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Abstract
Research on human glioma stem cells began early in the 21st century and since then has become a rapidly 
growing research field with the number of publications increasing year by year. The research conducted by 
our diverse group of investigators focused primarily on cell culture techniques, molecular regulation, sig-
naling pathways, cancer treatment, the stem cell microenvironment and the cellular origin and function of 
glioma stem cells. In particular, we put forward our view that there are inverse or forward transformations 
among neural stem cells, glial cells and glioma stem cells in glioma tissues under certain conditions. Based 
on the background of the progress of international research on human glioma stem cells, we aim to share our 
progress and current findings of human glioma stem cell research in China with colleagues around the world. 

Key Words: nerve regeneration; glioma stem cells; China; cell culture; molecular characteristics; cellular 
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Introduction
Research on human glioma stem cells (GSCs), like other hu-
man cancer stem cells (CSCs), occupies a central role in the 
development, diagnosis, and treatment of cancers. Currently, 
GSCs are considered to be a small percentage of the G0-ar-
rested cells located in the glioma niche. GSCs serve as the 
seed cells for tumorigenesis and metastasis within the tumor 
microenvironment (Adorno-Cruz et al., 2015). 

The existence of CSCs was proposed by the Cancer Center 
of Michigan University approximately 150 years ago. More 
recently, Lapidot et al. (1994) identified acute myeloid leuke-
mia-initiating cells via transplantation in severe combined 
immune deficiency mice. Confirmation of the existence of 
CSCs was first demonstrated by Reya et al. (2001). The rela-
tionship between malignant brain tumors and stem cells was 
suggested in the 1980s by Rosenblum et al. (1983), but 20 
years later,  Hemmati et al. (2003) identified neural stem-like 
cells in human glioma cell lines in vitro. Singh et al. (2003) 
isolated GSCs from pediatric medulloblastoma and astrocy-
toma. The following year, they reported that the injection of 
as few as a hundred CD133+ cells was enough to produce a 
tumor, whereas the injection of a hundred thousand CD133– 
cells resulted in engraftment but no tumor formation (Singh 
et al., 2004b). Subsequently, Singh et al. (2004a) concluded 
that CD133+ cells that also express the neural stem cell (NSC) 
marker, nestin, but not differentiated neural lineage mark-
ers, represent only a minority fraction of the entire brain 
tumor cell population that exclusively generate clonal tu-
mor spheres in suspension culture and exhibit an increased 

self-renewal capacity. Subsequently, the study of GSCs has 
become the focus of research, mainly looking at cell culture 
techniques, molecular regulation, signaling pathways, cancer 
treatment, stem cell microenvironment and the cellular ori-
gin and function of GSCs.

Literature Analysis
To date (as of DEC, 2016), Chinese scholars have published 
approximately 28% (256/908) of the research papers world-
wide (Figure 1). In this review, we have collected and ana-
lyzed articles from various Chinese universities and Chinese 
research institutions published in journals included in the 
Science Citation Index (SCI) system. In addition, we pay spe-
cial attention to the progress of Chinese research on GSCs, 
while reviewing the overall global status of GSC research.

Research on human GSCs in China began when CD133+ 
cells and side population cells excluding Hoechst 33342 
from the human glioma cell line SHG-44 were first cloned 
in 2004 and 2005 (Huang, 2004; Wang et al., 2005). In 2006, 
we reported differences between the differentiation profiles 
of GSCs and NSCs (Zhang et al., 2006) in which the results 
of the Chinese research community was not in complete 
agreement with those of Singh et al. (2004a). Our results 
showed that these GSCs became CD133– after being induced 
to differentiate by sodium valproate. However, some of these 
cells may dedifferentiate into floating tumor spheres with a 
CD133+ phenotype, differing from NSCs, which can be ter-
minally differentiated. Research on human GSCs by other 
Chinese groups began in 2008 at Southwest Hospital of the 
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Third Military Medical University of PLA, where Yu et al. 
(2008) harvested GSCs from the U87 glioma cell line. The 
top 14 Chinese universities publishing research on GSCs are 
shown in Figure 2.

GSC Culture and Molecular Characteristics of 
GSCs
The general method for culturing GSCs involves cultivating 
glioma cells or tissues after enzymatic dissociation with ba-
sic fibroblast growth factor, leukemia inhibitory factor, and 
epidermal growth factor in a serum-free medium (Zhou 
et al., 2012). The floating tumor spheres are then collected 
and examined for stemness. Finally, purified GSCs are har-
vested using immunomagnetic beads or a flow cytometer 
for CD133+ cells. Several other revised methods have been 
applied including the isolation of GSCs from loose, irregular 
clone spheres (Cao et al., 2013). Alternatively, GSCs can be 
harvested via the passage and purification of CD133+ cells 
directly from tumor spheres, without using immunomag-
netic beads or a flow cytometer (Qiu et al., 2012b). Various 
other methods have been used to culture GSCs (Pollard et 
al., 2009; Kievit et al., 2014). 

Several questions remain after harvesting GSCs: How do 
we identify and differentiate these cells from others? Are 
there some specific markers for GSCs? There are still no true 
specific markers for them, although CD133 is the marker 
that is used by most scholars. However, CD133 is also re-
garded as a marker protein for NSCs (Uchida et al., 2000) 
and CSCs of other types of cancers, and the existence of 
CD133– GSCs has also been demonstrated. There are some 
sub-markers that have been used for the identification of 
GSCs, such as CD15, neuronal cell adhesion molecule L1 
(L1CAM), CD90, B7-homologue 4 and 1 (B7-H4/1), CXC 
chemokine receptor 4 (CXCR4), and A2B5, stage-specific 
embryonic antigen 1. Of these, the CD15 is a type of adhe-
sion molecule, and it was reported that the tumorigenicity of 
CD15+ medulloblastoma cells was even higher than that of 
CD133+ cells. (Read et al., 2009; Ward et al., 2009). L1CAM 
is also adhesion molecule, and it is required for maintaining 
the growth and survival of CD133+ glioma cells both in vitro 
and in vivo (Bao et al., 2008). B7-H4 is a member of B7 fam-
ily that negatively regulates T cell-mediated immunity. How-
ever, studies showed that B7-H4 was preferentially expressed 
in GSCs (Yao et al., 2008). CXCR4 is a cell surface molecule 
expressed in a certain subset of glioma cells with enhanced 
tumorigenicity. Zheng et al. considered that CXCR4+ subsets 
of glioma cells met the standard of “cancer stem cell” (Zheng 
et al., 2011). A2B5 is predominantly expressed in embryon-
ic and neonatal neural tissue, and it is also considered as a 
marker for immature glial-committed precursors. However, 
some studies claimed that A2B5 was a possible marker of 
GSCs by comparing the different tumorigenicity of CD133+/– 
glioma cells and A2B5+/– cells (Ogden et al., 2008). 

The differentiation trend appears to be more important 
than the so-called specific protein markers in the identifi-
cation of GSCs. The definition of GSC follows the theory of 
NSCs, namely that GSCs are identified based on the pres-

ence of cells expressing markers for neurons, astrocytes, and 
microglia, in differentiated cell populations. This outlines 
the importance of surface markers for the identification of 
GSCs. 

Side population cells have also been used by some re-
searchers to identify CSCs on the basis of high expression of 
the ATP binding transporter G superfamily-2 protein on the 
surface of stem cells. ATP binding transporter G superfam-
ily-2 can pump the Hoechst 33342 fluorochrome out of the 
cytoplasm, which facilitates the screening of side population 
cells with flow cytometry. The similar characteristics be-
tween side population cells and CSCs suggest they could be 
identical. However, the proportion of side population cells 
among SHG44 human glioma cells is approximately 29.1%, 
while that of CD133+ cells is only about 2.3% (Wang et al., 
2005). This implies an evident significant difference between 
them. Each of the methods for CD133 immunophenotyping, 
side population flow assays and neurosphere counting have 
their own uses and limitations.

Many of the substances that regulate GSCs are positive 
regulators, including pyruvate kinase isozymes M2 (which 
phosphorylates histone H3), the CDC20-anaphase promot-
ing complex/sex determining region-box 2 signaling axis, 
cyclin-dependent kinase 7-MYCN, Beta1, 4-galactosyltrans-
feras, vascular endothelial growth factor-vascular endothelial 
growth factor receptor,  nuclear  related factor 2 (Nrf2) (Zhu 
et al., 2013, 2014b), H3K4me3 and H3K27me3, topoisom-
erase II alpha, Bcl-2, S100A9 (Chen et al., 2013), reactive 
oxygen species (Yuan et al., 2015) and Zinc finger protein 
217. Other signaling pathways show negative correlations 
with the activities of CSCs, such as Fas/FasL-L. GSCs can be 
induced to proliferate with 2% sevoflurane in vitro with the 
up-regulation of CD133, vascular endothelial growth factor, 
hypoxia-inducible factor-1, and hypoxia-inducible factor-2 
(Shi et al., 2015b). 

There are gene mutations related to CSCs. For example, in 
GSC-SU2 (Zhao et al., 2009), there are many mutations of 
amino acid residues (from the 8th to 14th amino acid (AA), 
238th AA, and 398th AA) in the peptide chain of phosphate 
and tensin homologue (PTEN) deleted on chromosome 
ten. These mutated regions are involved in membrane in-
teractions, particularly those involving the phospholipid 
phosphatidylinositol bisphosphate, and in maintaining the 
protein stability of PTEN. Therefore, these mutations not 
only lead to the rapid degradation of PTEN, but also inhibit 
the cellular function of PTEN to down-regulate PI3K sig-
naling. Isocitrate dehydrogenase 1 mutation and dependent 
promoter methylation of O6-methylguanine-DNA methyl-
transferase (MGMT) were reported as predictive biomarkers 
for glioma patients (Wick et al., 2013).

In fact, the formation of GSCs results from not only one 
or two specific molecular mechanisms, but many other sig-
nalingpathways as well. CSCs are thought to be derived from 
the adult stem cells (ASCs) of the corresponding tissues or 
organs in which many of the pathways share a common mo-
lecular basis for both these cell types. Only molecules that 
are upregulated or downregulated may be different in ASCs, 
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for tissue repair and regeneration, from CSC tumorigenesis. 
Moreover, the Notch signaling pathway contributes to the 

maintenance of GSCs and NSCs and promotes the re-newal 
of GSCs (Hu et al., 2014). It has been reported that neuroten-
sin signaling may maintain the stemness of GSCs through 
the activation of the interleukin-8/CXCR 1/signal transducer 
and activator of transcription 3 (IL-8/CXCR1/STAT3) sig-
naling pathway (Zhou et al., 2014). Aurora A kinase could 
control GSC self-renewal through beta chain protein/Wnt 
signaling (Zhou et al., 2014). Activation of the Akt/phospha-
tidylinositol-3 kinases (Akt/PI3K) pathway through inter-
action with CD133-p85 promotes GSC oncogenicity (Wei 
et al., 2013). The stemness and radiation resistance of GSCs 
is maintained through regulation of the mi-croRNA-153/
Nrf-2/ GPx1 pathway by reactive oxygen species (Yang et 
al., 2015). GSCs enhance the migration and proliferation of 
endothelial cells through the Hedge-hog pathway (Zhou et 
al., 2014). Gong et al. (2015) reported that FoxM1 promotes 
the self-renewal and tumorigenicity of GSCs by driving a 
feed-forward STAT3-activation signaling loop.

These findings are limited to the origin of CSCs as ASCs, 
a view that is still controversial. The epithelial-to-mesenchy-
mal transition of CSCs and normal stem cells from their cor-
responding normal tissue involve similar stem cell programs. 
However, they differ significantly in terms of their paralo-
gous epithelial-to-mesenchymal transition-inducing tran-
scription factors Slug and Snail programs (Ye et al., 2015).

It has become increasingly clear that miRNAs and GSCs 
are connected. Studies have shown that miRNAs, such as 
miR-125b (Wan et al., 2012, 2014), miR-123b, miR 20a (Wang 
et al., 2015d), and miR-210 (Yang et al., 2014a), play a posi-
tive regulatory role in GSC invasion and proliferation. Other 
miRNAs, such as miR 181b, miR-134a, miR-21 (Shang et 
al., 2015), miR-124, miR-186 (Zheng et al., 2015), and miR-
145 (Shi et al., 2014), negatively regulate GSC proliferation. 
In addition, miR-330 negatively regulates the expression of 
SH3GL2 in GSCs, which promotes the oncogenic progres-
sion of GSCs through activating the ERK and PI3K/AKT 
signaling pathways (Yao et al., 2014b), and miR-152 plays a 
tumor suppressor role in GSCs (Yao et al., 2015a).

Cellular Origin and Function of CSCs 
There is still no consensus on the cellular origin of CSCs. 
There are four main theories. (1) Cloning evolution: tumors 
represent a molecular disease in which gene mutations with-
in originating cells will be passed onto future daughter cells, 
where further gene mutations may occur. Thus, the accumu-
lation of many genes in descendant cells leads to carcinogen-
esis and malignant development. (2) The CSC theory, which 
was first put forward by Hamburger and Salmon (1977) and 
later improved by Bonnet and Dick (1997) indicated that 
cancer originates from a single ASC. Cancer is also induced 
and driven by carcinogenic agents that activate the necessary 
pathways and related genes for ASC proliferation and differ-
entiation. Therefore, CSCs are also referred to ASC-like cells 
(e.g., GSCs are also known as NSC-like cells). (3) The balance 
theory: there is considerable plasticity between non-CSCs 

(NCSCs) and CSCs. NCSCs can reacquire the phenotype 
of CSCs under certain environmental conditions, and that 
bidirectional conversion occurs between them (Marjanovic 
et al., 2013). In 2006, we found that differentiated glioma 
cells might dedifferentiate into GSCs when we compared the 
differentiation profiles between NSCs and GSCs. Zheng et 
al. (2007) found that most C6 cells were cancer stem cells. 
As CD133– C6 cells also possessed clonogenic, self-renewal, 
and tumorigenic capacities, this may indicate the reversion 
of CD133– cells to CD133+ cells. (4) The precancerous stem 
cell (pCSCs) theory: Gao (2008) believed that pCSCs are at 
an early stage of  development of CSCs, similar to the tradi-
tional theory about tumor formation; i.e., a similar histolog-
ical development process from cell proliferation, metaplasia, 
and precancerous lesions to cancerous tissue. This process is 
regulated by Piwi like RNA-mediated gene silencing 2, and, 
while pCSCs can continue their malignant evolution, they 
can also revert back to a benign state different from that of 
CSCs.  

The function of CSCs has been elucidated. The known 
characteristics include (1) self-renewal, which refers to the 
mitosis of CSCs and includes two types: symmetric mi-
tosis and asymmetric mitosis. The former produces two 
CSCs, while the latter produces one CSC and one NCSC, 
followed by downstream differentiation. This is similar for 
ASCs, which produce a new stem cell to replace the old 
one. Further investigation is required to determine whether 
the self-renewal of GSCs and ASCs is truly identical. The 
self-renewal of ASCs only occurs in the stem cell niche, 
while the self-renewal of CSCs may occur outside of their 
niche or be completed by differentiated NCSCs after homing 
(Clarke and Fuller, 2006). (2) High tumorigenicity. It has 
also been reported that only one hundred CD133+ GSCs 
produce tumors in non-obese diabetic/severe combined im-
mune deficiency mice in vivo, whereas even 100,000 CD133– 
NCSCs do not lead to tumor formation in the same period 
of time (Singh et al., 2004b). (3) Greater invasiveness. Qiu et 
al. (2012a) reported that GSCs are more invasive than their 
differentiated progeny cells in vitro. Invasive cells exhibit 
higher tumorigenicity in vivo, and Akt activity is significant-
ly increased in invasive cells compared with normal cells 
in the corresponding tumor mass. The molecules involved 
in invasion include Toll-like receptors and matrix metallo-
proteinases-9 (Wang et al., 2015b), TGF-β1, ADAM17, and 
IL-6. (4) Radiation resistance. Bao et al. (2006) believe that 
the increase of the proportion of CD133+ cells in the glioma 
cell population after radiation therapy is due to the radia-
tion resistance of GSCs, which are preferentially preserved. 
The molecules associated with radioresistance include Wnt/
β-catenin, Notch, JAK/STAT and PI3k-mTOR, checkpoint 
kinase 1, CD133 and MGMT. (5) Chemotherapy resistance. 
Hu et al. (2012) reported that the chemoresistance of human 
GSCs is correlated with a low level of Tap73. Furthermore, 
down-regulation of autophagy in GSCs contributes to the 
strong ability of GSCs to resist temozolomide. High expres-
sion of ATP binding transporter G superfamily-2 in SU2-
GSCs results in resistance to ACNU (Huang et al., 2008; 
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Jin et al., 2009). It has been reported that GSCs adapt to 
reduce their glucose dependence and this is associated with 
radio-chemoresistance (Ye et al., 2013). High expression of 
MGMT has been reported to contribute to temozolomide 
resistance in GSCs (Qiu et al., 2014). However, interferon-α/
β may enhance the sensitization of MGMT‑positive GSCs 
to temozolomide by suppressing NF-κB activity (Shen et al., 
2015a). (6) Angiogenesis. Tumor-derived endothelial cells 
originating from GSCs were detected in tumor tissues from a 
p53 (+/–) homozygous mouse model bearing GBM. Both Li 
et al. (2013) and our group (Zhao et al., 2010a) have report-
ed the trans-differentiation of GSCs into vascular endotheli-
al-like cells in vitro and we demonstrated a novel mechanism 
for angiogenesis that GSCs contribute to the neovasculariza-
tion of glioma via transdifferentiation in vivo (Dong et al., 
2011; Sun et al., 2015). However, Cheng et al. (2013) report-
ed that GSCs contribute to vascular pericytes. In addition, it 
has been demonstrated that GSCs have the potential to show 
vascular mimicry and trans-differentiate into vascular endo-
thelial cells in different conditions (Mao et al., 2013a, b; Yao 
et al., 2013). 

Microenvironment of GSCs
Reciprocal causation occurs when GSCs rebuild the tumor 
microenvironment, and the tumor microenvironment influ-
ences the phenotype of GSCs. Zhang et al. (2013b) cultivated 
U251 glioma cells under various culture conditions and 
harvested the GSC-like cells of different phenotypes (U251-
Adh, U251-SC-Sph and U251-SC-Adh). These cells also 
showed distinct growth patterns and self-renewal capacities. 
The chemokines secreted by GSCs promote the migration of 
NSCs to GSCs. NSC co-culture with GSCs may also induce 
the differentiation of GSCs in vitro, and reduce their stem-
ness. NSCs injected into the cerebral hemisphere, in vivo, 
migrate towards the GSCs in the tumor, reducing their ma-
lignancy (Zhang et al., 2014c). We reported that GSCs play 
an important role in the vascular remodeling of transplanted 
tumors (Zhao et al., 2010b). However, all the above studies 
were completed in vitro or in the so-called tumor microenvi-
ronment in vivo.

The microenvironment of GSCs is where the GSCs are 
anchored, also known as the stem cell niche. Different stem 
cell niches may exhibit different structures, however, all 
stem cells including GSCs generally present unique niches 
(Fuchs et al., 2004). A niche exists along micro-blood vessels 
in cancerous tissue, acting as an umbrella to maintain stem 
cell self-renewal and prevent differentiation. The structure of 
niches includes niche cells, soluble factors from niche cells, 
and extracellular matrix (Lin, 2002).

A niche is composed of cells such as vascular endothelial 
cells, peripheral blood cells, and astrocytes. The niche cells 
produce cadherin and integrin molecules that mediate the 
adherence of ASCs and some other cell types in and around 
the niche (Lin, 1998; Song and Xie, 2002; Song et al., 2002; 
Zhang et al., 2003; Arai et al., 2005). Only the ASCs anchor-
ing in the niche maintain quiescent conditions, whereas cells 
outside the niche enter the differentiation process (Zhang et 

al., 2003). The ASC niche serves two functions: to maintain 
ASC self-renewal, and to supply our bodies with different 
types of cells via multi-directional differentiation. 

In the tumor microenvironment, there are tumor stroma 
in addition to the CSC niche. The stroma of a glioma con-
tains myeloid-derived suppressor cells, including tumor-as-
sociated macrophages, dendritic cells, and secreted cyto-
kines. GSCs can recruit macrophages and microglia in brain 
glioma cells to promote tumor cell growth (Shi et al., 2015c). 
We also observed malignant transformation of macrophages 
and microglia induced by GSCs (Chen et al., 2015; Dai et al., 
2015; Wang et al., 2015a).

Treatment Strategies Targeting GSCs
Approximately three years ago, Cho et al. (2013) summa-
rized and introduced five methods of targeting CSCs. These 
included new chemotherapy drugs, radiation-sensitizing 
agents, cell immunotherapy, induced differentiation, and 
gene therapy. The advances in this research have led to the 
following therapies.

Molecular targeted therapy
Treatment aimed at GSCs should be focused on specific 
molecular targets. Promising results have been demonstrat-
ed for some molecules, e.g., Knock-down of target genes of 
L1CAM, miR-101 (Yao et al., 2015b), and miR-152 (Ma et 
al., 2014); upregulation of Cx43; inhibition of Alox-5 with 
dl-nordihydroguaiaretic acid (Nordy); expression of an ex-
ogenous Endo-Angio fusion gene [VAE] (Zhu et al., 2011; 
Zhang et al., 2014a); use of the nuclear factor-κB inhibitor 
SN50 (Zhang et al., 2014b); endothelial-monocyte activating 
polypeptide-II (Liu et al., 2014); down-regulation of TGF-β2 
with temozolomide; an attenuating the expression of ID1 via 
TGM2 inhibition (Fu et al., 2013). However, the problem of 
whether the specific target molecules of CSCs/GSCs have 
been blocked remains unclear. Targeted molecular therapy 
will continue to be inconclusive until a truly specific stem 
cell marker protein is found.

Smart nanomedicines
Smart nanomedicine refers to nanomedicines showing tu-
mor-targeting properties and controlled release for use in 
tracing and combination therapy in vivo. Such nanoparticles 
can respond sensitively to stimuli including temperature, 
pH, the redox environment (Glutathione), ionic strength, 
and electromagnetic fields. Moreover, the size, shape, and 
structure of nanoparticles can be changed according to the 
treatment, delivery and release of the drug to the target 
GSCs/CSCs. However, it is not easy to fully meet the above 
requirements. Current research generally only meets a subset 
of these requirements. For example, nanoparticles conjugat-
ed with a CD133 monoclonal antibody can be used to treat 
CD133+ GSCs and transplanted tumors when combined 
with infrared laser irradiation. 

The metallofullerenol nanomaterial Gd@C82(OH)22 
possesses intrinsic inhibitory activity against triple-negative 
breast cancer cells, while remaining relatively non-toxic to 
normal mammary epithelial cells (Liu et al., 2015). The de-
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Figure 1 Number of articles about human glioma stem cells 
published in China and worldwide is rising year by year. 

Figure 2 Ranking of the top 14 universities in China that have 
published ≥ 5 original articles on human glioma stem cells.
I: Soochow University; II: The Third Military Medical University; III: 
China Medical University; IV: The Fourth Military Medical University;  
V: Fudan University; VI: Jiangsu University; VII: Sun Yat-sen Univer-
sity; VIII: Southern Medical University; IX: Huazhong University of 
Science and Technology; X: Harbin Medical University; XI: Nanjing 
Medical University; XII: Jilin University; XIII: Shanghai Jiao Tong Uni-
versity; XIV: Anhui Medical University. 

Figure 3 Schematic diagram showing the transformation between 
NGCs, NSCs and TSCs in the brains of glioma patients. 
The solid arrow indicates that the transformation of NSCs to NGCs and 
the transformation of NGCs to TSCs have been well established. The 
dotted arrow indicates that the transformation of TSCs to NGCs and 
the transformation of NSCs to TSCs have received support from some 
research results, but currently this support is not sufficient. The hollow 
arrow indicates that a few reports have provided support for the trans-
formation of NGCs to NSCs and the transformation of TSCs to NSCs, 
but research in this field is meagre. NGCs: Normal glial cells; NSCs: 
neural stem cells; TSCs: tumor stem cells. 

livery of epirubicin by nanodiamonds is a highly effective 
nanomedicine-based approach for overcoming chemore-
sistance in hepatic CSCs (Wang et al., 2014). A transfer-
rin-modified graphene oxide used as a glioma-targeted drug 
exhibited significantly improved therapeutic efficacy for glio-
ma both in vitro and in vivo (Liu et al., 2013). Silica nanorat-
tle-doxorubicin-anchored mesenchymal stem cells used for 
tumor-tropic therapy show the potential to be developed as a 
robust and generalizable method for targeted tumor therapy, 
with a high efficiency and low systematic toxicity. 

Chemotherapy
Some of the effective drugs targeting CSCs/GSCs include 
curcumin (Zhuang et al., 2012; Shi et al., 2015a), rapamy-
cin, temozolomide (Zhitao et al., 2015), the topoisomerase 
I inhibitors shikonin and topotecan (Zhang et al., 2013a), 
TRAIL and paclitaxel, Nordy (Yang et al., 2014b), wheat 
germ agglutinin and tamoxifen (Li et al., 2014), TRF2 (Bai 

et al., 2014), metformin and temozolomide (Yu et al., 2015), 
Cisplatin, the glycolytic inhibitor 3-BrOP and carmustine 
(Yuan et al., 2013), Korean herbal recipe MSC500 (Yao et 
al., 2014a), and suberoylanilide hydroxamic acid (Chiao et 
al., 2013). There are also some medicines not designed to at-
tack cancer that are effective in the treatment of CSCs/GSCs, 
such as metformin and gemcitabine (Chai et al., 2015) and 
nicardipine (Jin et al., 2009; Lou and Zhao, 2015).

Although many drugs have been designed to target GSCs, 
none have shown an effect on GSCs at G0 phase within the 
niche. In fact, the niche does not exist ex vivo, and even 
in research in vivo, most authors were not able to detect 
changes in GSCs in the niche. Reactions of the micro-vas-
cular density are only changes in the vascular endothelium, 
and not in the niche and, particularly not in the GSCs. 
Therefore, the improved curative effects of most of the 
drugs mentioned above are not strictly through the target-
ing of CSCs/GSCs. 

Radiotherapy
Sun et al. (2012, 2013) first reported that boron neutron 
capture therapy induces cell cycle arrest and cell apoptosis 
of glioma stem/progenitor cells in vitro. Inhibition of the 
PI3K/mTOR pathway with NVP-BEZ235 may enhance the 
radiosensitivity of human glioma stem cells in vitro (Wang et 
al., 2013), and it has been reported that induction of autoph-
agy promotes the radiosensitivity of glioma-initiating cells. 
These authors also found that knockdown of the DNA-de-
pendent protein kinase catalytic subunit could radiosensitize 
glioma-initiating cells by inducing autophagy. Inhibition of 
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Notch signaling can enhance the radiosensitivity of malig-
nant stromal cells induced by glioma stem/progenitor cells 
or GSCs themselves (Shen et al., 2015b).

Summary and Prospects
Research on GSCs began more than 10 years ago and 908 
articles on this topic have already been published. However, 
fully understanding the theory and mechanisms of GSCs 
remains a great challenge in considering the occurrence, de-
velopment, prevention and treatment of glioma. Only when 
the GSCs are fully understood can glioma be overcome. 
Therefore, the focus of the study of glioma should still be 
placed on GSCs.

The number of relevant papers published in China ad-
dressing GSCs continues to show an increasing trend year 
by year, as in other countries around the world (Figures 1 
and 2). However, what is more urgently needed is innova-
tive research. The question is where to start? We believe that 
more in-depth research associated with induced pluripotent 
stem cells may be one of many directions to consider. 

In 2010, we published in China’s cancer forum (Huang 
and Du, 2010) the hypothesis of transformation among nor-
mal glial cells (NGCs), neural stem cells (NSCs) and tumor 
stem cells (TSCs) in the tumor microenvironment where 
the concept of induced pluripotent stem cells was implied 
(Figure 3). First, can NGCs be translated into induced plu-
ripotent stem-like NSCs (one of the two hollow arrows in 
the figure)? The transfection of neuronal differentiation-re-
lated gene Ngn2 or Dlx1 into astrocytes resulted in a subse-
quent transformation of astrocytes into functional neurons 
(Heinrich et al., 2010). Also, when reactive glial cells and 
fibroblasts were transfected with NeuroD1, it resulted in the 
reprogramming of both types of cells into functional neu-
rons (Pang et al., 2011; Guo et al., 2014). 

Second, can TSCs be transformed into NSCs? Intro-
duction of Ngn2 in GSCs induces massive cell death, pro-
liferation arrest and a drastic reduction of neurosphere 
formation. Moreover, the few surviving cells adopt a typical 
neuronal morphology, and some generated action potentials 
(Guichet et al., 2013). 

The third question (dotted arrow in the figure) is whether 
TSCs can be translated into NGCs? Dimethylformamide 
and hexamethylene bisacetamide and all-trans retinoic acid, 
have been used to induce the differentiation of glioma cells 
or GSCs. Zhu et al. (2014a) induced the differentiation of 
GSCs by knocking down the expression of Nrf2. All of these 
results showed that GSCs differentiated in a benign direc-
tion after induction; however, none of these cells reached a 
terminal differentiation stage. The fourth question is wheth-
er NSCs can be transformed into TSCs, as mentioned in the 
“Cellular origin of GSCs/CSCs” section. It can be concluded 
that tumorigenesis originates from a single ASC, triggered 
and driven by carcinogenic factors, which can be considered 
to be ASCs with abnormal phenotypes. Therefore, scholars 
generally refer to CSCs as ASC-like cells (e.g., GSCs are 
known as NSC-like cells). 

The two solid arrows in Figure 3 represent traditional 
theories. However, tumor stromal cells, which are normal 
cells, may be transformed into cancer cells under malig-
nant pressure from the tumor microenvironment. In glio-
mas, we have proven that macrophages, oligodendrocytes, 
and fibroblasts in the microenvironment of SU3-GSCs can 
transform into cancer cells in vivo (Chen et al., 2015; Dai et 
al., 2015; Wang et al., 2015a). These progressions indicate 
that the three types of cells can be transformed into each 
other under specific microenvironmental conditions, as 
indicated by our hypothesis. However, the so-called spe-
cific microenvironmental conditions currently refer to the 
corresponding experimental conditions, and the situation 
in spontaneous human cancer remains unknown, which is 
a task to be addressed in the future. 

Animal models are often used to understand certain pro-
cesses and mechanisms that occur within the human body. 
According to our studies (Shen et al., 2015c; Wang et al., 
2015c), nude mice transfected with GFP are generally an 
ideal model for research on the relationship between the 
tumor microenvironment and tumorigenesis/tumor devel-
opment, because cells from the host microenvironment all 
show high expression of GFP, a “natural” tracer molecule. 

In short, the future research on human GSCs should be 
expanded to examine the mutual influence between GSCs 
and tumor microenvironment, and to explore the key regu-
latory factors for the potential forward and reverse transfor-
mations among NSCs, NGCs and TSCs in glioma tissue.

Summary of work done by the contributors: Our team has been en-
gaged in the research of glioma for a long time, and it has been more than 
30 years since the establishment of the first human glioma cell line SHG-
44 in China by us. In recent years, along with the international research 
hotspots, we focus on the research of glioma stem cells (GSC). And we are 
the first team in China to publish GSC research articles in journals e.g. 
Cell Res and BMC cancer, where we first present glioma cells could reverse 
differentiate into GSC, and GSC from recurrent glioma tumor tissues are 
more invasive and aggressive than that of primary glioma. These articles 
now have been cited for more than 150 times.  
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