognitive and behavioral functions at 7 years of age. By 
investigating all chemicals jointly with no a priori assumptions 
on the model specification, we were able to account for three 
main challenges that hamper investigations using single pollutant 
approaches: (1) multiple comparisons, (2) potential model mis-
specifications (i.e., nonlinear terms and interactions), and (3) con-
founding by omitted correlated exposures. Overall, our findings 
suggest that maternal Hg exposure may be a risk factor of poorer 
cognitive function, as assessed by the BNT scores. Additionally, 
PFOA and PFOS also showed negative associations with BNT 
scores independently of Hg. We also found indications of posi-
tive associations between maternal PFOS and PFOA and behav-
ioral problems as assessed by the SDQ. Exposures at age 5 years 
did not appear to negatively impact child cognitive function at 
7 years, but we rather report a positive association between 5 
years PFHxS concentrations and BNT scores. Only 5 years PFNA 
concentrations appeared to be associated with higher SDQ be-
havioral difficulties scores. The cumulative impact of all the expo-
sures appeared stronger and pointed to a cumulative effect on 
both cognitive and behavioral functions. We found no evidence 
supporting potential interactive effects between chemical expo-
sures and no strong indications of nonlinear exposure-response 
relationships, except for the model for cumulative effects.

Generally, the results from this investigation corroborate our pre-
vious findings from individual chemical analyses.15,16,36 The chem-
icals associated with a decrease in cognitive function and those 

Table 2

Descriptive statistics of maternal and child’s 5-year pollutants concentrations measured in blood

PFAS GM (GSE) Minimum 25 50 75 95 Maximum

Maternal; n = 449
                BHg 13.05 (0.48) 2.07 7.49 12.34 21.58 48.87 192.79
                ∑PCBs 1.26 (0.04) 0.06 0.83 1.27 2.05 3.66 11.71
                PFOS 27.50 (0.37) 9.4 23.22 27.69 33.35 42.21 66.68
                PFOA 3.15 (0.05) 0.82 2.54 3.25 3.99 5.47 8.43
                PFHxS 4.41 (0.17) 0.62 2.17 4.65 8.35 15.19 26.45
                PFNA 0.62 (0.01) 0.16 0.49 0.61 0.83 1.18 1.93
                PFDA 0.29 (0.01) 0.03 0.22 0.29 0.39 0.53 0.98
5 years; n = 419
                BHg 2.68 (0.12) <LOD 1.35 2.6 5.27 11.72 36.53
                ∑PCBs 1.16 (0.05) 0.07 0.72 1.29 1.94 4.05 9.56
                PFOS 16.78 (0.27) 6.18 13.5 16.8 21.13 28.39 48.23
                PFOA 4.09 (0.06) 1.33 3.33 4.08 4.98 6.84 15.44
                PFHxS 0.65 (0.02) 0.08 0.46 0.63 0.92 1.65 19.51
                PFNA 1.02 (0.02) 0.39 0.77 0.98 1.28 2.17 6.16
                PFDA 0.28 (0.01) 0.05 0.21 0.29 0.38 0.6 1.2

BHg indicates blood Hg; GM, geometric mean; GSE, geometric standard error; LOD, limit of detection.
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associated with an increase in behavioral problems by individual 
chemical analyses were also selected as potential risk factors by 
this novel approach. These include maternal Hg and 5-year PFNA 
exposures as potential developmental neurotoxicants. Unlike our 
previous investigation, which also pointed to a positive association 
between PFOA and PFDA concentrations and higher SDQ behav-
ioral difficulties scores, this joint analysis did not provide evidence 
of such associations and pointed only to PFNA as a potential cul-
prit, although PFDA also exhibited a pattern of detrimental impact. 
Instead, maternal PFOA and PFOS concentrations appeared to be 
associated with lower cognitive function. Although some results 
suggest a negative slope for ∑PCBs with SDQ behavioral difficulties 
scores, it appears unlikely that these chemicals may have any posi-
tive effects on behavioral function, and this finding may be driven 
by a correlation between ∑PCBs and unmeasured omega-3 poly-
unsaturated fatty acids that have been shown to exert a positive 
effect on cognitive function.37,38 Such correlation was not found for 

mercury and PFASs in a subset of children from this cohort (data 
not shown). The positive association between 5 years PFHxS con-
centrations and cognitive function warrants further investigation to 
elucidate whether this might be a false positive or indeed a true ben-
eficial effect. Some previous investigations reported positive associ-
ations between some PFASs and neurodevelopment (Stein et al)39 
and adult memory functions (Gallo et al).40 Although unlikely, these 
favorable associations were hypothesized to be mediated by the ac-
tivation of the peroxisome proliferator-activated receptor (PPAR) γ 
receptor that has been shown to prevent the expression of inflam-
matory cytokines and other inflammatory mediators in brains of 
Alzheimer disease animal models.41 Also, some PPAR agonist drugs 
have been proposed as preventive drugs for neurodegenerative 
conditions, including Alzheimer dementia.42 However, the ques-
tion of why would only PFHxS have these favorable effects while 
other PFASs showed negative associations with cognitive function 
remains to be settled. It is difficult to compare doses between the 

Figure 1. Correlation plot of prenatal and 5-year concentrations. Red indicates negative correlations, whereas blue indicates positive correlations. The intensity 
of the color indicates the strength of the correlation.
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two contexts of an environmental exposure such as PFAS and a 
therapeutic drug. However, drugs impacting PPAR have shown 
decreased levels of amyloid-β peptide and the number of activated 
microglia and astrocytes only in the context of high doses as lower 
doses showed only modest effects on plaque burden or microglia 
activation. Thus, our interpretation of this potential positive effect 
remains speculative.42

The findings from the present study point to weak associations 
for independent exposures, with the strongest estimate being a 
change of 0.2 SD for an IQR increase. It is therefore worth mention-
ing that the observed effect sizes in this study are relatively modest, 
failing to reach the level of clinical significance. However, the esti-
mates regarding the joint effect of the mixture of exposures point to 
moderate effects that can have a big influence on the prevalence of 
neurodevelopmental disorders at the population level since subtle 
effects of chemical exposures may shift the distribution of cognitive 
and behavioral traits to increase the risk of clinical neurodevelop-
mental disorders.12,43 The impact of a factor at the population level 
depends not only on the magnitude of its impact on health, or its 
effect size but also on the distribution of the factor. Given the wide-
spread and ubiquitous exposure to PFAS, these small effect sizes 
may have a considerable impact at the population level.44

A strength of our statistical approach is that it brings to-
gether the strong and unparalleled predictive performance the 
SuperLearner and the G-computation method to open the black 
box of machine learning techniques. It therefore allows to investi-
gate both the overall potential effect of a mixture and to provide 
marginal estimates for each exposure, and estimation of dose-re-
sponse relationships. Under assumptions of conditional exchangea-
bility, consistency, and positivity, these estimates may be interpreted 
causally. The literature on the use of ensemble learning methods for 
estimating causal effects is limited,45 especially in the field of envi-
ronmental epidemiology. To our knowledge, this approach has not 
been explored in settings involving multi-pollutant exposures. A 
comparable approach is the Bayesian Kernel Machine Regression3,6 
that uses a kernel regression to estimate the joint exposure-response 
function of a chemical mixture. One major difference between the 
two methods is that our approach does not require fixing the levels 
of other chemicals in the mixture to a specific value when estimat-
ing their individual contributions. This allows inferring marginal 
estimates, and to assess potential interactions visually when the 
exposure-response relationship varies across individuals.

Other approaches that have been suggested to address the 
mixtures issue include LASSO,46 EWAS,4,47 weighted quantile 
sum regression,48,49 and Elastic Net.50,51 A major disadvantage of 
such approaches is that they typically assume specific and often 
restrictive parametric functional forms for the exposure-re-
sponse relationship, often resulting in a model that does not 
accurately capture the complexity of the relationships among 
high dimensional covariates and health outcomes. Some of these 
methods, such as penalized regressions result in highly biased 
estimates as they rely on a procedure that reduces the variance 
of estimators by introducing substantial bias.5

The present work has several limitations. First, the ability of the 
SuperLearner approach depends on the choice of candidate learners 
that should be guided by theoretical and practical considerations. 
We believe that we have included a diverse set of algorithms that 
can capture a variety of potential exposure-response relationships 
in addition to interactive effects, if present. Second, we used the 
bootstrap to estimate valid confidence intervals in the absence of a 
theoretical formula for the asymptotic distributions of the param-
eters of interest. This gave rise to a heavy computational burden, 
especially that the method is based on cross-validation. Further 
efforts to incorporate the method within a parallel computing 
framework will substantially reduce the running time. Third, our 
approach, at this point, does not handle exposure misclassification 
that can arise from measurement errors, one of the most important 
issues in environmental epidemiology studies. Finally, and although 
this was out of the scope of this investigation, our estimates are still 

Figure 2. Distribution of the 10-fold cross-validated minimum squared 
error and weighting coefficients for each included algorithm and for the 
SuperLearner. ENET indicates elastic net regularization; NNET, artificial neural 
networks; PMARS, multivariate adaptive polynomial spline regression; RF, 
random forests; SVM, support vector machine and SL, Super learner.

Table 3

Associations between prenatal and 5 years exposures and 
neuropsychological test scores at 7 years using G-computation 
and SuperLearner predictions

Neuropsychological 
test Exposure

Prenatal exposures
Estimate (95% CI)

5 years exposures
Estimate (95% CI)

BNT without cues Hg –0.08 (–0.18, 0.00) 0.03 (–0.07, 0.12)
∑PCBs –0.01 (–0.09, 0.09) –0.09 (–0.21, 0.00)
PFOS –0.04 (–0.19, 0.06) 0.00 (–0.06, 0.06)
PFOA –0.07 (–0.16, 0.00) –0.01 (–0.07, 0.05)
PFHxS 0.03 (–0.06, 0.13) 0.10 (0.01, 0.23)
PFNA –0.03 (–0.17, 0.06) 0.06 (–0.04, 0.15)
PFDA 0.04 (–0.04, 0.14) 0.02 (–0.05, 0.12)
Mixture –0.15 (–0.41, 0.13) 0.05 (–0.16, 0.28)

BNT with cues Hg –0.15 (–0.29, –0.03) 0.04 (–0.07, 0.14)
∑PCBs –0.05 (–0.14, 0.02) –0.02 (–0.11, 0.07)
PFOS –0.11 (–0.27, 0.01) 0.00 (–0.08, 0.07)
PFOA –0.14 (–0.26, –0.05) –0.01 (–0.07, 0.05)
PFHxS –0.06 (–0.15, 0.02) 0.16 (0.03, 0.35)
PFNA 0.02 (–0.05, 0.10) 0.04 (–0.06, 0.14)
PFDA 0.04 (–0.02, 0.11) 0.00 (–0.09, 0.07)
Mixture –0.48 (–0.69, –0.25) 0.02 (–0.17, 0.22)

Total SDQ scores Hg 0.01 (–0.10, 0.13) 0.03 (–0.03, 0.11)
∑PCBs –0.09 (–0.19, 0.00) –0.03 (–0.12, 0.06)
PFOS 0.15 (0.08, 0.23) 0.02 (–0.03, 0.08)
PFOA 0.11 (0.02, 0.26) 0.00 (–0.06, 0.06)
PFHxS –0.03 (–0.09, 0.03) –0.07 (–0.18, 0.05)
PFNA 0.02 (–0.03, 0.08) 0.09 (0.02, 0.17)
PFDA 0.05 (–0.02, 0.10) 0.06 (–0.04, 0.21)
Mixture 0.19 (–0.11, 0.42) 0.22 (0.04, 0.45)
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based on the overall performance of the predictive model, and re-
quire a targeting step to infer doubly robust estimates, which will 
be incorporated in additional developments.

Regarding the neuropsychological instruments used in this 
study, we relied on parent-reported SDQ and the BNT for meas-
urement of the outcomes rather than clinical diagnoses. Although 
there are no studies that validated these tests in the Faroese popu-
lation, the two tests are part of a battery of tests that was designed 
to allow assessment of mercury and other potential neurotoxi-
cants associations with deficits in a wide range of abilities and 
have been previously used in this population.13,15,16,36 The SDQ 
has excellent psychometric properties and was used as a screening 
and/or assessment tool by psychologists and clinicians.52–55 The 
SDQ has been used to assess children’s behavior across age and 
culture and is commonly used in longitudinal birth cohorts and 
national surveys.56–58 A recent study confirmed the usefulness of 
the SDQ as a screening tool for boys and girls across age groups 
and raters in the general Danish population.59

Conclusions
Our findings from this study point to the neurodevelopmental 
effect of mercury and corroborate previous results from our 
Faroese cohort studies using a mixtures approach. Additionally, 
some PFASs showed a detrimental impact on both cognitive 
and behavioral functions and deserve more attention in future 
investigations.
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