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How effects of DNA sequence variants are transmitted through intermediate endophenotypes to modulate organismal

traits remains a central question in quantitative genetics. This problem can be addressed through a systems approach in

a population in which genetic polymorphisms, gene expression traits, metabolites, and complex phenotypes can be evalu-

ated on the same genotypes. Here, we focused on the metabolome, which represents the most proximal link between genetic

variation and organismal phenotype, and quantified metabolite levels in 40 lines of the Drosophila melanogaster Genetic
Reference Panel. We identified sex-specific modules of genetically correlated metabolites and constructed networks that

integrate DNA sequence variation and variation in gene expression with variation in metabolites and organismal traits,

including starvation stress resistance and male aggression. Finally, we asked to what extent SNPs and metabolites can predict

trait phenotypes and generated trait- and sex-specific prediction models that provide novel insights about the metabolomic

underpinnings of complex phenotypes.

[Supplemental material is available for this article.]

Defining the genotype-phenotype relationship for complex traits
is of central importance for agriculture, precision medicine, and
exploring the mechanisms that drive adaptive evolution. Howev-
er, understanding how genetic variation for complex traits in het-
erogeneous populations correlates with phenotypic variation
remains challenging, due to trans regulation, pleiotropy, epistasis,
genome-by-environment interactions, epigenetic modifications,
and the nonlinear relationships between transcript abundances
and corresponding protein levels (Mackay and Anholt 2006,
2007; Manolio et al. 2009; Anholt and Mackay 2018). How effects
of DNA sequence variants are transmitted through intermediate
endophenotypes to modulate organismal traits is a central ques-
tion.Here, we address this issue by focusing on the relationship be-
tween genomic variation, gene expression, and the metabolome.

The metabolome represents the most proximal link between
genetic variation and organismal phenotype. Metabolites are the
building blocks for DNA, RNA, proteins, complex lipids, and car-
bohydrates, serve as cofactors for enzymes, and mediate energy
production and signaling processes. The composition and dynam-
ics of the metabolome represent the integrated output of genetic,
transcriptomic, and proteomic variation.

Advancing our understanding of genotype-phenotype rela-
tionships of complex traits requires systems genetic analyses that
incorporate genetic variation with variation in gene expression
traits, themetabolome, and complex trait phenotypes in a popula-
tion with replicated genotypes. Such comprehensive studies are

challenging in human populations but can be performed inmodel
organisms that allow precise control of the genetic background
and environmental rearing conditions (Joyce and Palsson 2006;
Lehner 2013; Civelek and Lusis 2014). TheDrosophila melanogaster
Genetic Reference Panel (DGRP), a wild-derived population of ful-
ly sequenced inbred lines, enables comprehensive systems genetic
analyses of complex traits to be performed on replicated genotypes
(Mackay et al. 2012; Huang et al. 2014; Mackay and Huang 2018).
In addition, unlike studies that rely on linkage mapping, rapid de-
cay of linkage disequilibriumwithin the DGRP (Huang et al. 2014)
enables precise mapping.

Here, we used 40 DGRP lines, sexes separately, to identify ge-
netically variable metabolites and metabolomic modules associat-
ed with variation of organismal phenotypes. We constructed
networks that integrate DNA sequence variation and variation in
gene expression with variation in metabolites and organismal
traits. Finally, we explored phenotypic prediction models based
on variable metabolites.

Results

Phenotypic variation of the metabolome

We used ultraperformance liquid chromatography–tandem mass
spectrometry to quantify variation in the metabolome of 3- to
7-d-old flies across 40 DGRP lines. We identified 453 metabolites
which represent eight “super pathways” including metabolic
pathways for lipids, xenobiotics, nucleotides, amino acids, energy
metabolism, carbohydrates, cofactors and vitamins, and peptides
(Supplemental Table S1). Among these, 53 metabolites were
confidently detected without formally documented standards
(Supplemental Table S1). We performed principal component
analysis (PCA) and observed strong sexual dimorphism of metab-
olite abundances between females and males associated with the
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first principal component, explaining 34.8% of the total variation
(Fig. 1A). Each of the remaining principal components explains
<8% of the total variation. In addition, we found extensive varia-
tion in correlations among individual metabolites between fe-
males and males across the lines (Fig. 1B). Squared coefficients
range from 0 to 0.91. Four metabolites, 1-(1-enyl-palmitoyl)-
2-linoleoyl-GPC (P-16:0/18:2), 1-(1-enyl-palmitoyl)-2-palmito-
leoyl-GPC (P-16:0/16:1), glycerol 2-phosphate, and mevalonate
5-phosphate, were identified only in males and 1-stearoyl-GPI
(18:0) was identified only in females.

Genetic variation of the metabolome

Mixed-effect ANOVAs quantifying the effects of DGRP line, sex,
and the line by sex interaction effects identified 380 metabolites
that were significantly variable across lines (FDR<0.05), 381 me-
tabolites with different abundances between females and males,
and 172 metabolites with a significant line by sex interaction
(Supplemental Table S2). Among these, 118metabolites are signif-
icant for all three terms. The average broad sense heritability (H2)
of all metabolites is H2 = 0.43, which indicates a considerable ge-
netic contribution to the observed phenotypic variation. Since
there were extensive differences between males and females for
most of the metabolites, we also performed reduced model
ANOVAs for sexes separately. These analyses identified 371metab-
olites in females and 355 metabolites in males that are variable
(FDR<0.05) across different genetic backgrounds (Supplemental
Table S3). We focused on these metabolites for downstream anal-
yses of males and females, separately.

In addition, 82 metabolites in females and 98 metabolites in
males were not genetically variable, and 43 of these metabolites
were common in both sexes. These metabolites are likely tightly
regulated at steady state. In females, they include common precur-
sors for fatty acid biosynthesis (malonate and methylmalonate),
building blocks for nucleic acids (inosine, guanosine, cytosine,
and uridine), intermediates of the tricarboxylic acid cycle (malate
and oxaloacetate), glycine, the cofactor nicotinamide, 3 hydroxy-
butyrate, and a range of complex phospholipids. Glycine, nicotin-
amide, malate, oxaloacetate, inosine, and guanosine also were not
genetically variable in males, in addition to the coenzyme A pre-

cursor phosphopantetheine, the vitamin B6 precursor pyridoxal,
carnitine, glutamate, and various complex phospholipids.

Modular organization of the genetically variable metabolome

To search for interacting sets of metabolites based on correlation
structure, we performed modulated modularity clustering (Stone
and Ayroles 2009) for females and males separately using all vari-
able metabolites.

We identified 22 modules with correlated metabolites in fe-
males (Fig. 2A). Most of the modules contain metabolites predom-
inantly from one or two super pathways, reflecting functional
connectivity (Supplemental Table S4A), including lipid meta-
bolism, carbohydrate, peptide, amino acid, and nucleotide meta-
bolism. Modules 8, 10, 12, 16, and 21 comprise metabolites
associated with diverse metabolic processes.

For males, we identified 33 tightly correlated modules (Fig.
2B). Unlike females, about half of the male modules contain me-
tabolites associated with diverse super pathways (Supplemental
Table S4B). We did not observe significant correlations between
modules for either females or males.

Thus, we found extensive differences between metabolomic
profiles as well as individual metabolite abundances between fe-
males and males, with females having, on average, larger modules
than males.

Metabolite quantitative trait locus (mQTL) mapping

We identified DNA sequence variants associated with variation in
abundance of each metabolite (mQTLs). We tested 1,561,516 bi-
allelic single nucleotide polymorphisms and deletions and inser-
tions with the minor allele present in at least four DGRP lines
(minor allele frequency [MAF]≥0.1). In females, we identified
754mQTLs in or near 576 genes and 167mQTLs in 126 intergenic
regions (polymorphisms within 2 kb are considered in the
same intergenic region) that were associated with 92 metabolites
at a Bonferroni-corrected threshold of P≤3.2 ×10−8 (Fig. 3;
Supplemental Table S5A). In males, we mapped 993 mQTLs in or
near 664 genes and 229mQTLs in 158 intergenic regions associat-
ed with 100 metabolites (Fig. 4; Supplemental Table S5B). In fe-
males and males, respectively, 808 mQTLs (87.7%) and 1115

A B

Figure 1. Principal component analysis (PCA) of variation in the metabolome across 40 DGRP lines (A) and correlations across the lines between females
and males for each metabolite (B).
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mQTLs (91.2%) are associated with only one metabolite.
Furthermore, pleiotropic mQTLs are primarily associated with
structurally related metabolites, indicating that polymorphisms
exert specific effects on variation of individual metabolites. By
contrast, each metabolite is associated with an average of 12 and
14 mQTLs in females or males with a median of 5 mQTLs for
both sexes. A total of 110 polymorphisms associated with 15 me-
tabolites are common for both sexes.

Most mQTLs are intronic, followed numerically by inter-
genic, upstream, and downstreammQTLs. There are 77 nonsynon-
ymous coding polymorphisms associated with 39 metabolites.
These are in coding regions of 60 genes, 22 of which do not have
annotated functions. They are not enriched for specific pathways
or functional groups.

Since metabolites are not independent of each other (Fig. 2),
we performed PCA on each module of correlated metabolites, sep-
arately for males and females. For each module, we retained PCs
that explained more than 4% of the variation and added PCs, if
needed, to cumulatively explain more than 90% of the variation.
We then performed mQTL mapping on each PC from each
module. In females, we identified 35 mQTLs in or near 23 genes
and five mQTLs in five intergenic regions associated with PCs of
seven modules at a Bonferroni-corrected significance threshold
(Supplemental Table S6A). In males, we found 27 mQTLs in or
near 23 genes and three mQTLs in three intergenic regions associ-
ated with PCs of seven modules (Supplemental Table S6B).

To identify mQTLs that are associated both with individual
metabolites and module PCs, we first considered the 2033 poly-
morphisms associated with variation in abundances of individual
metabolites at a Bonferroni-corrected threshold. We then relaxed
the P-value for association of polymorphisms with module PCs
to P<2.17×10−6 to capture the same number of mQTLs: 1021
for female module PCs and 1018 for module PCs, with six of
the mQTLs associated with both female and male module PCs
(Supplemental Table S6).

In females, we found only nine mQTLs (0.5%) and 85 genes
(7.7%) associated with both individual metabolites and module
PCs, while in males there are 32 mQTLs (1.4%) and 172 genes
(10.7%) in common to individual metabolites and metabolite
PCs. There is little overlap between polymorphisms and genes
that are associated with variation in individual metabolites and
module PCs. However, in each case their biological functions are

enriched in Gene Ontology (GO) categories of neuron differentia-
tion and tissuemorphogenesis (Supplemental Table S7), including
genes associatedwith signal transduction,membrane transporters,
receptors, and metabolic enzymes (Fig. 5).

Metabolite-wide association studies (MWAS)

We performed metabolite-wide association studies (MWAS) using
Spearman’s correlation tests to identifymetabolites andmetabolo-
mic modules associated with variation of morphological, physio-
logical, and fitness-related phenotypes, including body weight,
thorax length, thorax width, starvation resistance, startle re-
sponse, waking activity, and lifespan for both sexes, as well as
inter-male aggression (Jumbo-Lucioni et al. 2010; Huang et al.
2012; Harbison et al. 2013; Ivanov et al. 2015; Shorter et al.
2015). We also assessed free glucose and free glycerol levels along
with glycogen, triglyceride, and total protein levels using colori-
metric and fluorometricmethods (Supplemental Table S8).We ob-
served high correlations between variations in the concentration
of glucose and glycerol measured by mass spectrometry, with
free glucose and free glycerol measured biochemically in both fe-
males and males.

In females, we found 157metabolites that showed significant
correlations with the 12 traits, ranging from 12 metabolites that
were correlatedwith lifespan to 36metabolites thatwere correlated
with thorax width (Supplemental Table S9A). A total of 94 metab-
olites were uniquely associated with one trait and 63 metabolites
were associated with two to four traits. Correlations for most traits
involved metabolites across at least five super pathways (Fig. 6A).
However, variation in lifespan only correlated with metabolic
pathways of lipids, carbohydrates, and amino acids. Variation in
body weight and thorax width also correlated predominantly
with variation in levels of lipid metabolites (Fig. 6A).

In males, we identified 190 metabolites that are correlated
with 13 organismal traits, including aggression (Supplemental
Table S9B). Correlated metabolites ranged from seven with body
weight to 39 with starvation resistance. We observed that 122 me-
tabolites were correlated with only a single trait, while 65 correlat-
ed with two or three traits. As in females, correlations for most
traits involved metabolites across at least five super pathways
(Fig. 6B). Variation in free glycerol and glycogen correlated pre-
dominantly with lipid metabolites, whereas variation of body

A B

Figure 2. Modulated modularity clustering of metabolites across the 40 DGRP lines in females (A) and males (B). Modules are ordered from the top left
corner to the bottom right corner based on the average absolute correlation of each module.
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weight correlated with variation in metabolic pathways of lipids,
amino acids, and nucleotides (Fig. 6B).

In addition to individual metabolites, we identified 77 PCs
from21modules and 92 PCs from 29modules that were correlated
with the same set of organismal traits in females andmales, respec-
tively (Supplemental Table S9C, D). Among those, 49 and 59 PCs
were uniquely correlated with one trait and the others with
two or three traits. The absolute correlation coefficients ranged
from |r| = 0.31 to |r| = 0.60. In both females andmales, PCs that cor-
related with variation in lifespan had the highest average absolute
correlation coefficients.

We examined phenotypic correlations between the 13 tested
traits and found for both females and males (Supplemental Table
S10) that free glycerol was correlated with triglyceride, total pro-
tein was correlated with body weight, and thorax width was corre-

lated with thorax length, as would be expected. In males, body
weight and thorax length are correlated with free glucose and total
protein, whereas in females, body weight is correlated with glycer-
ol and triglyceride levels. Starvation resistance in males is correlat-
ed with glycogen and waking activity but negatively correlated
with thorax length, whereas in females, starvation resistance is
positively correlated with free glucose and lifespan.

Next, we performed clustering analyses among these traits
based on their correlation patterns across metabolites and module
PCs to assess to what extent variation in different organismal traits
is influenced by commonaspects of the organization of themetab-
olome (Fig. 7). Clustering analyses recapitulate the relationship be-
tween correlated traits. These analyses also revealed hidden
pleiotropic relationships. For example, aggression is clustered
with startle response, and they both are clustered with lifespan in

Figure 3. Polymorphic markers associated with variation in metabolites at a Bonferroni-corrected threshold of significance in females. Metabolites and
polymorphic markers are ordered according to the modules identified in Figure 2 and color-coded. Black symbols represent polymorphic markers that are
associated with metabolites that are not contained in modules.
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males; waking activity is clusteredwith triglyceride and free glycer-
ol in females. This clustering is not due to uniformly positive or
negative correlations with the same metabolites; rather, it reveals
both agonistic and antagonistic pleiotropic relationships which
would not be detectable when considering only phenotypic corre-
lations without accounting for their metabolomic associations.

Networks that incorporate genetic variation in gene expression

with variation in metabolites and organismal traits

Transcriptional profiles were also obtained through directional
RNA-seq from 39 of the 40 lines (Everett et al. 2020). In total,
17,295 annotated genes and 22,726 novel transcripts were cap-
tured. In females, expression of 9640 genes and 1644 novel tran-
scripts were significantly variable across the 39 lines, and 9532
genes and 3204 novel transcripts were differentially expressed in
males (Supplemental Table S11).

To exclude correlations caused by extreme lines, we per-
formed Spearman’s rank correlations between genetically variable
transcripts and metabolites. We began this analysis with the me-
tabolites correlated with each of the different traits, separately
for males and females (Supplemental Table S9). We then focused
on transcript andmetabolite pairs with Spearman’s correlation co-
efficients greater than 0.45 and identified genetic variants associat-
ed with variation of both gene expression (eQTLs) and metabolite
abundance (mQTLs):meQTLs. We then identified meQTLs that
were also associated with each of the organismal quantitative traits
(Supplemental Table S12). This enabled us to construct integrated
networks (Supplemental Fig. S1).

We present examples of integrated networks for starvation re-
sistance for females (Fig. 8A) and males (Fig. 8B) and for male ag-
gression (Fig. 9). These networks reveal metabolites that are
regulated by multiple gene products, and for starvation resistance,
highlight sexual dimorphism (Fig. 8). The integrated network for

Figure 4. Polymorphic markers associated with variation in metabolites at a Bonferroni-corrected threshold of significance in males. Metabolites and
polymorphic markers are ordered according to the modules identified in Figure 2 and color-coded. Black symbols represent polymorphic markers that
are associated with metabolites that are not contained in modules.
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females shows that metabolites connect-
ed by common genetic variants are often
members of the same metabolic super
pathways (Fig. 8A). In contrast, in males,
metabolites connected by common ge-
netic variants often belong to different
metabolic super pathways (Fig. 8B).
These observations recapitulate themod-
ular organization revealed by modulated
modularity clustering (Supplemental
Table S4). Pathways featuring peptide
and amino acid metabolism are promi-
nent in the female network, whereas lip-
id metabolism is especially apparent in
the male network. Thus, distinctly differ-
ent genetic and metabolic underpin-
nings govern variation in starvation
resistance in males and females (Fig. 8).

The integrative network formale ag-
gression shows ensembles of metabolites
with distinct positive and negative
correlations with phenotypic variation.
Metabolites directly associated with
energy release, including Krebs cycle in-
termediates and carnitine esters that
transport fatty acids into the mitochon-
dria for β-oxidation, feature prominently
in the network (Fig. 9).

Metabolome-based prediction of

organismal phenotypes

We asked to what extent genetic varia-
tion in metabolites and module PCs can
predict organismal phenotypes. We first
conducted comparisons between whole
genome prediction (using all common
SNPs), predictions based on polymor-
phisms associated with variation in
metabolites (mQTL), and metabolite

A B

Figure 5. Relative representations of Gene Ontology categories for molecular activities of annotated candidate genes associated with variation in me-
tabolites and module PCs for females (A) and males (B).

A

B

Figure 6. Distribution of metabolic super pathways with metabolites correlated with variation in or-
ganismal phenotypes in females (A) and males (B). The widths of the columns indicate the relative num-
bers of metabolites correlated with variation of the traits.
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prediction, using best linear unbiased prediction (BLUP) with
leave-one-out cross-validation.

We compared prediction accuracy using genome-wide SNPs
with MAF>0.05, all variable metabolites, common SNPs and var-
iable metabolites, SNPs associated with variable metabolites
(mQTLs), andmetabolites. For most of the traits, neither common
SNPs nor metabolites provide accurate predictions of the pheno-
type, except for starvation resistance in both males and females
and free glucose levels in males, where analysis of variation in me-
tabolites yielded good predictive values (Fig. 10).

Next, we asked whether enriching those metabolites that are
associated with variation of a particular phenotype in the model
would increase prediction accuracy of that phenotype. We com-
pared all variable metabolites as well as those metabolites
enriched for association with particular traits in the training
set at P-values of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. All traits showed
improved prediction accuracy using an enriched set of metabo-
lites previously associated with these traits in one or both sexes

(Fig. 11). However, the level of enrichment that produces the
best prediction accuracy varies for different traits and between
sexes.

We used the elastic net regularization to build trait-specific
models, separately for males and females. In addition, we also
used metabolomic module PCs to predict phenotypes and also
combined both individual metabolites and module PCs to see
whether there would be an improvement in prediction accuracy
(Fig. 12).We found that the combination of individualmetabolites
and module PCs did not increase prediction accuracies over the
better of the metabolite and module PC models.

In summary, for most traits enrichment for metabolites
known to be associated with variation in a particular phenotype
in the training set increases the prediction accuracy for that phe-
notype. Finally, predictionmodels are trait-specific and sex-specif-
ic, indicating that themetabolomic underpinnings that contribute
to phenotypic variation are different for different traits and be-
tween the sexes.

A

B

Figure 7. Hierarchical clustering analysis of different traits based on common correlated metabolites and module PCs for females (A) and males (B). The
diamond symbols indicate distances chosen to determine the appropriate number of clusters.
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Discussion

Previous studies have associated genetic variation with metabolic
phenotypes in human populations (Gieger et al. 2008; Illig et al.
2010; Suhre et al. 2011; Shin et al. 2014) and model organisms
(Klenø et al. 2004; Gilliland et al. 2006; Keurentjes et al. 2006;
Martin et al. 2007; Wentzell et al. 2007; Schauer et al. 2008; Fu
et al. 2009; Riedelsheimer et al. 2012; Breunig et al. 2014; Reed
et al. 2014; Williams et al. 2015; Dumas et al. 2016; Fernie and
Tohge 2017; Swain-Lenz et al. 2017). Disease-centered high di-
mensional multi-omic analyses have provided insight into the re-
lationship between genetic variation and susceptibility to diseases
(Hood et al. 2004; Prabakaran et al. 2004; Ibrahim and Gold 2005;
Samuel et al. 2008). However, to date, a comprehensive integration
of genome-wide variants with variation in gene expression, the
metabolome, and organismal phenotype along with metabo-
lome-based phenotypic prediction has not been reported for any
genetically well-defined model organism population, and few
studies have attempted to predict phenotypes based on variation
in the metabolome while accounting for interdependence of me-
tabolites. Furthermore, metabolome-centered genetic studies rare-
ly compare differences between females andmales. Human studies
have been limited by sample sizes (Illig et al. 2010; Shin et al.
2014), plant and yeast models are not amenable to studies of sex
differences (Chan et al. 2010; Breunig et al. 2014), and most inte-
grative studies in Drosophila have been performed at the larval
stage (Reed et al. 2014; Williams et al. 2015). Our study represents
the first comprehensive systems genetics analysis that tracks sex-
ual dimorphism at each level of analysis, from genetic associations
to the metabolome and organismal phenotypes.

We observed extensive sexual dimorphism in themodular or-
ganization of the metabolome, in line with previous studies
(Hoffman et al. 2014), as well as in the composition of networks
that integrate genomic and metabolomic variation with variation

in organismal phenotypes. For example, evidence that energy me-
tabolism ismanaged differently between the sexes comes from our
observation that body weight in males is correlated with glucose
and protein levels, whereas in females it is correlated with glycerol
and triglyceride levels.

A genome-wide association study of natural variation in the
metabolome of Arabidopsis thaliana found that genetic variants as-
sociated with variation inmetabolite levels occur as nonrandomly
distributed hotspots in genomic regions that may have undergone
selective sweeps (Keurentjes et al. 2006; Wentzell et al. 2007; Lisec
et al. 2008; Rowe et al. 2008; Chan et al. 2010). We did not observe
evidence for such hotspots in our MWAS. Furthermore, whereas
eQTL in A. thaliana corresponded poorly with metabolite levels
(Fu et al. 2009), we observed substantial concordance between
eQTL and variation inmetabolite abundances, which is consistent
with findings in human studies (Shin et al. 2014).

Most DGRP lines harbor segregating inversions, which are is-
lands of heterozygosity. In addition, ∼50% of the DGRP lines
are infected with the endosymbiont Wolbachia pipientis (Huang
et al. 2014). Inversions and Wolbachia infection can affect organ-
ismal phenotypes and possibly metabolite variation; further,
all segregating sites must be treated as missing data in these anal-
yses. For these reasons, we selected 40 unrelated lines that are
free of inversions and Wolbachia. Increasing the sample size to
include more DGRP lines would provide greater statistical power,
which might expand the networks presented in Figures 8 and
9. However, the scope of the present study proved sufficient
to resolve the modular organization of the metabolome and its re-
lationship to both genomic variants and variation in complex
traits.

We opted to focus our studies on whole flies, since complex
traits are manifestations of the entire individual. The organization
of the metabolome, however, is likely to vary among different tis-
sues (Chintapalli et al. 2013), and further studies would be needed

A B

Figure 8. Integrated networks that incorporate polymorphic markers, variation in candidate gene expression, and variation in metabolite abundances
associated with variation in starvation resistance for females (A) andmales (B). Orange nodes indicate metabolites correlated with starvation resistance and
teal nodes indicate candidate genes correlated with these metabolites. Black nodes indicate mQTL associated with candidate genes. Nodes with red bor-
ders indicate a direct association with the organismal phenotype. The different shapes of the orange nodes indicate different metabolic super pathways.
Red edges indicate positive correlations, while blue edges represent negative correlations. Black edges connect polymorphic markers with their associated
genes. The polymorphic markers, candidate genes, and metabolites presented in the figure are listed in Supplemental Table S12.
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to provide a detailed documentation of tissue-specific specializa-
tions of the metabolome.

The integrative networks we derived (Figs. 8, 9) visualize the
complex interconnections between meQTL, eQTL, metabolites,
and organismal traits and enable identification of coregulated me-
tabolites and pleiotropic relationships. These networks are biolog-
ically plausible. The network that underlies male aggression
illustrates the dependence of aggressive behavior on energy sup-
ply, highlighting Krebs cycle intermediates and carnitine esters
that transport fatty acids into the mitochondria for β-oxidation
(Fig. 9). Networks associated with starvation resistance demon-
strate how different genomic regulation and metabolic underpin-
nings govern variation in starvation resistance in males and
females (Fig. 8).

It is of interest that neural and tissue development are en-
riched Gene Ontology categories associated with variation in the
metabolome, suggesting that developmentally induced variation
plays a role in determining variation in the adult metabolome.
Previous studies have shown that cellular metabolism plays a crit-
ical role in the differentiation of neural stem cells (Knobloch and
Jessberger 2017). While quiescent stem cells mostly rely on glycol-

ysis, proliferating stem cells switch
to lipogenesis (Chorna et al. 2013;
Knobloch et al. 2013).

Whereas genetically variablemetab-
olites have substantial heritabilities, en-
vironmental effects on the total
variance cannot be ignored. The studies
presented here do not capture the dy-
namics of the metabolome in response
to environmental or physiological
changes but provide a snapshot of the
relationships between the genome,
metabolome, and organismal pheno-
types at a single controlled age and rear-
ing environment.

Although we used univariate corre-
lation in our network analyses, we are
aware that gene-gene interactions and
the interdependence of metabolic path-
ways give rise to nonlinear relation-
ships; for example, phosphorylation of
enzymes by polymorphic genes that en-
code kinases may precipitate indirect
wide-ranging effects onmetabolite abun-
dances. In fact, we found that all meQTL
identified in our networks are trans eQTL
to genes correlated with metabolites.
This also reflects the complex interac-
tions at the level of the genome, tran-
scriptome, and proteome, which are
ultimately channeled to the metabo-
lome, which is most proximal to the
organismal phenotype. Thus, the
metabolome can be viewed as a mecha-
nistic conduit that translates genetic var-
iation into variation in organismal
phenotypes.

Finally, we are aware that our
metabolome-based prediction study is
based on a small sample size of 40 lines
and that larger sample sizes could im-

prove the accuracy of metabolome-based prediction. However,
our observations constitute a “proof-of-concept” that metabolites
can be good predictors of phenotypes and that even with a small
training set, phenotypic prediction based on variation of the
metabolome can yield greater accuracy than predictions based
on genetic variants alone.

Methods

Fly stocks

We used 40 sequenced, wild-derived, inbred DGRP lines (Mackay
et al. 2012; Huang et al. 2014): DGRP_41, DGRP_ 42, DGRP_45,
DGRP_59, DGRP_83, DGRP_91, DGRP_129, DGRP_158,
DGRP_177, DGRP_195, DGRP_208, DGRP_217, DGRP_228,
DGRP_229, DGRP_239, DGRP_307, DGRP_315, DGRP_357,
DGRP_367, DGRP_371, DGRP_375, DGRP_379, DGRP_385,
DGRP_391, DGRP_392, DGRP_399, DGRP_427, DGRP_439,
DGRP_491, DGRP_508, DGRP_509, DGRP_517, DGRP_703,
DGRP_757, DGRP_765, DGRP_774, DGRP_799, DGRP_808,
DGRP_843, DGRP_900. These 40 lines areminimally related, max-
imally homozygous, have standard karyotypes for all common

Figure 9. Integrated network that incorporates polymorphic markers, variation in candidate gene ex-
pression, and variation in metabolite abundances associated with variation in male aggression. Orange
nodes indicate metabolites correlated with aggression and teal nodes indicate candidate genes correlat-
ed with these metabolites. Black nodes indicate mQTLs associated with candidate genes. Nodes with red
borders indicate a direct association with the organismal phenotype. The different shapes of the orange
nodes indicate different metabolic super pathways. Red edges indicate positive correlations, while blue
edges represent negative correlations. Black edges connect polymorphic markers with their associated
genes. The polymorphic markers, candidate genes, and metabolites presented in the figure are listed
in Supplemental Table S12.

Zhou et al.

400 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243030.118/-/DC1


polymorphic inversions, and are not infected with Wolbachia
pipientis. Fly lines were reared on cornmeal-molasses-yeast medi-
um at 25°C under a 12-h light-dark cycle. We collected three repli-
cates of 100 flies fromeach line, sexes separately, whichwere flash-
frozen and stored at −80°C. All 240 samples were sent to
Metabolon, Inc. for metabolomic profiling.

Metabolomic profiling

Samples were prepared by Metabolon, Inc. using the automated
MicroLab STAR system fromHamilton Company. Several recovery

standards were added prior to the first
step in the extraction process for QC pur-
poses. To remove protein, dissociate
small molecules bound to protein or
trapped in the precipitated protein ma-
trix, and to recover chemically diverse
metabolites, proteins were precipitated
with methanol under vigorous shaking
for 2 min (Glen Mills GenoGrinder
2000), followed by centrifugation. The
resulting extract was divided into five
fractions: two for analysis by two sepa-
rate reverse phase (RP)/UPLC-MS/MS
methods with positive ion mode electro-
spray ionization (ESI), one for analysis by
RP/UPLC-MS/MS with negative ion
mode ESI, one for analysis by HILIC/
UPLC-MS/MS with negative ion mode
ESI, and one sample was reserved for
backup. Samples were placed briefly on
a TurboVap (Zymark) to remove the or-
ganic solvent. The sample extracts were
stored overnight under nitrogen before
preparation for analysis.

Raw data were extracted, peak-
identified, and QC-processed using
Metabolon’s hardware and software.
Compounds were identified by compari-
son to library entries of purified stan-
dards or recurrent unknown entities.
Peaks were quantified using area-under-
the-curve. A data normalization step
was performed to correct variation result-
ing from instrument inter-day tuning
differences. Each compound was correct-
ed in run-day blocks by registering the
medians to equal one (1.00) and normal-
izing each data point proportionately.
The detailed procedure for metabolomic
profiling from Metabolon, Inc. is includ-
ed as Supplemental Methods.

Statistical and quantitative genetic

analysis

We analyzed variation of metabolites
among DGRP lines using the ANOVA
model Y= μ+L+ S +L×S+ ɛ, where Y is
the observed value, μ the mean, L (line)
is a random effect, S (sex) is fixed, and ɛ
is the error variance. We also analyzed
variation of metabolites for sexes sepa-
rately, using the reduced model Y= μ+ L
+ ɛ. We estimated variance components

with the restricted maximum likelihood method and calculated
broad sense heritability as H2 = s2

G/s
2
P , where s2

G is the total ge-
netic variation (s2

L + s2
L×S) and s2

P is the total phenotypic varia-
tion, where s2

P = s2
G + s2

1 (Falconer and Mackay 1996).
To assess correlations between metabolites, we performed

modulated modularity clustering on genetically variable metabo-
lites (FDR<0.05 from reduced ANOVAmodels) for sexes separately
(Stone and Ayroles 2009). We then conducted principal compo-
nent analyses for eachmodule.We retained PCs that cumulatively
explained >90% of the variation for each module for subsequent
analyses.

A

B

Figure 10. Comparisons of prediction accuracy using genome-wide SNPs withMAF>0.05, all variable
metabolites, common SNPs, and variable metabolites, all module PCs, SNPs associated with variable me-
tabolites or module PCs (mQTLs), and metabolites for females (A) and males (B).
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Genome-wide association

To obtain metabolite QTL (mQTL), we performed GWA analyses
for individual metabolites, sexes separately. We used 1,561,516
bi-allelic single nucleotide polymorphisms and deletions and in-
sertions with minor allele frequencies greater than 0.1, using the
DGRP pipeline (Huang et al. 2014). We also performed GWA anal-
yses for each module-PC to account for interacting metabolites.

Quantitative trait phenotypes

We retrieved phenotypic data documented from previous publica-
tions on the same fly lines for starvation resistance, startle re-

sponse, waking activity, and virgin
lifespan for both sexes, as well as inter-
male aggression (Harbison et al. 2004,
2013; Jumbo-Lucioni et al. 2010; Huang
et al. 2012; Ivanov et al. 2015; Shorter
et al. 2015).

To measure body weight and size,
we collected 10 replicates of 10 flies per
line and sex into preweighed 1.7-ml
tubes and weighed and flash-froze them
for downstream analyses. Virgin flies
were used to avoid body weight variation
due to variation in egg production. In ad-
dition, we measured thorax length and
thorax width as metrics for body size.

Frozen flies were homogenized in
250 μL Dulbecco’s phosphate-buffered
saline, and after gentle centrifugation,
supernatants were collected for measure-
ments of free glucose, glycogen, free
glycerol, triglyceride, and total protein
(further diluted 10-fold). For free glucose
and glycogen, samples were denatured at
95°C for 25 min to prevent glycogeno-
lysis. Measurements were done follow-
ing protocols provided by the Glycogen
Colorimetric/Fluorometric Assay Kit
(BioVision). For free glycerol and triglyc-
eride, we used the SerumTriglyceride De-
termination Kit (Sigma Aldrich), and
incubated samples with the Triglyceride
Reagent for 1 h at 37°C. For total protein
measurement, we used the Qubit Protein
Assay Kit (Thermo Fisher Scientific).

Correlations between genetic variants,

metabolites, and organismal phenotypes

We identified metabolites correlated
with different phenotypes using Spear-
man’s correlations at a nominal P-value
<0.05. We identified genes correlated
with these metabolites at a Spearman’s
correlation coefficient threshold |r| >
0.45. Next, we identified mQTLs that
were also associated with these genes
for each metabolite at a metabolite-
specific Bonferroni threshold [P<0.05/
(number of mQTLs associated with the
particular metabolite)]. For each trait, ge-
netic polymorphisms, transcripts, and
metabolites generated from the above
analyses were used to construct integrat-

ed networks. Polymorphisms and genes were highlighted if they
were directly associated or correlated with the focal trait at a nom-
inal P-value <0.05.

Metabolome-based prediction

Standard BLUP analysis

The best linear unbiased predictor was used to predict phenotypes
(Robinson 1991). It is a linear mixed model where the covariance
among the random effects is modeled through the use of one or
more kernel matrices. In the present studies, several kernels that
measure the similarity among lines based on different features

A

B

Figure 11. Comparisons of prediction accuracy using all variable metabolites or metabolites enriched
for association with particular traits at P-values of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, for females (A) and
males (B).
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were used. The features consisted of: all common SNPs, all metab-
olites, all module PCs and mQTLs (associated with single metabo-
lites or module PCs).

Kernels for each feature type were built as K=WW′/p where
W is a centered and scaled n× p feature matrix, n is the number
of lines, and p is the number of features (Guo et al. 2016). One
or two kernel BLUP models were implemented as follows:

1. One kernel model: y=1μ+gK+e, where y is an n-vector of line
mean phenotype, 1 is an n-vector of ones, µ is the population
mean, gK is an n-vector of random line effects
[gK � N(0, Ks2

K)], and e is an n-vector of random residual
effects[e � N(0, Is2

e )]. K is a kernel from the list above; I is the
identity matrix.

2. Two kernel model: y=1μ+gK1 +gK2 +e, where y is an n-vector
of line mean phenotypes, 1 is an n-vector of ones, µ is the pop-
ulationmean, gK1 is an n-vector of random line effects associat-

ed with K1[gK1 � N(0, K1s
2
K1)], gK2 is an n-vector of random

line effects associated with K2[gK2 � N(0, K2s
2
K2)], and e is an

n-vector of random residual effects [e � N(0, Is2
e )]. K1 and K2

are two kernels from the list above; I is the identity matrix.

In order to avoid overfitting and to maximize the power to esti-
mate variance components given the small sample size, all the
models were implemented in a leave-one-out cross-validation set-
ting. At each round of the cross-validation, one line was removed
from the training set where the variance components were esti-
mated. Using the estimated variance components, the phenotype
for the omitted line, that is, test set, was predicted. Accuracy of pre-
diction was evaluated as the correlation coefficient between true
and predicted phenotypes.

Combined MWAS-BLUP analysis

To parse out the true signal from noise in a trait-specific manner, a
combined mapping and prediction analysis was performed with
single metabolites. At each round of cross-validation, a single me-
tabolite regression (MWAS)was performed in the training set using
a linear model. The metabolites with P< x (with x=0.5; 0.4; 0.3;
0.2; 0.1; 0.05) were selected and used to build a kernel as described
in the previous section. Variance components were still estimated
in the training set, and the phenotype of the line in the test set was
predicted using the standard BLUP procedure. Accuracy of predic-
tion was again evaluated as the correlation coefficient between
true and predicted phenotypes.

Elastic net analysis

To identify the maximum prediction accuracy from metabolites
and module PCs, we also performed predictions using elastic net
regularization (Zou and Hastie 2005). We used individual metabo-
lites, module PCs, and individual metabolite and module PC data
combined for phenotype prediction and identified λ and α values
through grid-searches that produced the highest prediction
accuracies.

Data access

DGRP lines are available from the Drosophila stock center
(Bloomington, IN). All raw and processed sequencing data generat-
ed in this study have been submitted to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE117850.
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