
NEW RESEARCH HORIZON

Revisiting oocyte–somatic cell interactions: in search of novel
intrafollicular predictors and regulators of oocyte
developmental competence

Qinglei Li1, Laurie J. McKenzie1,2 and Martin M. Matzuk1,3,4,5

1Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; 2Houston IVF, Memorial Hermann

Memorial City Hospital, Houston, TX 77024, USA; 3Department of Molecular and Cellular Biology, Baylor College of Medicine,

One Baylor Plaza, Houston, TX 77030, USA; 4Department of Molecular and Human Genetics, Baylor College of Medicine,

One Baylor Plaza, Houston, TX 77030, USA

5Correspondence address: Tel: þ1 713-798-6451; Fax: þ1 713-798-5833; E-mail: mmatzuk@bcm.tmc.edu

Prediction and improvement of oocyte competence are two critical issues in assisted reproductive technology to improve infertility

therapy. The lack of reliable and objective predictors of oocyte developmental competence for oocyte/embryo selection during

in vitro fertilization hampers the effectiveness of this technology. Likewise, the low pregnancy rate resulting from in vitro matu-

ration of human oocytes represents a major obstacle for its clinical application. Oocyte competence is progressively acquired

during follicular development, and the oocyte plays a dominant role in regulating granulosa cell functions and maintaining the

microenvironment appropriate for the development of its competence. Hence, granulosa cell functions are reflective of oocyte

competence, and molecular markers of granulosa cells are potentially reliable predictors of oocyte quality. With the advent of

the functional genomics era, the transcriptome of granulosa cells has been extensively characterized. Experimental data support-

ing granulosa cell markers as predictors of oocyte competence are now emerging in both animal models and humans. Future

efforts should focus on integrating granulosa cell genetic markers as parameters for oocyte/embryo selection. Moreover, novel

in vitro evidence highlights the effectiveness of exogenous oocyte-secreted factors in promoting oocyte developmental competence

in animal models. The challenge in evaluating the effect of oocyte-secreted factors on oocyte quality in a clinical setting is to stan-

dardize the various preparations of these recombinant proteins and decipher their complex interactions/cooperativity within the

germline-somatic cell regulatory loop.

Introduction

Two key technical issues to be resolved in assisted reproductive tech-

nology (ART) are the lack of objective and reliable predictors of

oocyte developmental competence and the low successful rate of in

vitro maturation (IVM). Oocyte competence is defined as the intrinsic

ability of oocytes to undergo meiotic maturation, fertilization,

embryonic development and successful pregnancy. Hence, utilization

of the most competent oocytes during in vitro fertilization (IVF) is

crucial to ensure the derivation of high-quality embryos and successful

pregnancy. The morphological parameters of the cytoplasm, polar

body and cumulus cells are routinely used for oocyte selection

(Coticchio et al., 2004; Wang and Sun, 2007). However, the morpho-

logical criteria for grading and screening of oocytes are subjective and

controversial (Serhal et al., 1997; Balaban et al., 1998). Thus, defining

objective and noninvasive molecular markers predictive of oocyte

competence is of critical importance. Moreover, since single-embryo

transfer (SET), which has the key advantage of preventing multiple

pregnancies (Gerris, 2005; Karlstrom and Bergh, 2007; Khalaf

et al., 2008), will tend to be a norm in the future (Nygren, 2007), it

is urgent to develop such a reliable diagnostic approach to identify

the best quality embryo among those available for transfer. Notably,

acquisition of oocyte competence is closely associated with normal

follicular development, whereby the oocyte plays an active role in reg-

ulating the functions of surrounding somatic cells (i.e. cumulus cells

adjacent to the oocyte and mural granulosa cells lining the follicle

wall) (Eppig et al., 1997, 2002; Eppig, 2001; Matzuk et al., 2002).

Therefore, identification of key molecules and signaling pathways

within the oocyte–cumulus cell regulatory loop will be instrumental

in gaining deep insights into the intricate mechanisms underlying

the development of oocyte competence and uncovering novel regula-

tors and reliable molecular predictors of oocyte quality. These efforts

will ultimately lead to improved efficiency and health outcomes (i.e.

reduced prematurity/perinatal mortality rate and maternal and pedi-

atric complications) of ART.
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Crosstalk between oocytes and somatic cells: old
story conveys new messages

Folliculogenesis is coordinately regulated by both endocrine and

intraovarian factors; the fundamental roles of gonadotrophins and

gonadotrophin-mediated signaling in multiple reproductive events

including cumulus expansion and acquisition of oocyte competence

have been well characterized and documented (Kumar et al., 1997;

Thomas et al., 2003; Ma et al., 2004; Park et al., 2004; Conti et al.,

2006; Sirard et al., 2007). This article mainly focuses on the

recent advances in understanding the contribution of intraovarian

factors, especially oocyte-produced factors, to oocyte developmental

competence.

It is known that bidirectional interactions between the oocytes and

surrounding somatic cells through gap junctions and paracrine signal-

ing are pivotal in maintaining the growth and development of both cell

types during folliculogenesis (Eppig, 1991, 2001; Eppig et al., 1997,

2002; Matzuk et al., 2002). Instead of being a passive recipient of

nutritional support and regulatory signals from its companion granu-

losa cells, the oocyte plays an active role throughout folliculogenesis

via secretion of paracrine factors that maintain an appropriate micro-

environment for the acquisition of its developmental competence

(Dong et al., 1996; Eppig et al., 1997, 2002; Eppig, 2001; Gilchrist

et al., 2004). Importantly, oocytes specify the phenotype of adjacent

cumulus cells, which is essential for oocyte development and

cumulus cell function (Eppig et al., 1997; Li et al., 2000; Diaz

et al., 2007). Furthermore, the SMAD2/3 pathway, one of the path-

ways downstream of transforming growth factor b (TGFb) superfam-

ily ligands in mammals, mediates oocyte signals that contribute to the

specification of mouse cumulus cell lineage and cumulus expansion

(Diaz et al., 2007; Dragovic et al., 2007). Studies on Smad2/3 con-

ditional knockout mice in our group indicate that ovarian SMAD2

and SMAD3 are indispensable for normal cumulus expansion in

mouse (Li et al., 2008). The requirement of SMAD2/3 signaling in

the initiation of cumulus expansion and induction of cumulus

expansion-related genes (Diaz et al., 2007; Dragovic et al., 2007) as

well as the defective cumulus phenotype manifested in Smad4 con-

ditional knockout model (Pangas et al., 2006) reemphasize the funda-

mental role of oocyte-secreted factors of the TGFb superfamily in

promoting cumulus cell function. Although the nature of the

cumulus expansion-enabling factors is still unclear, it is highly poss-

ible that growth differentiation factor 9 (GDF9) and other oocyte-

secreted factors are the candidates [e.g. bone morphogenetic protein

15 (BMP15)]. GDF9 can signal through SMAD2/3 to regulate granu-

losa cell function (Kaivo-Oja et al., 2003; Gilchrist et al., 2006).

GDF9 induces the expression of expansion-related transcripts [pen-

traxin 3 (Ptx3), hyaluronan synthase 2 (Has2), tumor necrosis factor

alpha-induced protein 6 (Tnfaip6) and prostaglandin-endoperoxide

synthase 2 (Ptgs2)] in mouse granulosa cells in vitro (Elvin et al.,

1999a; Varani et al., 2002). Another attractive candidate is BMP15,

which can also regulate the function of murine granulosa cells

(Otsuka et al., 2000, 2001; Otsuka and Shimasaki, 2002). Cumulus

expansion and subsequent ovulation are the result of a coordinated

bidirectional communication between oocytes and their companion

somatic cells (Russell and Robker, 2007). Thus, the granulosa cell

pathways are regulated by the oocyte, and the functional properties

of the granulosa cells, especially cumulus cells, are reflective of

oocyte quality and the integrity of signaling machinery in the granu-

losa cell compartment. On the basis of this concept, gene expression

profiling of granulosa cells may indirectly provide novel and reliable

parameters to assess oocyte competence.

The transcriptional activity of the oocyte genome and the matu-

ration of oocytes are modulated through the dialog between oocytes

and somatic cells during follicular development (Eppig, 1991; Goud

et al., 1998; De La Fuente and Eppig, 2001; Luciano et al., 2005).

The oocytes are supported and nurtured by the closely associated

somatic cells in ovarian follicles, and oocyte growth, meiotic resump-

tion and function are regulated by granulosa cells (Eppig, 1991). For

example, it has been well established that granulosa cell-secreted

KIT ligand (KITL) can bind to its receptor, KIT, which is localized

on the oocyte surface, to stimulate oocyte growth (Packer et al.,

1994). Indeed, KITL is regulated by oocyte-secreted factors (Elvin

et al., 1999b; Joyce et al., 2000; Otsuka and Shimasaki, 2002), and

oocytes from Gdf9 null mice have increased growth rate owing to

the loss of inhibitory effects of GDF9 on Kitl expression (Carabatsos

et al., 1998; Elvin et al., 1999b). A recent study from the Gilchrist

group (Hussein et al., 2005) demonstrated that oocyte-secreted

factors, especially BMP15 and BMP6, protect the cumulus cells

from undergoing apoptosis by establishing a morphogenic paracrine

gradient of BMPs. Undoubtedly, the oocyte will benefit from the

microenvironment where cumulus cells can appropriately maintain

their viability. These results provide additional compelling evidence

that an oocyte creates a favorable microenvironment by utilization

of its own surrounding somatic cells (Hussein et al., 2005). An inter-

esting question is thereby posed: can oocyte-secreted factors be

applied in vitro to enhance oocyte quality (Hussein et al., 2006;

Gilchrist and Thompson, 2007; Yeo et al., 2008)? The following sec-

tions will briefly review recent progress in this field, with a focus on

the potential of cumulus genes and oocyte-secreted factors as the

respective predictors and regulators of oocyte competence.

Can granulosa cell-expressed markers become
molecular predictors of oocyte competence?

Cumulus/mural granulosa cells are typically discarded during IVF and

intracytoplasmic sperm injection. These cells are easily accessible and

plentiful, which makes them an ideal material to utilize for the poten-

tial assessment of oocyte quality and embryo development potential.

With the increasing desire to implement more objective and reliable

criteria for oocyte/embryo selection, a significant amount of research

has been recently conducted using both animal models and clinical

patients to evaluate the granulosa cell gene signature(s) as molecular

predictors of oocyte competence (McKenzie et al., 2004; Zhang et al.,

2005; Cillo et al., 2007; Feuerstein et al., 2007; Assidi et al., 2008;

Bettegowda et al., 2008; Hamel et al., 2008). Oocyte gene expression

profiles have also been investigated in correlation with oocyte compe-

tence (Patel et al., 2007; Hamatani et al., 2008), which is beyond the

focus of this review.

With the advent of the functional genomics era, it has become poss-

ible to identify the transcriptome of granulosa cells using high

throughput technology such as microarray. Evidence supporting gran-

ulosa cell gene markers as predictors of oocyte competence is now

emerging. By using suppressive subtractive cDNA hybridization and

microarray technologies, the Sirard group (Assidi et al., 2008) identi-

fied several potential cumulus cell markers of bovine oocyte compe-

tence including several GDF9 target genes [i.e. HAS2, TNFAIP6,

PTGS2 and gremlin 1 (GREM1)] (Elvin et al., 1999a; Varani et al.,

2002; Pangas et al., 2004). Other candidates identified are inhibin

bA (INHBA), epidermal growth factor receptor (EGFR), betacellulin

(BTC) and CD44 molecule (CD44) (Assidi et al., 2008). Another

recent study using a bovine ‘poor oocyte competence’ model (prepu-

bertal calf model) and microarray analysis found that the transcript

abundance of genes encoding the cathepsin family of cysteine protein-

ases (CTSB, CTSS and CTSZ) is negatively associated with bovine

oocyte competence (Bettegowda et al., 2008). The potential role of

these genes in apoptosis has been proposed by the authors as treatment
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of cumulus–oocyte complexes (COCs) with cysteine proteinase

inhibitor during IVM can reduce apoptotic cumulus cells and

enhance the embryonic development potential of the oocytes (Bette-

gowda et al., 2008).

In search of potential human granulosa cell markers to complement

the morphological criteria toward oocyte/embryo selection, our group

found that the quality of human oocytes is correlated with transcript

abundance for specific GDF9 targets (i.e. HAS2, PTGS2 and GREM1)

in the cumulus cell compartment (McKenzie et al., 2004). A subsequent

study supported that HAS2 and GREM1 are candidate cumulus markers

predictive of oocyte competence (Cillo et al., 2007). However, there

is some controversy regarding the association of cumulus PTX3

abundance with oocyte quality (McKenzie et al., 2004; Zhang et al.,

2005; Cillo et al., 2007). Recently, Feuerstein et al. (2007) reported

that a number of genes including PTGS2, steroidogenic acute protein

(STAR), amphiregulin (AREG), stearoyl-co-enzyme A desaturase 1

and 5 (SCD1 and SCD5) are associated with oocyte nuclear maturation

and their transcript levels are elevated after meiosis resumption. Inter-

estingly, lower cumulus mRNA abundance of the aforementioned

genes as well as connexin 43 (CX43) is present in MII oocytes that

develop to blastocysts (Feuerstein et al., 2007).

Microarray technology is now being applied to define the gene

expression profiles of human ovarian somatic cells in correlation

with oocyte developmental competence (Hamel et al., 2008; van Mon-

tfoort et al., 2008). One study compared granulosa cell (mainly mural

granulosa cell) gene expression profiles between follicles associated

with successful pregnancy and those associated with arrested

embryo development during IVF (Hamel et al., 2008). Identified can-

didates that positively correlate with oocyte development potential

include, but not limited to, genes associated with steroidogenesis

[hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid

delta-isomerase 1 (HSD3B1), ferredoxin 1 (FDX1) and cytochrome

P450 (CYP19A1)] and genes with potential involvement in apoptosis

[serpin peptidase inhibitor clade E member 2 (SERPINE2) and cell

division cycle 42 (CDC42)] (Hamel et al., 2008). Another study

attempted to identify differentially expressed genes between

cumulus cells derived from oocytes that develop to early cleavage

(EC) embryos and cumulus cells from oocytes that fail to develop

into EC (NEC) embryos (van Montfoort et al., 2008). The transcripts

of genes increased in NEC samples [glutathione peroxidase 3 (GPX3),

chemokine receptor 4 (CXCR4), stress-induced apoptosis inhibitor

(HSPB1), cyclin D2 (CCND2), 7-dehydrocholesterol reductase

(DHCR7), etc.] are reflective of a potentially hypoxic state of

the cumulus cell microenvironment or delayed maturation of the

oocytes (van Montfoort et al., 2008). Surprisingly, none of the

GDF9 target genes (HAS2, PTGS2, PTX3 and GREM1) identified by

other studies (McKenzie et al., 2004; Zhang et al., 2005) is overrepre-

sented in the EC samples (van Montfoort et al., 2008).

The aforementioned studies have generated valuable information on

granulosa cell gene expression profiling associated with oocyte com-

petence in animal models and humans. However, consistent markers

predictive of oocyte competence are lacking from these studies,

although HAS2 and GREM1 emerge in three different studies

(Table I). The inconsistency of molecular markers identified by

these studies may result from the lack of a common standard used

for embryo viability/competence (e.g. EC embryo versus confirmed

pregnancy), differences in sampling (e.g. cumulus cells from individ-

ual COC versus pooled cumulus cells or mural granulosa cells) or dis-

tinct platforms utilized for genome-wide analyses. It should also be

noted that the diagnostic power will be substantially lessened if

embryos are grouped or multiple embryos are transferred in such

experiments. Therefore, more comprehensive studies which poten-

tially include SET to assess the pregnancy outcome are needed in a

clinical setting to establish/standardize objective molecular markers.

Oocyte-secreted factors: key local regulators
of oocyte competence?

Oocyte competence is profoundly affected by multiple endocrine,

paracrine and autocrine factors during oogenesis and follicular devel-

opment, the importance of which has been highlighted in culture

systems (Eppig et al., 1996; Eppig et al., 2000, 2002; Thomas et al.,

2003; Sirard et al., 2006). Herein, we focus on the perspective of

oocyte-secreted factors because of their unique roles in coordinating

folliculogenesis (Eppig, 2001; Matzuk et al., 2002) and the relative

paucity of knowledge on these factors. Oocyte-secreted factors,

especially GDF9 and BMP15, are principal regulators of follicular

development and fertility (Moore et al., 2004; Juengel and McNatty,

2005; McNatty et al., 2005). Gdf9 null mice are infertile with follicles

arrested at the one-layer primary follicle stage, indicating the essential

role of GDF9 in early folliculogenesis (Dong et al., 1996). In contrast,

targeted disruption of mouse Bmp15 results in subfertile animals with

minimal histopathological alterations in the ovary except the defective

cumulus phenotype (Yan et al., 2001). Recently, transgenic mice with

oocyte overexpression of BMP15 (a chimeric protein of human

BMP15 proregion–mouse BMP15 mature region) reveals the growth-

Table I. Granulosa cell markers potentially associated with oocyte competence.

Granulosa cell markers Subject Outcome/animal
model

Sampling Reference

Candidate gene experiment
bHAS2, PTGS2, GREM1 Human Day 3 embryo CCs from individual COC (McKenzie et al., 2004)
bHAS2, GREM1 Human Day 3 embryo CCs from individual COC (Cillo et al., 2007)
aSTAR, PTGS2, AREG, CX43, SCD1, SCD5 Human Blastocyst CCs from individual COC (Feuerstein et al., 2007)
Microarray experiment
bPTX3 Human Day 3 embryo Pooled CCs from COCs (array); CCs

from individual COC (PCR)
(Zhang et al., 2005)

bHSD3B1, FDX1, CYP19A1, SERPINE2, CDC42 Human Confirmed pregnancy Mural GCs and CCs (pooled) (Hamel et al., 2008)
aGPX3, CXCR4, HSPB1, CCND2, DHCR7,
DVL3, TRIM28, CTNND1

Human Early cleavage CCs from individual COCs (van Montfoort et al., 2008)

bHAS2, TNFAIP6, PTGS2, GREM1, INHBA,
EGFR, BTC, CD44

Cattle IVM-blastocyst rate CCs from pooled COCs (Assidi et al., 2008)

aCTSB, CTSS, CTSZ Cattle Poor oocyte quality
model

CCs from pooled COCs (Bettegowda et al., 2008)

Expression of markers is negatively (a) or positively (b) associated with oocyte competence. Only confirmed candidate genes are listed for the microarray
experiment. CCs, cumulus cells; GCs, granulosa cells; COC, cumulus oocyte complex.

Oocyte–somatic cell interactions
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promoting role of BMP15 in ovarian follicles (McMahon et al., 2008).

Our genetic studies clearly illustrate the interaction between BMP15

and GDF9 in the mouse ovary (Yan et al., 2001). Moreover, species-

specific roles of oocyte-secreted factors have also been demonstrated,

and it has been well documented that ewes carrying heterozygous

mutations of BMP15 or GDF9 have enhanced ovulation rates,

whereas ewes that are homozygous for BMP15 or GDF9 mutations

are infertile with defective follicular development (Galloway et al.,

2000; Montgomery et al., 2001; Hanrahan et al., 2004; McNatty

et al., 2005). Distinct and cooperative roles of BMP15 and GDF9 in

regulating ovulation rate in sheep were highlighted by the evidence

that carriers of single-copy mutations of both BMP15 and GDF9

have higher ovulation rates than those with single mutations of

either gene (Hanrahan et al., 2004). In corroborating the significant

roles of these oocyte-secreted factors in follicular development and

ovarian function in humans, mutations of both BMP15 and GDF9

genes have been identified in patients with premature ovarian failure

(Di Pasquale et al., 2004; Dixit et al., 2006; Laissue et al., 2006) or,

more accurately, primary ovarian insufficiency (Welt, 2008), although

the association of BMP15 mutation with this disorder warrants further

investigation (Ledig et al., 2008).

In further support of the interaction between BMP15 and GDF9, a

recent study by Su et al. (2008) demonstrates the cooperativity of

BMP15 and GDF9 in regulating cumulus cell cholesterol biosynthesis.

However, little was known about the potentially complex interactions

of the oocyte-secreted factors except GDF9 and BMP15, until the

description of the cooperativity between BMP15 and another oocyte-

produced factor, fibroblast growth factor 8B (FGF8B), in promoting

glycolysis (Sugiura et al., 2007). The above study revealed that

oocytes from Bmp152/2 mice and Gdf9þ/2; Bmp152/2 double-

mutant mice are deficient in promoting glycolysis and inducing gene

expressions of the glycolytic enzymes, platelet phosphofructokinase

(Pfkp) and lactate dehydrogenase A (Ldha). To further address the

role of GDF9 and BMP15, recombinant BMP15, GDF9 and FGF8B

proteins were tested in the cumulus cell cultures. Through examining

the various combinations of treatment, the authors demonstrated that

combination of BMP15 and FGF8B is capable of promoting glycolysis

and gene expression of glycolytic enzymes (Sugiura et al., 2007).

Since mammalian oocytes are deficient in the glycolysis pathway

and dependent on the glycolytic products from cumulus cells, the

BMP15 and FGF8B from the oocytes regulating this important func-

tion may be of particular significance for oocyte development.

Although one major advantage of IVM versus traditional IVF is to

bypass the ovarian stimulation procedure that may cause ovarian

stimulation syndrome (Rao and Tan, 2005), IVM often produces low-

quality oocytes in contrast to in vivo matured oocytes (Dunning et al.,

2007). Since oocyte-secreted factors are of paramount importance in

regulating cumulus cell functions favorable to oocyte development,

an interesting question is raised: can oocyte-secreted factors be

applied to IVM to improve the microenvironment surrounding the

oocyte and thus enhance the quality of the oocyte and embryo devel-

opment (Hussein et al., 2006; Gilchrist and Thompson, 2007)?

Hussein et al. (2006) treated bovine COCs with BMP15 and/or

GDF9 and observed an increase in the oocyte developmental potential

to blastocyst stage. Furthermore, application of antagonists of BMP15

(follistatin) or GDF9 (ALK4/5/7 inhibitor; SB431542) can reduce the

oocyte developmental competence (Hussein et al., 2006). The same

group subsequently demonstrated that addition of GDF9 to the IVM

medium can promote mouse embryo development and increase fetal

viability without affecting embryo implantation rate (Yeo et al.,

2008). These data generate enthusiasm in the field of assisted repro-

duction, although they are derived from animal models. In the

future, extensive research should be undertaken to evaluate the

effectiveness of combinations of oocyte-secreted factors in promoting

oocyte competence in both animal models and humans.

Summary

Recent studies on the intercellular communication between germ cells

and companion somatic cells reveal the potential of cumulus cell

markers as reliable molecular predictors of oocyte developmental

competence, as well as the oocyte-secreted factors as enhancers of

oocyte quality (Table I and Fig. 1). Prior to the establishment of stan-

dardized criteria for oocyte selection utilizing cumulus cell gene

markers as key parameters, well-controlled clinical studies are

needed to evaluate the potential of various reported cumulus gene can-

didates as predictors of oocyte quality. The verified candidates from

different functional categories may thus be included as markers for

oocyte competence. One major challenge faced to evaluate the effec-

tiveness of oocyte-secreted factors to improve oocyte competence in

human IVM stems from our limited knowledge of the identity and/

or cooperativity of these factors in the oocyte–somatic cell regulatory

loop. Given the potentially complex interaction among oocyte-

secreted factors (Su et al., 2004; Sugiura et al., 2007; Su et al.,

2008) and their divergence among species (Juengel and McNatty,

2005; Bettegowda et al., 2007), the question is: what combination

of the oocyte-produced factors may have the most potent synergistic

effect in the human IVM system? Moreover, the hurdle of lack of stan-

dardized preparations of the recombinant proteins (Pangas and

Matzuk, 2005) should be overcome before the clinical trials can be

implemented. With the availability of a reliable approach capable of

identifying the best quality oocytes/embryos, multiple embryo transfer

Figure 1: Potential intrafollicular predictors and regulators of oocyte quality
within the oocyte–somatic cell regulatory loop. Oocyte-secreted factors
(GDF9, BMP15, FGF8B and other unknown factors) can act on the adjacent
cumulus cells via SMAD2/3, SMAD1/5/8 or other pathways to induce the
expression of genes from a variety of categories (e.g. cumulus expansion-
related genes Has2 and Ptgs2). Some of the markers may be indirect and
reliable parameters to assess oocyte competence. The oocyte-produced
factors can regulate numerous cumulus cell functions such as cumulus expan-
sion, apoptosis, metabolism (glycolysis and cholesterol synthesis), and these
functions are critical in the development of oocyte competence. It is unclear
whether oocyte-secreted factors can signal through autocrine pathway to regu-
late oocyte function. GDF9, growth differentiation factor 9; BMP15, bone mor-
phogenetic protein 15; FGF8B, fibroblast growth factor 8B; Has2, hyaluronan
synthase 2; Ptgs2, prostaglandin-endoperoxide synthase 2; Grem1, gremlin 1.
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may no longer be necessary in the future. Undoubtedly, further studies

delineating the nature of novel oocyte-secreted factors and decipher-

ing the interaction/cooperativity of these factors will be informative

and should shed new light on our understanding of the enigma of

oocyte maturation and developmental competence.
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