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Abstract Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and 
PR), are major determinants in the development and progression of endometrial carcinomas, 
However, their precise mechanism of action and the role of other transcription factors involved 
are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment 
exposes a set of progestin-dependent PR binding sites which include both E2 and progestin 
target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of 
PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone 
regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and 
PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled 
with ATAC-seq data showed that these regions, that we call ‘progestin control regions’ (PgCRs), 
exhibited an open chromatin state even before hormone exposure and were non-randomly asso-
ciated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found 
to be altered during progression of endometrial cancer. Our findings suggest that endometrial 
response to progestins in differentiated endometrial tumor cells results in part from binding 
of PR together with PAX2 to accessible chromatin regions. What maintains these regions open 
remains to be studied.
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and which appear to be the feature setting endometrial cancer cells apart from breast cancer cells, is 
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Introduction
Progesterone (Pg) is a key regulator in the female reproductive tract, including uterine and mammary 
gland development (Lydon et al., 1995). Endometrial and breast tissues exhibit significantly different 
responses to hormones, resulting in very distinctive morphologies and functions. During pregnancy, 
Pg prepares the uterine epithelium to receive the embryo and initiates the process of differentiation 
of stromal cells toward their decidual phenotype. In the mammary gland and in coordination with 
prolactin, Pg stimulates epithelial proliferation and differentiation of alveolar lobes in the mammary 
gland (Mulac-Jericevic and Conneely, 2004). Unlike Pg, estradiol (E2) is the main proliferative signal 
in the uterine epithelium and exerts its function through activating estrogen receptor (ER) alpha and 
beta (ERalpha and beta, respectively) (Ishiwata et al., 1997; Kayisli et al., 2004).

The physiological role of Pg is mediated by the interaction and consequent activation of isoforms A 
(PRA) and B (PRB) of the progesterone receptor (PR), which are transcribed from alternate promoters 
of the gene (Hovland et al., 1998). While PRA is more abundant in stromal endometrial cells, PRB 
is the most representative isoform in ephitelial cells of endometrium. Steroid hormones exert their 
transcriptional effects through binding of the steroid receptors (SR) to specific DNA sequences in 
the promoters or enhancers of target genes known as ‘hormone response elements’ (HRE). Estradiol 
exposure triggers ER binding to estrogen response elements (ERE) regulating target genes such as 
PGR. Previous work showed E2-dependent upregulation of PR in many different target cells, species 
and pathological conditions (Graham et al., 1995; Kraus and Katzenellenbogen, 1993). Exposure to 
progestins triggers binding of PR to PRE. Once bound to their HREs the hormone receptors interact 
with other transcription factors, co-regulators (Beato et al., 1995), such as the p160 family of co-acti-
vators of steroid receptors SRC-1–3, and chromatin remodeling enzymes. This evidence favors tissue 
specific roles of PR isoforms and their co-regulators orientated towards differential transactivation of 
target genes.

High levels of PRA and PRB have been described in endometrial hyperplasia (Miyamoto et al., 
2004) while low- and high-grade endometrial cancers reveal reduced or absent expression of one or 
both isoforms in epithelia or stroma (Shao, 2013). This PR decrease is often associated with shorter 
progression-free survival and overal survival rates (Leslie et al., 1997; Miyamoto et al., 2004; Saka-
guchi et al., 2004; Jongen et al., 2009; Kreizman-Shefer et al., 2014). The absence of PR gene 
expression may be attributed to hypermethylation of CpG islands within the promoter or first exon 
regions of the PR gene or to the presence of associated deacetylated histones. These modifications 
were reported for endometrial cancer cell lines as well as tumor samples and may be exclusive to PRB 
(Sasaki et al., 2001; Xiong et al., 2005; Ren et al., 2007). Treatment of such cells with DNA meth-
yltranferase or histone deacetylase inhibitors can restore both PRB expression and its regulation of 
target genes such as FOXO1, p21 (CDKN1A), p27 (CDKN1B), and cyclin D1 (CCND1) (Xiong et al., 
2005; Yang et al., 2014). Down-regulation of PR by post-transcriptional mechanisms and through 
post-translational modifications of PR may contribute to progesterone resistance in endometrial 
cancer but have not been extensively explored in the context of endometrial cancer. It is known that 
oncogenic activation of KRAS, PI3K, or AKT and/or loss of functional tumor suppressors such as PTEN 
are common genetic alterations (Hecht and Mutter, 2006), toghether with ARID1A (Liang et al., 
2012), all of them observed in endometrial cancer. Although there are numerous reports of hormon-
ally regulated enhancers and super-enhancers in mammary cancer cells (see in dbsuperenahncer, 
http://bioinfo.au.tsinghua.edu.cn/dbsuper/) (Khan and Zhang, 2016; Hnisz et al., 2015), there is a 
void of information about their presence in endometrial cells.

To better understand the response to progestin in endometrial cancer cells, we have studied 
the genomic binding of ER and PR, the global gene expression changes and the state of chromatin 
by ATACseq as well as the genomic interactions by Hi-C in Ishikawa cells exposed to progestin or 
estrogen, and also in cells exposed to progestin after a period of estradiol pretreatment. Inside TADs 
with progestin regulated genes, we identified regions that we named ‘progestin control regions’ 
(PgCRs) that correlate with the open chromatin compartment independently of hormonal stimuli and 
include binding sites for the partner transcription factor PAX2.

https://doi.org/10.7554/eLife.66034
http://bioinfo.au.tsinghua.edu.cn/dbsuper/


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

La Greca et al. eLife 2022;11:e66034. DOI: https://doi.org/10.7554/eLife.66034 � 3 of 31

Results
Ishikawa endometrial epithelial cells respond to R5020 through 
activation of PR, whose levels increase upon exposure to E2
Endometrial epithelial cells respond to ovarian steroid hormones -progesterone (Pg) and estradiol 
(E2)-, E2 being the main proliferative stimulus and Pg its antagonist. After treating Ishikawa cells 
with E2 ‍10 nM‍ for 48 hr we observed an increment in number of cells compared to vehicle (OH) (FC 
1.78±0.08 v. OH) that was suppressed by addition of R5020 ‍10 nM‍ (FC 1.15±0.08 v. OH) (Figure 1A). 
Treatment with R5020 ‍10 nM‍ alone did not induce proliferation on Ishikawa cells (FC 0.77±0.08  v. 
OH) (Figure 1A; Figure 1—source data 1). E2-induced cell proliferation was also abrogated by pre-
incubation with estrogen receptor (ER) antagonist ICI182780 1 µM (ICI ‍10 × 10−6 M‍) (FC 1.05±0.05 v. 
OH) (Figure 1—figure supplement 1A), but not by pre-incubation with PR antagonist RU486 1 µM 
(RU486 ‍10 × 10−6 M‍) (FC 1.42±0.07 v. OH) (Figure 1—figure supplement 1B), proving that ER but 
not PR was directly involved in the proliferative response to E2. Suppression of E2-induced cell prolif-
eration by R5020 was inhibited by pre-incubation with RU486 (FC 1.50±0.06 v. OH), indicating that 
R5020 effect was mediated by PR in Ishikawa cells (Figure 1—figure supplement 1B). The effects of 
E2 and R5020 on proliferation were corroborated by BrdU incorporation and cell cycle phase analysis 
18 hr after hormone exposure (Figure 1—figure supplement 1C and D). E2 increased the number 
of BrdU positive cells and percentage of cells in S phase compared to untreated control cells and to 
cell exposed to the vehicle (OH), and these increments were inhibited by R5020. Treatment with the 
histone deacetylase inhibitor Trichostatin A ‍250 nM‍ (TSA ‍250 nM‍) was used as negative control for 
BrdU incorporation and cell cycle progression (Figure 1—figure supplement 1C).

Ishikawa cells contain isoforms A and B of PR (PRA and PRB), both of which increased their 
steady state levels by treating cells with E2 ‍10 nM‍ for 12 h (Figure 1—figure supplement 1E and 
F). Pretreating cells with E2 for 12 h (preE2) followed by R5020 had little effect on the proliferative 
response (Figure 1A), while E2 pre-treatment for 48 h significantly increased the proliferative effect 
of E2 exposure compared to non-pretreated cells (FC 1.47±0.08 v. no preE2). The percentage of cells 
exhibiting nuclear localization of PR increased upon E2 pretreatment prior to R5020 exposure (T0). 
Upon exposure to R5020 for 60 min the percentage of cells exhibiting nuclear PR was not affected 
by E2 pretreatment, though the intensity of the fluorescence signal increased in E2-pretreated cells 
(Figure 1B; Figure 1—source data 2). Ishikawa cells express considerably higher levels of ERalpha 
than of ERbeta (Figure  1—figure supplement 1G), suggesting that the proliferative effect of E2 
was mediated by ERalpha. R5020 increased nuclear ERalpha, suggesting a functional PR-ER crosstalk 
in response to hormonal stimuli (Figure 1—figure supplement 1H). Such interactions have already 
been proven in breast cancer T47D cells (Ballaré et al., 2003) and in UIII rat endometrial stromal cells 
(Vallejo et al., 2005), though in the latter PR remains strictly cytoplasmic.

Treatment with hormones during 12 h produced transcriptomic changes consistent with the physi-
ological stages of normal cycling endometrial tissue (Chi et al., 2020). RNAseq results from Ishikawa 
cells (Figure 1—source data 3) exposed to E2 ‍10 nM‍ for 12 h showed a significant resemblance to 
proliferative endometrium (Figure 1C), while 12 h treatments with R5020 ‍10 nM‍ regulated a gene 
expression profile similar to a mid-secretory phase (Figure 1D). In line with these findings, among the 
top overrepresented biological processes for E2-treated Ishikawa cells showed angiogenesis and posi-
tive regulation of smooth muscle cell proliferation and for R5020-treated cells processes like protein 
targeting to Golgi and SRP-dependent cotranslational protein targeting to membrane were found 
(Figure 1—figure supplement 2A). In addition, the majority of regulated genes (81% of R5020% and 
63% of E2) were not shared by both hormones (Figure 1—figure supplement 2B). Genes like PGR 
(progesterone receptor) and cell-cycle regulator CCND2 (cyclin d2) were upregulated by E2 but not 
by R5020, while TGFA (transforming growth factor alfa) was upregulated by both hormones under 
these single-hormone treatments (Figure 1—figure supplement 2B and C).

Compared to T47D cells, PR protein levels in Ishikawa cells were significantly lower (Figure 1—
figure supplement 3A and B). Copy number variation analysis revealed that Ishikawa cells carry 
neither chromosomal alterations nor multiple copies of the PGR locus as was shown in T47D cells, 
possibly accounting for differences in PR content between both cell lines (Figure 1—figure supple-
ment 3C; Le Dily et al., 2014). To support the functional activity of PR in Ishikawa cells, a reporter 
gene downstream of the MMTV promoter containing several Pg response elements (PREs) (Figure 1E) 
was transiently transfected and the cells were exposed to either R5020 10 nM or vehicle (OH) for 

https://doi.org/10.7554/eLife.66034
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Figure 1. R5020 inhibits E2-induced Ishikawa cell proliferation through an active PR that is capable of 
transactivating an exogenous MMTV promoter sequence and an endogenous enhancer sequence located 50 kb 
upstream of EGFR gene. (A) Proliferation of Ishikawa cells either pretreated with E2 10 nM for 12 hr (preE2) or 
not (no preE2) and later treated with vehicle (OH), E2 ‍10 nM‍ (E2), R5020 ‍10 nM‍ (R5020), E2 combined with R5020 
(E2+R5020) and FBS (10%FBS), expressed as mean number of cells ± SE of three independent experiments. (***) 
p < 0.001. (B) Immunofluorescence of PR in untreated (T0; top left), 60 min R5020-treated (R5020; bottom left), 
12 h E2-pretreated (top right) and 12 hr E2-pretreated 60 min R5020-treated (bottom right) Ishikawa cells. Scale 
bar is equivalent to 30 m. Mean nuclear signal of PR for every cell in all images was determined and shown to the 
right of the images as arbitrary units (log a.u.). Horizontal dashed lines in boxplots indicate background signal 
for secondary antibody. (***) p < 0.001. (C and D) Gene set enrichment analysis (GSEA) results using R5020- and 
E2-treated Ishikawa expression profiles as phenotypes for classification of normal endometrium (proliferative and 
secretory) samples. Enrichment profile (green) shows correlation of normal samples at the top or bottom of a 
ranked gene list (phenotypes). Normalized enrichment scores (NES) and nominal p values (nom.p) are shown in 
the graphs. (E) Ishikawa cells transfected with an MMTV-Luciferase reporter gene and treated with vehicle (OH) 
and R5020 ‍10 nM‍ (R5020) for 18 hr. Diagram at the top depicts MMTV LTR promoter features, including several 
hormone response elements (HRE) and a nuclear factor 1 (NF1) binding site within nucleosome B (dark gray circle 
and magnification). Numbers in the diagram indicate base pair position relative to transcription start site (TSS). 
Results are expressed as relative units (r.u.) of Luciferase activity. (F) Representation of EGFR TSS and the enhancer 
sequence located 50 kb upstream used to evaluate PR recruitment. Black arrows indicate position of qPCR 
primers employed on samples treated or not (0) with R5020 for 5, 30, and 60 min. Unspecific immunoprecipitation 
of chromatin was performed in parallel with normal rabbit IgG (IgG). Results are expressed as %input DNA and 
bars represent mean fold change in PR enrichment relative to time 0 (untreated cells) ± SE of two independent 
experiments. (*) p < 0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. E2-dependent cell cycle progression and proliferation of Ishikawa cells is mediated by 
ERalpha.

Figure supplement 2. RNAseq results from hormone-treated Ishikawa cells.

Figure supplement 3. Ishikawa cells express six times less PR than T47D cells.

Source data 1. Proliferation assays in treated and untreated Ishikawa cells.

Source data 2. Ishikawa mean nuclear signal intensity.

Source data 3. Ishikawa treated and untreated normalized expression dataset.

Source data 4. PR binding Ct values in EGFR enhancer sequence.

https://doi.org/10.7554/eLife.66034
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20 hours. A 2.8 fold increment in Luciferase activity was found in cells exposed to R5020 relative to 
OH controls, supporting the capacity of ligand-activated PR to activate PREs (Figure 1E). Binding of 
PR to cellular chromatin targets was confirmed by ChIP analysis of the PRE at the enhancer sequence 
located 50 kb upstream from the transcription start site (TSS) of the EGFR (epidermal growth factor 
receptor) gene (Figure 1F; Figure 1—source data 4). Together, these observations demonstrate that 
PR is responsive to progestins and functional in Ishikawa cells under our culture conditions and that 
these cells resemble E2 and Pg hormone regulation to proliferative and secretory normal endome-
trium respectively.

Binding of PR and ERalpha to the ishikawa endometrial cancer genome
To explore the genome-wide distribution of PR and ERalpha binding (PRbs and ERbs respectively) 
in Ishikawa cells, ChIPseq was performed in different conditions (Figure 2A and Figure 2—figure 
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Figure 2. Estradiol induces R5020-dependent PR binding to specific regions in chromatin. (A) Upper table shows total number of PRbs obtained by 
ChIPseq for untreated (0 min) and R5020-treated (5, 30 and 60 min) endometrial Ishikawa cells under three different conditions: non-pretreated with 
E2 (PR), pretreated with E2 for 12 h (prePR) and exogenous expression of PR (FPR). Lower table shows number of ERbs using anti-ERalpha antibody on 
untreated (0 min) and E2-treated (5, 60 and 360 min) Ishikawa cells. Venn Diagram shows shared binding sites among PRbs (red), prePRbs (blue) and 
ERbs (green) at 60 min. (B) Venn Diagram shows intersection between ERbs (green), FPRbs (dark grey) and prePRbs (blue) at 60 min. (C) Fraction of peaks 
in FPR and prePR after substraction of shared PRbs (FPR_s and prePR_s, respectively) that are not shared with each other (unique), that are common to 
each other (common) and that are common with ER (ERbs). (D) Normalized coverage of PR and ERalpha binding in untreated (T0) and 60 min hormone-
treated (R60 and E60) Ishikawa cells and PR binding in proliferative (GSE1327133) and secretory (GSE1327134) endometrium. Black arrow indicates peak 
of interest. R60: 60min R5020 ‍10 nM‍; E60: 60 min E2 ‍10 nM‍. The three regions displayed include TGFA, PGR and CCND2 genes (indicated at the top). 
An estrogen response element (ERE) and a half ERE are indicated below the peaks.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Genome-wide analysis of PR and ERalpha binding in Ishikawa cells.

Figure supplement 2. PR overexpression on Ishikawa cells.

https://doi.org/10.7554/eLife.66034
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supplement 1). First, we analyzed untreated cells (T0) and cells exposed for 5, 30, and 60 min 
to ‍10 nM‍ R5020 using a specific antibody to PR that detects both isoforms, PRA and PRB. Results 
showed robust PR binding after 30 min of R5020 treatment (R5020 30 min) with 1,446 sites, of 
which 322 sites (22%) were present in untreated cells (PRbs at time zero, T0 = 331). After 60 min 
of treatment with R5020 (R5020 60 min), the majority of sites identified at 30 min were still evident 
(78%) (Figure 2A and Figure 2—figure supplement 1A). The representation of PREs in 22% of the 
PR binding sites that were lost between 30 and 60 min of R5020 treatment was analyzed taking 
into account common, and unique 30 min or 60 min PRbs. De novo motif discovery, analysis of 
information content and quantification occurrences of PRE motifs in such regions did not show 
differences in the information content (the strength of PRE motif), nor new motif different from 
PRE, but revealed a higher abundance of PREs in common and unique 60 min datasets, yielding 
1.72 fold and 1.78 relative unique sites in 30 min respectively. qPCR performed on six regions in 
the vicinity of hormone regulated genes and occupied by PR at 30 and 60 min of R5020 expo-
sure validated ChIPseq results (Figure 2—figure supplement 1B). These regions were selected 
according to differentially expressed genes from RNAseq data and top-ranked by peak signal. 
These results indicate that hormone-dependent PR occupancy increased 5-fold by 30  min and 
stabilized between 30 and 60 min of treatment, in accordance with qPCR results (Figure 2—figure 
supplement 1C).

Next, we explored the recruitment of ERalpha to chromatin of Ishikawa cells exposed to E2 (‍10 nM‍) 
for 5, 60 and 360 min. Poor ERalpha binding was detected at T0 (25 sites), of which 90% remained 
occupied throughout all times of treatment with E2. Exposure to E2 resulted in the detection of 178 
ERalpha binding sites (ERbs) at 5 min, 1591 at 60 min and 1,973 at 360 min (Figure 2A and Figure 2—
figure supplement 1D). The majority (85%) of ERbs found at 60 min was also identified at 360 min 
(Figure  2—figure supplement 1D). ERalpha binding at 0, 60, and 360  min of E2 treatment was 
confirmed by qPCR on four of the sites identified (Figure 2—figure supplement 1E). ChIPseq results 
point to a clear and sustained E2-dependent enhancement of ER alpha binding (Figure 2—figure 
supplement 1F).

De novo motif discovery confirmed that PR binding occurred mostly through PREs exhibiting the 
complete palindromic response elements (Figure 2—figure supplement 1G), while ER binding sites 
were enriched in half-palindromic ERE motifs (Figure 2—figure supplement 1H). Comparison with 
previous findings in T47D cells (Ballaré et al., 2013) enabled clustering of both PRbs and ERbs into 
two classes (Figure 2—figure supplement 1G and H, respectively): sites specific for Ishikawa cells 
(group I; 595 PRbs, group III: 1,101 ERbs) and sites present in both Ishikawa and T47D cell lines 
(group II: 896 PRbs; group IV: 490 ERbs). Classification revealed that PR binds through complete PREs 
regardless of cell line identity, but in Ishikawa cells ERalpha binds mostly sites with only half of the 
characteristic palindrome.

Estrogenic environment defines the landscape for PR binding to the 
endometrial genome
Shifts in the synthesis and secretion of the ovarian steroids (estrogen and progesterone) during the 
menstrual cycle serve as the principal hormonal drivers for endometrial changes. Rising circulating 
estradiol during the mid-to-late follicular phase of the cycle promotes the proliferation of the func-
tional endometrium, and higher E2 levels upregulate PGR gene expression (Graham et al., 1995; 
Kraus and Katzenellenbogen, 1993). A similar result was reported in Ishikawa cells treated with E2 
(Diep et al., 2016). To explore the effect of E2 on PR binding to DNA we performed PR ChIPseq anal-
yses on Ishikawa cells exposed to E2 ‍10 nM‍ for 12 hr (preE2) before treatment with R5020 for 30 and 
60 min. Pretreatment with E2 significantly increased the number of R5020-dependent PRbs (prePRbs), 
which included most of PRbs already identified in non-pretreated Ishikawa cells (Figure 2A, Table 
and Venn Diagram). Quantitative real-time PCR validations performed on six sites occupied by PR 
confirmed positioning of the receptor in both non-preE2 (non E2 pre-treatment) and preE2 conditions 
(Figure 2—figure supplement 2A). It also showed that E2 pretreatment augments both number of 
PRbs and occupancy of the receptor (signal) (Figure 2—figure supplement 2B). Contrary to PRbs in 
non-pretreated cells, the number of PRbs doubled between 30 and 60 min of R5020 in preE2 cells, 
reaching 5701 sites (Figure 2A). All conditions replicated their binding profiles in an independent 
experimental setting (Figure 2—figure supplement 2C).

https://doi.org/10.7554/eLife.66034


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

La Greca et al. eLife 2022;11:e66034. DOI: https://doi.org/10.7554/eLife.66034 � 7 of 31

Sequencing experiments performed on T47D cells exposed to ‍10 nM‍ R5020 revealed over 25,000 
PRbs (Ballaré et al., 2013; Nacht et al., 2016), likely reflecting the high content of PR in these cells. 
However, a large proportion of these PRbs was considered functionally irrelevant as indicated by the 
lack of nucleosome remodeling in response to hormone treatment (Ballaré et al., 2013). More recent 
experiments in T47D exposed to subnanomolar R5020 revealed that around 2000 PRbs are sufficient 
to evoke a functional response (Zaurin et al., 2021). Hence, the number of PRbs found in Ishikawa 
cells probably reflects the low concentration of PR, which is compatible with a functional response 
to progestins. To test this possibility we increased the levels of PR in Ishikawa cells by expressing a 
recombinant FLAG-PR vector. These cells, FPR Ishikawa (FPR), expressed levels of PR comparable to 
T47D cells (Figure 2—figure supplement 2D) and showed no impairment in hallmark phosphoryla-
tion of serine 294 in PR (Figure 2—figure supplement 2E), indicating that FPR cells were capable 
of responding to hormone. Upon hormone exposure, FPR cells exhibited rapid binding of PR to 
the EGFR enhancer sequence (Figure 2—figure supplement 2F). ChIPseq experiments after R5020 
exposure showed twice the number of PRbs in FPR cells compared to parental Ishikawa cells. The 
majority of PRbs identified in Ishikawa cells ( > 90%) were also detected in FPR cells (Figure 2—
figure supplement 2G), meaning that PR overexpression reflected mostly on an increase in number 
of binding sites.

Upon hormone induction, sites engaged by PR in Ishikawa cells were also occupied in FPR and 
pretreated cells, denoting a strong similarity between them. Although a small number of binding 
sites was shared between ERalpha and PR in all three conditions, PR binding in pretreated cells exhib-
ited a higher degree of similarity to ERalpha binding than FPRbs (Figure 2B). Moreover, subtracting 
PRbs from FPRbs (FPR_s) and prePRbs (prePRs) heightens this difference, with a much larger fraction 
of binding sites shared with ERalpha in the case of prePRbs (Figure 2C). Among these sites, one 
located close to the promoter of TGFA gene, identified as an ERbs, showed significant PR binding 
only in preE2 Ishikawa cells, but not in FPR (Figure 2D, left panel). ERE-containing ERbs, such as the 
ones found in the transcription termination site of PGR gene and immediately upstream of CCND2 
promoter, were occupied by R5020-bound PR in preE2 Ishikawa cells (Figure 2D, middle and right 
panels). These three genes were upregulated by E2 treatment in RNAseq experiments performed on 
Ishikawa cells (Figure 1—figure supplement 2C). Importantly, PRbs identified in non-pretreated and 
E2-pretreated Ishikawa cells resembled the PR binding profile found in samples from normal prolifer-
ating and mid-secretory endometrium (Chi et al., 2020; Figure 2—figure supplement 2H).

The distribution of PRbs and ERbs in non-pretreated Ishikwa cells, in FPR cells and cells pretreated 
with E2 (prePRbs) relative to TSS of regulated genes was consistent with previous reports in oher 
cell lines (Ballaré et al., 2013; Need et al., 2015), in that they were enriched in intronic and distal 
intergenic regions (Figure 3A). Nearly 50% of binding sites localized to distal regions ( > 50 Kb) and 
approximately 30% to introns other than the first intron, indicating that regulation of gene expression 
by the steroid receptors PR and ERalpha is not mediated through proximal promoters but mostly by 
distal enhancer/silencer sequences. We corroborated these results employing another strategy based 
on binding site-gene association using the GREAT web tool (see Materials and methods for further 
details McLean et al., 2010). First, we defined a set of genes associated to binding sites with a basal 
plus extension rule (extended up to 100 kb away) and then we intersected this group of genes with 
R5020- or E2-regulated genes. Of the 1886 genes regulated by R5020, only 224 (12%) were poten-
tially associated to PRbs, while only 199 of the 950 genes regulated by E2 (21%) proved to be associ-
ated to ERbs (Figure 3B).

As expected, from the sequences contained in 10 kb windows centered in peak summits of PRbs, 
FPRbs and prePRbs, the PRE emerged as the most representative binding motif (Figure 3C), including 
sites uniquely found in FPR (group c: 633) or preE2 (group d: 3,162) cells. While comparison between 
ERalpha and PR ChIPseq results showed few similarities regarding identity of binding sites, with a set 
of 216 shared by both hormone receptors, pretreatment with E2 added nearly twice as many binding 
sites to the pool shared with ERalpha (from Figure 2A, Venn Diagram). The most representative motif 
discovered in these sites -only shared by ER alpha and prePR- was a half ERE (Figure 3D, group h: 329) 
that was highly similar to the motif observed in sites uniquely found in Ishikawa ERbs (from Figure 2—
figure supplement 1H, group III). Sites shared by ERalpha and PR in all three conditions resulted in 
an unclear combination of PRE and ERE motifs (Figure 3D, group e-g). Degenerated motif logo in 
group g showed no association to any known motif, probably due to a corrupt analysis performed on 

https://doi.org/10.7554/eLife.66034
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insufficient data, and the partially degenerated motif logo in group e showed limited association to 
both PRE and ERE (PRE/ERE).

Taken together, this evidence suggests that, provided there is an estrogenic background, activated 
PR could regulate estrogen-dependent Ishikawa-specific transcriptome by binding sites already or 
formerly bound by ERalpha.

Figure 3. A fraction of E2-induced PRbs localize on ERbs and contain half ERE motifs. (A) Classification of steroid 
receptor binding relative to genomic features expressed as percentage (%) of peaks after 60 min of hormone 
treatment inside each feature. Legend at the top right corner indicates the color key for ERbs (green dots) and 
three conditions of PR binding: non-pretreated with E2 (PRbs, red dots), pretreated with E2 for 12 hr (prePRbs, blue 
dots) and exogenous expression of PR (FPRbs, grey dots). The table below shows percentages represented in the 
plot. (B) To the left: Representation of GREAT tool association rules adapted with modifications (McLean et al., 
2010). To the right: Venn diagrams show intersection between PRbs-associated genes and R5020-regulated genes 
(top), and ERbs-associated genes and E2-regulated genes (bottom). (C) Peak signals in PRbs, FPRbs and prePRbs 
from 60 min R5020-treated Ishikawa cells were plotted as heatmaps. Regions were defined inside a window of 
10 kb centered in peak summit (±5 kb) and intensity of the signal correspond to number of reads in each region. 
Heatmap is subdivided into four mutually exclusive groups depending on shared/partly shared/non-shared 
binding sites: a (n = 1342), sites shared by all three conditions of PR binding; b (n = 1072), sites uniquely found 
in FPR and prePR; c (n = 633), sites found only in FPR; and d (n = 3162), sites found only in prePR. De novo motif 
discovery (MEME) was performed on all groups and results are indicated as sequence logos to the right of the 
map, including the name of the most related known motif. PRE: progesterone response element. (D) Peak signals 
in PRbs, FPRbs and prePRbs as in (C), and ERbs from 60 min E2-treated Ishikawa cells. Heatmap was subdivided 
into five mutually exclusive groups: e (n = 198), sites shared by all three conditions of PR binding and ER binding; 
f (n = 112), sites shared by FPRbs, prePRbs and ERbs; g (n = 24), sites shared by FPRbs and ERbs; h (n = 329), sites 
shared by prePRbs and ERbs; and i (n = 918), sites uniquely found in ERbs. Motif discovery was performed as in A 
for all groups and results are shown to the right of the map, including the most related known motif. ERE: estrogen 
response element; 1/2 ERE: half ERE.

https://doi.org/10.7554/eLife.66034
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PAX2 binds chromatin in close proximity to ER alpha and PR binding 
sites in Ishikawa cells
Evidence described so far partially explains cell type specific hormone-dependent gene regulation, 
although it is not sufficient to understand the mechanisms underlying differential binding of hormone 
receptors to chromatin. Initially, we addressed this by contrasting the sequences of ERbs and PRbs 
from groups I-IV, that is hormone regulated Ishikawa specific (from Figure 2—figure supplement 1G 
and H) with an array of 1395 known TF binding motifs (see Materials and methods). Results revealed 
an enrichment (p-value < 1 e-4) of multiple members of the PAX family -including variants 2, 5, 6, and 
9- in groups I and III, that is In Ishikawa-specific PRbs and ERbs (Figure 4—figure supplement 1A 
and B, respectively), suggesting that members of the Pax family may be involved in PR and ER alpha 
action in Ishikawa cells. Unbiased comparison (all sites) of enrichment in TF binding motifs between 
Ishikawa and T47D PRbs showed similar results for PRbs, although the enrichment was less significant 
(Figure 4—figure supplement 1C). Moreover, while enrichment of PAX motifs was also observed 
around ERbs in Ishikawa cells (Figure 4—figure supplement 1D), this was not the case with T47D 
cells, in which examples like the well-known breast-related pioneer transcription factor FOXA1, were 
found instead (Figure 4—figure supplement 1E).

Enrichment of NR3C1-4 (mineralocorticoid, glucocorticoid, progesterone, and androgen receptors) 
and ESR1 motifs included into the 1395 known motifs corroborated de novo discovery performed with 
MEME in both Ishikawa and T47D cells. Stronger enrichment of PAX motifs was observed in prePRbs 
compared to PRbs (Figure 4A), indicating that PR binding to regions potentially bound by PAX is 
favored after E2 pretreatment. Coherently, while equivalent fold enrichment values were detected 
when comparing prePRbs to ERbs (Figure  4B), comparison between prePRbs and FPRbs showed 
that increased PR levels alone were not sufficient for a greater association to PAX binding motifs 
(Figure 4—figure supplement 1F). Consistently, RNAseq experiments on Ishikawa cells treated either 
with R5020 ‍10 nM‍ or E2 ‍10 nM‍ for 12 hr showed putative PAX2 binding sites among the top 20 signifi-
cantly enriched TFs (DAVID web-based tool Huang et al., 2009) on differentially regulated genes 
(Figure 4C). PAX2 and the ubiquitous AP1 were the only TFs (including other PAX family members) 
predicted to bind both E2 and R5020-regulated genes. ER was also predicted to bind on E2-respon-
sive genes, while glucocorticoid receptor (GR) motif (PR-like motif) was detected on R5020-responsive 
genes.

Next, we evaluated the expression of PAX2 and other family members in Ishikawa RNAseq samples 
(Figure 5—figure supplement 1A). Although none of the detected PAX genes seemed to be strongly 
regulated by R5020 or E2, expression of PAX2, PAX3, and PAX5 was found to be lower and more 
variable (comparing experimental replicates) than that of PAX6, PAX8, and PAX9. Despite expression 
levels of the latter were markedly higher, robust evidences indicate that reduced levels or absence 
of PAX2 were strongly associated to early onset of neoplastic processes in endometrial tissue and 
precancerous lesions (Monte et al., 2010; Raffone et al., 2019). We corroborated those findings 
using publicly available data comprising of several RNAseq samples from normal and cancerous endo-
metrial tissue (Dou et  al., 2020), in which expression of PAX2 was significantly reduced in tumor 
samples (Endometrioid and Serous adenocarcinomas) compared to normal tissue (Figure 5A).

PAX2 association to PR and ER alpha action was also evaluated by immunofluorescence against 
PAX2. Nuclear localization of PAX2 was observed predominantly after 60 min of R5020 in pretreated 
and non-pretreated PR+ cells (Figure 5B), indicating that hormonal treatment promotes co-localiza-
tion of PAX2 and PR in nuclei of Ishikawa cells. Similar results in PAX2 localization were obtained after 
treating Ishikawa cells with E2 for 60 min (Figure 5—figure supplement 1B). The increase in nuclear 
PAX2 signal is not due to changes in protein levels, which were not affected by treatment with either 
R5020 or E2 (Figure 5—figure supplement 1D). In accordance to motif analysis results, PAX2 was 
not detected in nuclei of T47D cells after hormonal treatments (Figure 5—figure supplement 1D).

To extend these findings, we performed PAX2 ChIPseq experiments on untreated cells and in cells 
exposed for 60 min to either R5020 or E2. The results confirmed PAX2 binding to chromatin following 
hormonal treatment (Figure 5C). Even though identified PAXbs were few (T0: 43, R60: 202 and E60: 
209), most of PAX2 binding occurred after R5020 and E2 treatments. Moreover, PAX2 binding was 
not stochastically distributed in the genome of Ishikawa cells but rather partially associated to ERbs 
and PRbs (Figure 5D). This association was stronger for PR binding in cells pre-teated with E2 than in 
non-pretreated cells or in cells overexpressing recombinant PR (Figure 5E and F). Similar results were 

https://doi.org/10.7554/eLife.66034
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observed for ERbs in response to E2 (Figure 5E). In agreement with the coverage plots, the associa-
tion between PAX2 and binding of the receptors was statistically significant (two-tailed Fisher’s exact 
test; p-value < 0.001). On the contrary, we found no significant overlap between randomly rearranged 
PAXbs (shuffled PAXbs) and binding of receptors (two-tailed Fisher’s exact test; p-value > 0.1). These 
results indicate that PAX2, and possibly other members of the PAX family may co-operate with PR and 

Figure 4. Putative PAX2 binding sites are associated with PR and ER alpha binding and hormone-regulated genes in Ishikawa cells. (A) Fold enrichment 
values (log2FE) of 1.395 known TF binding motifs on prePRbs and PRbs. Combined p-values for enrichment analyses are indicated through the color 
key displayed at the lower right corner of the plot. Relevant motifs pointed on the plot correspond to NR3C1-4, members of the PAX family (1, 2, 5, and 
9) and SOX9. (B) Comparison as in (A) between prePRbs and ERbs. Relevant motifs pointed on the plot correspond to NR3C1-4, members of the PAX 
family (1, 2, 5, and 9), SOX9, ESR1 and estrogen related (ESRr) and retinoic acid receptor (RARr). (C) Predicted UCSC Transcription Factor (TFBS) binding 
on genes regulated by 12 hr treatments with R5020 ‍10 nM‍ and E2 ‍10 nM‍ in Ishikawa cells were analyzed using DAVID web-based functional enrichment 
tool. Heatmap shows the top 20 TFBS predicted (p < 0.05)for R5020- and E2-regulated genes from RNAseq results expressed as -log(p-value). Arrows 
indicate position of PAX2, GR (PR-like binding motif), and ER.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. PAX2 binding to chromatin is hormone dependent in Ishikawa cells while it is not localized to nuclei of T47D cells.

https://doi.org/10.7554/eLife.66034


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

La Greca et al. eLife 2022;11:e66034. DOI: https://doi.org/10.7554/eLife.66034 � 11 of 31

Figure 5. PAX2 co-localizes with PR and ERalpha in the nuclei of Ishikawa cells and it is positioned in the vicinity of PR and ER alpha binding sites. 
(A) PAX2 expression in Non Tumor (normal endometrium) and two histologically distinct endometrial cancer samples (Dou et al., 2020). Data stored 
at the National Cancer Institute’s CPTAC program was accessed through cptac python package developed by Sam Payne lab. (B) Immunofluorescent 
detection of PR (green) and PAX2 (red) in untreated (T0) and 60min R5020-treated (R5020) Ishikawa cells which were pretreated or not with E2 for 12h 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.66034
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ERalpha for binding to chromatin in Ishikawa cells but not in T47D cells, in which neither enrichment 
for PAX binding motif nor nuclear localization of PAX2 was detected.

In line with evidence on the role of PAX2 in endometrial cancer, we studied the effect of down-
regulating expression levels of PAX2 in Ishikawa cells using a mix of specific siRNAs that produced 
a marked reduction of its transcript and protein (Figure  5G). Consistently with results described 
above, pretreatment with E2 for 12 hr did not alter levels of PAX2 or interfered with its knock down. 
Interestingly, knock down of PAX2 under estrogenic conditions led to a significant R5020-dependent 
increased binding of PR to regulatory regions upstream of TGFA and in TIPARP promoter (Figure 5H, 
Figure 5—source data 1), which suggest that lack of PAX2 is probably exacerbating E2 stimulation on 
PR recruitment. No increment in PR binding was detected in the promoter of TGFA or in an unrelated 
genomic region (negative).

This effect did not seem to alter the expression of hormone responsive genes in a similar fashion. In 
the absence of E2 pretreatment, R5020-dependent expression of ALPP was abolished by PAX2 knock 
down, while TIPARP regulation was practically unaffected (Figure 5I, Figure 5—source data 2). This 
is consistent with the fact that TIPARP, but not ALPP, had its promoter regulatory region occupied by 
both PR and ERalpha upon hormone stimulation (Figure 5—figure supplement 2A). Thus suggesting 
that PAX2 could modulate PR binding in regions potentially co-occupied by ER alpha. This effect 
was corroborated under estrogenic conditions and although reduced levels of PAX2 clearly affected 
the gene regulatory profiles of both genes, differences were not statistically significant probably due 
to the variable gene expression background in Ishikawa cells and residual levels of PAX2 among 
replicates. As was observed in the control condition (non-target siRNA), E2-pretreatment increased 
ALPP transcript levels after PAX2 knock down (pretreated vs. non-pretreated cells), which were then 
further increased by R5020 treatment. However, as in non-pretreated cells, ALPP transcript levels were 
lower compared to siRNA control conditions. In the case of TIPARP, we found that in agreement with 
previous reports on breast cancer cells (Rasmussen et al., 2021), expression levels were increased by 
E2 (pretreated vs. non-pretreated cells) and apparently by R5020 as well (treated vs. untreated condi-
tions). In line with our hypothesis, supported by PR recruitment to TIPARP promoter region, R5020 
treatment increased TIPARP levels in PAX2-knocked down cells.

These results suggest that the lack of PAX2 resembles some characteristics of an unopposed 
estrogen action, promoting reduced levels of ALPP and increased levels of TIPARP. Moreover, PAX2 
knockdown reduced ESR1 and PGR expression (Figure  5—figure supplement 2B) pointing to a 

(non-pretreated, E2-pretreated). Images were merged for co-localization analysis (merge). Scale bar is shown in the panels and is equivalent to 30 µm. 
(C) PAX2 binding profile inside a region of 70kb of chromosome 14. Number of PAX2 binding sites for untreated Ishikawa cells and treated with R5020 
for 60 min or E2 for 60 min is shown to the right of the profiles as well as the intersection between these last two groups (venn diagram). Tracks for 
PRbs, prePRbs, FPRbs and ERbs are displayed below the profiles for the same region. (D) Pairwise intersections of the fraction of overlap between PRbs, 
prePRbs, ERbs and PAXbs. Color key is indicated below the plot and the size of each set is shown as a bar plot to the right side. Intervene software was 
employed in the analysis (Khan and Mathelier, 2017). (E) Binding profiles of ER (green), PR (red), FPR (black), and prePR (blue) on PAX2 binding sites 
of 60min R5020-treated Ishikawa cells. PAX2 binding after 60min E2 treatment was included (purple). Inset shows signal profiles centered on shuffled 
R5020-dependent PAX2 binding sites. P-value for fisher extact test is reported in the plots. (F) Binding profiles as in (E) on PAX2 binding sites of 60min 
E2-treated Ishikawa cells. PAX2 binding after 60min R5020 treatment was included (orange). As in (E), inset shows signal profiles centered on shuffled 
E2-dependent PAX2 binding sites. p-Value for fisher extact test is reported in the plots. (G) PAX2 knockdown evaluated by qPCR (left panel) and 
Western blot (right panel) after treating Ishikawa cells with a control siRNA (siCont) or a mix of specific siRNAs (pool). PCR data from three replicates 
were normalized by GAPDH expression and shown in the plot together with the mean± SEM. PR was used as control for western blot. (H) Binding of 
PR in cells treated with siRNA control or siPAX2 followed by 12 hr pretreatment with E2 and treatment with R5020 for 60min. PCR signal was corrected 
by beta-actin and relativized to untreated control cells. Bars show the mean± SEM of the three replicates displayed as dots. (I) Gene expression levels 
of hormone responsive genes before and after siPAX2 treatment. Expression was normalized to GAPDH and relativized to T0 using ΔΔCt method and 
expressed as mean log2 fold change± SEM of the three replicates displayed as dots. For all items, statistically significant comparisons resulting from 
ANOVA followed by Tukey’s HSD are denoted by the adjusted p-value.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. PR recruitment measured by qPCR in PAX2-knocked down Ishikawa cells.

Source data 2. Gene expression measured by qPCR in PAX2-knocked down Ishikawa cells.

Figure supplement 1. Expression analysis of PAX2 and other PAX family members in Ishikawa cells.

Figure supplement 2. Expression analysis of hormone regulated genes after PAX2 knock down.

Figure 5 continued

https://doi.org/10.7554/eLife.66034
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pivotal role of PAX2 in sustaining PR and ERalpha target gene regulation. However, it did not affect 
TGFA levels (Figure 5—figure supplement 2B) that were substantially upregulated by E2 compared 
to non-pretreated cells, but downregulated by R5020 under estrogenic conditions.

Under estrogenic conditions, PR and PAX2 conform endometrial 
regulatory domains in open chromatin compartments
Nuclear architecture is a major determinant of hormonal gene regulatory patterns (Le Dily et al., 
2014). Therefore, we used in nucleo Hi-C technology to study the folding of chromatin across the 
genome of Ishikawa cells by generating genome-wide contact datasets of cells untreated (T0) or 
pretreated with E2 for 12  hr, and exposed to R5020 or E2 for 60  min. A comparison of contact 
matrices at 20 kb resolution of untreated Ishikawa cells to T47D cells confirmed the high degree of 
conservation on the borders of topologically associating domains (TADs) (Figure 6—figure supple-
ment 1A). TADs are grouped into two chromatin compartments A and B, which represent the active 
open chromatin (A) and the closed inactive chromatin (B), respectively. Analysis of such compartments 
showed a cell type-specific patterning (Figure 6—figure supplement 1B), in which Ishikawa samples 
from two independent experiments were more closely related to each other than any of them to a 
T47D sample (Figure 6—figure supplement 1C and D). However, A/B profile distribution in Ishi-
kawa cells was independent from hormonal treatments (Figure 6—figure supplement 1B and E), 
meaning that chromatin was in a primed state that conditioned hormone-dependent regulation of 
gene expression. Detailed analysis revealed that 7% of A domains in Ishikawa cells were B in T47D 
cells, and 12% of B domains in Ishikawa cells were A in T47D cells (Figure 6—figure supplement 1F). 
A total of 861 genes encompassed in the A compartment in Ishikawa cells belong in the B compart-
ment in T47D cells, and 1438 genes in B compartaments in Ishikawa cells belong in A in T47D cells 
(12%), suggesting that distribution of A and B compartments could in part explain cell type specific 
gene expression profiles.

To evaluate whether chromatin states are related to gene expression through differential binding 
of hormone receptors to DNA, we intersected PR and ER alpha ChIPseq results with the A/B compart-
ment coordinates. Both transcription factors, PR and ER alpha, bound A compartments more 
frequently than B, meaning that open genomic regions in Ishikawa showed preferential binding of the 
hormone receptors (Figure 6—figure supplement 1G). Neither pre-treatment with E2 nor expression 
of recombinant PR modified the preferential binding of PR to the A compartments.

As mentioned above, PAX2 binding occurs mostly in close proximity to PR and ER alpha binding 
sites. In fact, distances between PAXbs and PRbs were remarkably shorter in E2 pretreated cells 
than in any other condition (Figure 6—figure supplement 1H). This raised the question of whether 
recruitment of PR together with PAX2 to open chromatin compartments facilitates regulation of gene 
expression. To study this notion, we defined putative endometrial regulatory domains that we named 
‘Progestin Control Regions’ (PgCR) with the capacity to potentially regulate nearby genes. The restric-
tions for being a regulatory domain, which consisted in containing at least two PRbs separated by 
a maximun distance of 25 kb and a PAXbs (represented in Figure 6A: PgCRs Definition), were met 
mostly under E2 pretreated conditions. This outcome was due to the strong association between 
prePRbs and PAXbs, though it may have been aided by the increased PR protein levels. However, the 
sole increment in PR protein levels was not enough to force an association to PAXbs, given that FPR 
cells did not show similar results (Figure 6A: PgCRs Definition).

Considering that TAD borders may act as regulatory barriers (Figure 6—source data 1), we 
removed from further analysis any region that, in spite of satisfying the rules for being a PgCR, was 
localized across a barrier as well. In agreement with this restriction, the sizes of PgCR -with an average 
of 25kb- were smaller than TADs -with an average of 1000kb- (Figure 6—figure supplement 1I). In 
addition, the majority of the 121 identified PgCRs (coordinates in hg38 Figure 6—source data 2) were 
not located near the TAD borders, but in the TAD center (Figure 6—figure supplement 1J), where 
most non-housekeeping genes are found (Le Dily et al., 2019). Moreover, PgCRs seem to be located 
in A compartments in the vicinity of hormone-regulated genes like PGR and ALPP (Figure 6A). Regu-
lation in the expression of these genes was validated by RNAseq and qPCR of total RNA samples of 
Ishikawa cells exposed to R5020, E2 and E2 followed by R5020 for 12 hr, which showed that ALPP is 
induced by both hormones and PGR is regulated by R5020 only after treatment with E2 (Figure 5I, 
Figure 5—figure supplement 2B and Figure 6—figure supplement 1K).

https://doi.org/10.7554/eLife.66034
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Figure 6. Convergence of PR and PAX2 binding in TADs with regulated genes defines potential endometrial regulatory domains. (A) Upper panel 
shows the contact matrices at a resolution of 20kb obtained by In Nucleo Hi-C in PGR and ALPP loci. Middle panel shows the spatial segregation of 
chromatin as open or closed compartments inside TADs (green bars: A compartment; white bars: B compartment - see Materials and methods section). 
The bottom panels show ChIPseq signal distribution of PR, FPR, prePR, PAX2 and ERalpha as well as the location of PgCRs and genes over the region. 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.66034
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As was mentioned before, the Hi-C matrices were used to determine the spatial segregation 
of chromatin in both open and closed chromatin compartments (A/B), and the A:B ratio was inde-
pendent of hormone treatment. Consistent with these results, ATACseq signal on PgCRs remained 
unchanged upon hormone exposure (Figure  6B, top panels). We evaluated the possibility that 
ATAC-seq signal on PgCRs was simply reproducing any potential region on the genome by relocating 
the reference regions (‘shuffled regions’) preserving their size and the chromosome they were origi-
nally in. Coverage signal was lost upon shuffling the reference regions indicating that chromatin was 
readily and non-randomly accessible to TFs in these locations. Although ATACseq peaks were also 
detected on promoters of hormone-regulated genes, the signal did not differ after hormone exposure 
(Figure 6B, bottom panels), implying that treatments were not responsible for opening the chromatin 
in these regions. In addition, both R5020- and E2-regulated genes with highest FC values (v. T0) were 
concentrated under 1 Mb (‘close’) away from PgCRs (Figure 6C), though the comparison between 
FC values of ‘close’ and ‘far’ (over 1 Mb) regulated genes was significant only in the case of R5020 
(p=‍4.4 × 10−3 ;‍Figure 6C, inset).

Further analysis on Hi-C contact matrices revealed that PgCRs preferentially interact with promoters 
of hormone-regulated genes (Figure 6D). Employing a ‘one-to-one’ virtual 4 C approach we found 
that TGFA promoter was in close contact with a nearby PgCR (enhancer sequences validated by qPCR 
in Figure 2—figure supplement 2A and Figure 5H) possibly regulating the cyclical E2-dependent 
increment of the transcript and the R5020-dependent downregulation that followed. Although PgCR-
promoter interactions were non-random and mostly intra-TAD, we found no difference in contact 
enrichment between treated and untreated cells (Figure 6E). These results are consistent with ATACseq 
profiles and imply that chromatin would be pre-assembled into regulatory loops–involving PgCRs and 
promoters–which are transcriptionally inactive until hormone-dependent binding of steroid receptors 
and PAX2 triggers PolII activation (Figure 6F).

These results suggest that specific binding of PR, PAX2, and ERalpha to chromatin occurs in 
compartments that are present in a permissive (open) or restrictive (closed) status depending on the 
cell line, and are not modified by short term hormone exposure (Figure 6F). However, it is not yet 
clear the role of PAX2 in PR binding to PgCRs. Summing up, PR and ER bind mostly to non-common 
sites that exhibit the corresponding consensus sequences, and are adjacent to PAX2 binding. There-
fore, the endometrial specific hormone response results in part from specific chromatin compart-
ments, unique receptor binding sites and selective TFs binding partners to regulate gene expression.

The dashed rectangle restricts the TAD of interest and the vertical arrow marks the TSS of PGR and ALPP. Definition of PgCR: Coverage profiles of 
PR (red), FPR (black), and prePR (blue) binding on Progesterone Control Regions (PgCRs) delimited by the start and end labels, and flanked upstream 
and downstream by 1.5Kb regions. Input sample (gray) was included in the plot. Rules for qualifying as a control region are depicted on top of the 
profile plot. Magnified images over Control Regions are shown to the right (zoom on PgCRs). (B) ATACseq peaks from cells untreated (T0), treated with 
R5020 for 60 min, 12hr E2-pretreated (preE2 T0) and E2-pretreated followed by 60min treatment with R5020. Signal was plotted over Control Regions, 
shuffled Control Regions (Shuffled Regions), promoters of all annotated genes from GENCODE database (GENCODEv38) and promoters of genes 
regulated by 12h treatments with R5020 or E2. (C) Plot shows fold change values of genes regulated by R5020 and E2 (v. untreated cells) relative to 
Control Regions. Genes located upstream of PgCRs are represented with negative distance values. Dashed horizontal lines mark fold change cut-off 
points (|log2FC|=0.8) and vertical lines are placed at position –1 and 1Mb. Insets depict comparison of fold change values (absolute values) between 
genes located beneath (close) and over (far) a 1Mb distance from PgCRs. Statistical significance for this comparison was determined with Welch Two 
Sample t-test and is represented by a p value on the plot. (D) Top panel: Hi-C contact map at 5kb resolution of chr2 (70,200,000-71,200,000) obtained 
in Ishikawa cells and showing the organization around TGFA gene locus. Middle panel: Virtual 4C profile at 5kb resolution (expressed as normalized 
counts per thousands within the region depicted above) using the TGFA promoter as bait and showing the contacts engaged between TGFA promoter 
and the PgCR detected in this region (highlighted in green). Arrow on top panel highlights the position of the loop in the map. Bottom panel shows 
the positions of genes in the region depicted. (E) Distributions of observed versus expected interactions established between promoters (red - left), 
between PgCRs (blue - middle) and between Promoters and PgCRs (purple - right) located within a same TAD in Ishikawa cells treated as indicated 
below. (F) Representation of a chromatin loop involving a PgCR and the promoter of a regulated gene. Initially, the gene is transcriptionally inactive even 
though the loop is already formed. After hormone induction (E2 pretreatment followed by R5020), PR, PAX2 and in some cases ER alpha occupy open 
chromatin compartments in contact with promoters resulting in transcriptional activation.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. TAD coordinates (hg38).

Source data 2. PgCR coordinates (hg38).

Figure supplement 1. Chromosome compartments analysis and definition of progesterone control regions.

Figure 6 continued

https://doi.org/10.7554/eLife.66034


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

La Greca et al. eLife 2022;11:e66034. DOI: https://doi.org/10.7554/eLife.66034 � 16 of 31

Genes contained in TADs with PgCRs are associated to endometrial 
tumor progression
To explore the possibility that alterations in the expression profile of genes under the influence of 
PgCRs were related to disease progression such as endometrial cancer, we examined 497 RNAseq 
samples from a cohort of patients diagnosed with endometrial cancer (The Cancer Genome Atlas, 
TCGA, Project TCGA-UCEC). Processing and exploratory analysis of raw count data are described in 
Materials and methods section (Figure 7—figure supplement 1A). Samples were classified according 
to available clinical metadata, including the FIGO system (International Federation of Gynecology and 
Obstetrics), resulting in 488 samples of which 267 are Stage I, 53 are Stage II, 137 are Stage III and 31 
are Stage IV. Principal component analysis (PCA) on these samples revealed a clear bias in the scattered 
distribution, mostly explained by the first component (PC1: 18%). Tumors in advanced stages (Stage 
II to IV) showed a tendency to group together and they were characterized by a marked reduction in 
PGR and ESR1 levels (Figure 7A). However, just as it was observed for hormone-treated Ishikawa cells, 
no change in PAX2 expression was detected throughout stages (Figure 7—figure supplement 1B). 
Expression profiles of selected genes previously implicated in tumor progression (causally or not) (Liu 
et al., 2020; Dou et al., 2020) were evaluated to validate our analysis (Figure 7B).

Progression of the malignant tissue is driven by important alterations in gene expression. Shifts in 
transcript abundance towards Stage IV were evaluated by differential expression analysis in DESeq2 
package (–1> log2FoldChange > 1  and p-value < 0.05), producing a set of 2842 altered genes 
(Figure 7C). Among these differentially expressed genes (DEGs), we found that 102 genes (Figure 
7—source data 1) were also located in TADs with PgCRs including both upregulated and downreg-
ulated genes (Figure 7D and Figure 7—figure supplement 1C and D). These 102 genes constitute 
20% of the 522 protein coding genes in TADs with PgCRs (PgCR-genes; Figure 7—source data 2). To 
test if any randomly picked set of genes could produce the same number of intersected genes as the 
DEGs, we ran 10,000 iterations of an adapted bootstrapped model in which each randomly generated 
(without replacement) new set of 2842 genes was contrasted with PgCR-genes. Each intersection 
was then used to build a distribution (µ71.58) and a 95% confidence interval (2.5%=57; 97.5%=87) 
that demonstrated that the 102 intersected genes were in fact not part of the normal distribution 
(Figure 7E).

Next, we employed GSEA algorithm to test whether the expression profile of these 102 genes in 
advanced tumor samples was different to the one observed in Ishikawa cells treated with R5020 or 
E2. Genes modulated by hormones in Ishikawa cells were mainly regulated in the opposite direction 
during tumor progression, though most of the genes were not regulated in the conditions of our 
experiments (Figure 7F). Although GSEA results were not statistically robust, genes downregulated 
in tumor progression were mostly clustered together among genes upregulated by E2 (NES = 1.25; 
FDR = 0.1669) or R5020 (NES = 0.99; FDR = 0.9547) in Ishikawa cells. On the other hand, genes 
upregulated in tumor progression were more evenly distributed across treated and untreated Ishikawa 
samples.

These results indicate that hormones via their receptors maintain a fine balance over the expression 
levels of these genes, which become disrupted upon tumor progression and that PgCRs regulation 
involves genes that participate directly or indirectly in key steps of tumor onset and progression.

Discussion
There seems to be consensus that the way in which combinations of TFs assemble their binding sites 
contributes to the folding of the genome in cell type specific patterns that orchestrate the physio-
logical coordination of gene expression programs required for the proper development and function 
of complex organisms (Lambert et al., 2018; Stadhouders et al., 2019). There is evidence that the 
same TF can regulate different gene sets in different cell types (Gertz et al., 2012), but the mecha-
nisms through which hormone receptors regulate endometrial-specific gene networks had not been 
previously deciphered. Here, we describe ER alpha and PR binding to the genome of endometrial 
cancer cells and analyze their specific chromatin context. In this genomic study, we used Ishikawa cells, 
given that they are a good model of Type I epithelial endometrial cancer (Nishida, 2002) containing 
ERalpha and PR.

https://doi.org/10.7554/eLife.66034
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Figure 7. Altered expression of PgCR-genes correlates with drivers of endometrial tumor progression. (A) Scatter plot of PCA results showing scores 
of components 1 and 2 (PC1 and PC2) using transcriptomic data of endometrial cancer samples (protein coding genes) obtained from TCGA-UCEC 
database (n=488). Samples are classiffied by FIGO stage (I to IV) and identified by color. Marginal density plots represent distribution of scores for each 
stage. Normalized expression values of PGR and ESR1 genes in these samples is shown to the right of the scatter plot. (B) Expression of genes positively 
(top row) and negatively (bottom row) regulated during endometrial cancer progression (FIGO stage) from TCGA-UCEC samples. (C) Heatmap shows 
scaled normalized counts of 2842 differentially expressed genes (DEGs) between Stage IV and the other three stages. (D) Intesection between DEGs 
presented in C and protein coding genes contained in TADs with PgCRs (522) resulted in 102 gene identities detailed in the box to the left of the Venn 
diagram. Genes were arranged as Upregulated or Downregulated with respect to Stage IV samples. (E) Bootstrapping statistical approach to test 
whether intersection described in D could result from randomly picking any set of 2842 genes among all known protein coding genes (GENCODE v38). 
Vertical red lines mark the 2.5 and 97.5 percentile, which denote the 95% confidence interval of the distribution. Intersection from D is indicated as a 

Figure 7 continued on next page
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It should be noted that progestin regulation of gene expression in Ishikawa cells is decidedly vari-
able. Then, the effects of perturbations to the model (i.e. treatments, siRNA) are tested in a highly vari-
able gene expression background. We would like to remark that the contribution of our results to the 
progesterone receptor binding and its interaction with their neighboring genomic regions in endome-
trial cancer cells is novel and more consistent than their contribution to productive gene expression. 
Therefore, it was relevant to our model to validate the results by contrasting them with previously 
publish transcriptomic and PR binding data of normal endometrium and endometrial cancer.

It was reported that in Pgr Knockout (PRKO) mice the absence of PR results in unopposed 
estrogen-induced endometrial hyperplasia (Lydon et al., 1995). As for the two isoforms of PR, the 
PRB isoform is considered a strong transcriptional activator while PRA can function as a transcrip-
tional inhibitor of PRB activity (Mulac-Jericevic et al., 2000). Selective ablation of PRA in mice results 
in a PRB-dependent gain of function, with enhanced estradiol-induced endometrial proliferation 
(Conneely et al., 2003). Ishikawa cells express more PRB than PRA, coherent with PRB dominance in 
glandular epithelial cells (Mote et al., 1999). To explore the mechanism underlying the endometrial 
specific response to ovarian steroids hormones, we studied the genomic binding of ERalpha and PR 
by ChIPseq in hormone untreated Ishikawa cells and in cells exposed to hormone for different time 
periods. We discovered that the majority (67%) of PRbs after estradiol pretreatment were new sites 
not present in untreated cells and different as well from ERbs occupied after estradiol treatment. Just 
639 PR binding sites (11% of all PRbs) were the same for both PR and ERalpha. This indicates that 
contrary to what was described in breast cancer cells (Mohammed et al., 2015; Singhal et al., 2016), 
in endometrial cells PR binding has little influence on ERalpha binding. In Ishikawa cells, binding of 
ER and PR occurs mainly at ERE and PRE sequences, respectively, in regions that are also enriched in 
PAX response elements. Ishikawa cells are rich in PAX TF and PAX ChIPseq shows a similar overlapping 
with ERbs and PRbs.

When we analyzed chromatin topology of Ishikawa cells using Hi-C we found that PRbs and ERbs 
are enriched in Topologically Associating Domains (TADs) containing hormone-regulated genes. These 
TADs were predominantly part of the open (A) chromosome compartment, even in cells not exposed 
to hormone. This was confirmed by ATACseq results showing that the sites where the hormone recep-
tors will bind were already accessible, suggesting that hormone-independent mechanisms were 
responsible for the generation and maintenance of the hormone-responsive TADs. In that respect, it is 
interesting that we found an enrichment of PAXbs near PRbs in these TADs containing progesterone 
regulated genes, suggesting that PAX2 could generate the open chromatin conformation that enables 
PR binding and facilitates the interacting loops detected in Hi-C experiments. Loss of PAX2 expres-
sion has been implicated in the development of endometrial intraepithelial neoplasia (EIN) (Sand-
erson et al., 2017) and PAX2 is potentially useful in the diagnostic of difficult EIN cases (e.g. where 
there is no ‘normal’ tissue available to act as an internal control when assessing nuclear morphology) 
(Quick et al., 2012). The fact that PAX2 expression is reduced upon tamoxifen treatment or through 
neoplastic processes (Monte et al., 2010) in which altered hormone receptor pathways are hallmark 
features is indicative of a central role of the estrogen receptor in its mechanism of action. In line with 
this notion, we propose that E2-induced ERalpha acts together with PAX2 to define key PR regulatory 
regions that modulate gene expression. Our results connect PR response elements with PAX2 and 3D 
chromatin conformation, which is consistent with the preservation of progestin regulation in differen-
tiated cancer cells expressing hormone receptors. Undifferentiated tumor cells, which do not express 
hormone receptors, lose this regulatory capabilities leading to more aggressive manifestations of the 
malignancy. We hypothesize that PR-PAX-PR binding sites containing regulatory domains that we 
name PgCRs could reflect PR shadow enhancers (Cannavò et al., 2016) in endometrial cells.

vertical black dashed line (102). (F) GSEA plot results using the 102 genes from intersection in D as gene set to match against an expression dataset from 
Ishikawa cells treated or not with R5020 or E2 for 12h. Normalized enrichment scores and FDR values are reported on the plots.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Intersection between tumor DEGs and PgCR-genes.

Source data 2. Protein coding genes in TADs with PgCRs (PgCR-genes).

Figure supplement 1. Exploratory analysis and processing of TCGA-UCEC endometrial cancer samples.

Figure 7 continued
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The redundancy of PRbs associated to endometrial specific gene expression may reinforce a 
genetic mechanism to ensure progestin regulation in tissue under hormonal influence, in periods in 
which there is low or no circulating hormone. Notably, the only described super-enhancer in endo-
metrial carcinomas is the Myc super-enhancer and is not hormonally regulated (Zhang et al., 2016). 
We postulate the existence of a novel subset of 121 strategic endometrial regulatory domains in this 
hormonally responsive endometrial cancer cell line. Among them the TGFA gene presents one of 
PgCR-promoter interaction that could explain hormone regulation previously reported in this cells 
(Hata et al., 1993). This concept could be exploited to guide treatments oriented to recover progestin 
regulation over estrogen proliferative effects in endometrial malignancy.

Previous results in T47D mammary cancer cells have shown Hormone Control Regions, which 
include ERbs and PRbs acting in conjunction with FOXA1 and C/EBPa (Nacht et al., 2019) interact 
with promoters of hormone regulated genes in hormone-responsive TADs and organize the high level 
folding of the genome (Le Dily et al., 2019). Although the analysis of interaction between PgCR and 
different ERalpha enriched binding regions in endometrial cells remains to be performed, our present 
study proposes that PR binding sites originated under estrogenic conditions and acting in conjunc-
tion with PAX2, fulfil a similar function in differentiated hormone-responsive endometrial cancer cells. 
Thus, combinations of the same hormone receptors and different transcription factors account for 
cell-type-specific expression of different gene regulatory networks in part by generating and main-
taining different genome topologies.

Droog et  al., 2017 highlights that ‘the divergence between endometrial tumors that arise in 
different hormonal conditions and shows that ER alpha enhancer use in human cancer differs in 
the presence of nonphysiological endocrine stimuli’. They reported that ERalpha-binding sites in 
tamoxifen-associated endometrial tumors are different from those in the tumors from nonusers. It has 
yet to be explored whether the response to progesterone and sinthetic progestins, used in treatments 
of hormone-dependent endometrial cancers, is affected by the changes resulting from the use of 
tamoxifen.

On the other hand, ERalpha and glucocorticoid receptor (GR) are expressed in the uterus and have 
differential effects on growth (Vahrenkamp et al., 2018). Expression of both receptors was associated 
with poor outcome in endometrial cancer and the simultaneous induction of ER alpha and GR leads 
to molecular interplay between the receptors (Vahrenkamp et al., 2018). In our conditions, R5020 
induces genes with GR/PR putative binding sites, enabling regulation that could result in a similar 
ERalpha-GR pathological outcome.

In the last 10 years an enormous effort has been placed in gathering massive amounts of good 
quality omic and clinical data from healthy women and endometrial cancer patients in different stages 
of this often sub-diagnosed disease (Cancer Genome Atlas Research Network, 2017; Dou et al., 
2020). Besides the underlying mutational triggers, the mechanisms by which normal endometrial 
tissue progresses into aggressive and potentially lethal malignancies are being extensively studied 
(Ma et al., 2018; Bai et al., 2019; Monsivais et al., 2019; Rodriguez et al., 2020). Employing this 
data, we verified that PAX2, PR and ERalpha levels are reduced in tumor samples (versus normal 
tissue) and they decreased even further throughout all stages of the disease. In conclusion, it is our 
belief that loss of PAX2 forces aberrant PR and ER alpha signaling in endometrial cells that may lead to 
the altered expression of both receptors and consequently PgCR-genes, facilitating the progression 
of the disease.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens)
Edometrial adenocarcinoma (Epithelial) 
Ishikawa

Dr. Rochefort UnitÃ Hormones and 
Cancer INSERM, France Female

Cell line (Homo sapiens) FPR Ishikawa This paper
Flag-tagged PR overexpression; 
Female

Cell line (Homo sapiens) Breast cancer (Epithelial) T47D
Dr. Beato (Center for Genomic 
Regulation) Female

https://doi.org/10.7554/eLife.66034
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent p3xFLAG-CMV-14 (plasmid)
Dr. Beato (Center for Genomic 
Regulation) Flag-tagged human PR

Sequence-based reagent Human PAX2 siRNA Dharmacon Pool of 4 on-target oligos

Sequence-based reagent Human control siRNA QIAGEN 1027310 Scramble non-target oligo

Antibody Anti-PR (H-190 Rabbit polyclonal) Santa Cruz Bio. sc-7208 RRID:AB_2164331 ChIP:30µ l xIP Western (1:200)

Antibody Anti-ERalpha (HC-20 Rabbit polyclonal) Santa Cruz Bio. sc-543 RRID:AB_631471 Western (1:200)

Antibody
Anti-ERalpha (HC-20X Rabbit 
polyclonal) Santa Cruz Bio. sc-543X ChIP (25µ l xIP)

Antibody
Anti-ERalpha (H-184X Rabbit 
polyclonal) Santa Cruz Bio. sc-7204 ChIP (25µ l xIP)

Antibody
Anti-phosphoserine 294 PR (Rabbit 
polyclonal) Cell Signaling 13736 RRID:AB_2798307 IF (1:100)

Antibody Anti-PAX2 (Rabbit polyclonal) BioLegend PRB-276P (Covance) RRID:AB_291611 ChIP:6µ l xIP Western (1:200)

Antibody Normal rabbit IgG Santa Cruz Bio. sc-2027 RRID:AB_737197 ChIP (12µ l xIP)

Antibody Anti-alphatubulin (Mouse monoclonal) Merck T5168 (Sigma-Aldrich) RRID:AB_477579 Western (1:1000)

 Continued

Cell culture and hormonal treatments
Endometrial adenocarcinoma Ishikawa cells and FPR Ishikawa cells were cultured in phenol red 
DMEM/F12 medium (GIBCO, Thermo Fisher Scientific) supplemented with 10% FCS (GreinerBioOne) 
and gentamycin (Thermo Fisher Scientific) at 37°C and 5% carbon dioxide to maintain cell line stock. 
Ishikawa cells were obtained from Dr. Rochefort at the UnitÃ Hormones and Cancer, INSERM U148 et 
VAC 59 CNRS, 34,090 Montpellier, France. The cell line was authenticated by karyotyping (G band) 
a sample in comparison with the original published karyotype (Nishida, 2002) and has been tested 
negative for mycoplasma contamination. Before each experiment, cells were plated in phenol red-free 
DMEM/F12 medium supplemented with 5% dextran-coated charcoal-treated (DCC)-FCS and genta-
mycin for 48 hr. Then, the medium was replaced by serum-free DMEM/F12 and kept in it for 18 hr 
(overnight). Treatments were performed with R5020 and E2 to a final concentration of ‍10 nM‍ and 
ethanol (vehicle) for the times indicated for each experiment. When indicated, pretreatment with E2 
consisted of a single administration of E2 to a final concentration of ‍10 nM‍ 12 h before hormonal treat-
ments. T47D cells were cultured in RPMI 1640 medium as previously described (Nacht et al., 2016).

Transfection with flag-tagged PR (FPR Ishikawa cells)
Plasmid p3xFLAG-CMV-14 carrying the complete sequence for progesterone receptor gene 
(HindIII924 - 938EcoRI) was introduced in Ishikawa cells using Lipofectamine 2000 (Thermo Fisher 
Scientific) following manufacturer recommendations. After 24 hr of transfection, cells were exposed 
to 0.6 mg/mL G418 for selection. Then on, every two passages, FRP cells were exposed to a reduced 
concentration of G418 (0.4 mg/mL), except during hormonal treatments.

Transfection with small interference RNA (SiRNA)
Ishikawa cells were seeded in six well plates (‍3 × 105‍ per well, western blot and qRTPCR) and p100 plates 
(‍1.5 × 106‍ per plate, ChIP) for transfection with pool of 4 on-target siRNAs (Dharmacon; #1: GAAGU-
CAAGUCGAGUCUAU, #2: CGACAGAACCCGACUAUGU, #3: GGACAAGAUUGCUGAAUAC, #4: 
CAUCAGAGCACAUCAAAUC) or scramble non-target (QIAGEN; #1: ​AATTCTCCGACGTGTCACGT). 
The following day, cells were transfected using Lipofectamine 3,000 (Thermo Fisher Scientific) 
following instructions from transfection reagent manufacturer. Briefly, mix A containing OptiMEM and 
siRNAs and mix B containing OptiMEM and Lipo3000 were incubated together for 20 min at room 
temperature and added to the cultured in a drop by drop fashion. During incubation, media was 
replaced by phenol red-free DMEM/F12 5% DCC-FCS without antibiotics. Thirty-six hr later, cells were 
treated with E2 ‍10 nM‍ for 12 hr (pretreatment) and then 60 min with R5020 ‍10 nM‍. Cells were seeded 

https://doi.org/10.7554/eLife.66034
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in three replicates and statistical differences among conditions were evaluated by ANOVA followed by 
Tukey’s HSD and pairwise t test with correction for multiple comparison to produce adjusted p-values 
(Benjamini-Hochberg method).

Proliferation assay
Ishikawa cells were seeded at ‍5 × 104‍ cells/plate density in 35-mm dish plates. After 48 hr in 5% DCC-
FCS, the medium was replaced for 1% DCC-FCS for 18 hr. Treatments were performed for 48 hr and 
cells were then collected using trypsin (0.25%). Antagonists for ER and PR, ICI182780 and RU486 1 
µM respectively, were added for 60 min and removed before hormonal treatments. The number of 
live cells was determined using trypan blue (0.1%) in Neubauer chamber, repeating the procedure 16 
times for each sample and performing three independent experiments.

BrdU incorporation assay and cell cycle analysis
Ishikawa cells were seeded and prepared for hormonal treatments as described for Proliferation assay. 
Treatments were carried out for 15 hr, the last two hours of which includes incubation with BrdU. Cells 
were treated with cell cycle inhibitor TSA A 250 µM as negative control of BrdU incorporation. After 
collecting cells in trypsin and washing them with PBS, ethanol 70% was added to fix and permeabilize 
them. DNA denaturation was achieved with 0.5% BSA and ‍2 M‍ HCl after which cells were incubated 
in 1:2000 solution of anti-BrdU (BD Pharmingen) for 1 hr at RT. FITC secondary antibody (Dako) was 
incubated for 1 hr in obscurity at RT followed by propidium iodide for 5 min. BrdU incorporation and 
cell cycle phases were evaluated by flow cytometry (BD FACS Canto II) in three replicates.

Western blot
Cell extracts were collected at the times indicated by the experiment with 1% SDS, ‍25 mM‍ Tris-HCl 
pH 7.8, ‍1 mM‍ EDTA, ‍1 mM‍ EGTA and protease and phosphatase inhibitors. Total protein extracts were 
loaded in 8% SDS-PAGE and incubated with the following antibodies: PR (H190, Santa Cruz Bio.), 
ERalpha (HC-20, Santa Cruz Bio.) and alpha-tubulin (Sigma Aldrich). Quantification of gel images was 
performed with ImageJ software and expressed as abundance in relative units to alpha-tubulin.

Immunofluorescence
Cells were seeded onto coverslips in six-well plates in a density of ‍10 × 103 cells‍/150 µl using the 
protocol described in Cell culture and hormonal treatments and either pretreated or not with E2 
‍10 nM‍ during the last 12 hr of serum-free culture. After hormonal treatments cells were washed with 
ice cold PBS followed by fixation and permeabilization by incubation in 70% ethanol for 12 hr at -20°C. 
After rinsing three times for 5 min in 0.1% Tween-PBS, the coverslips were incubated for 2 hr with 
10% BSA in 0.1% Tween-PBS to reduce nonspecific staining. To detect PR (H-190 Santa Cruz Bio.), 
phosphoserine 294 PR (S294 Cell Signaling), ERalpha (HC-20 Santa Cruz Bio.), and PAX2 (Biolegend) 
cells were incubated with corresponding antibodies diluted in 10% BSA 0.1%Tween-PBS at 4°C over-
night. After several washes in Tween-PBS, coverslips were exposed to secondary antibodies Alexa 
488 and Alexa 555 (Thermo Fisher Scientific, Thermo Fisher Scientific) diluted 1:1000 in 10% BSA 
0.1% Tween-PBS for 1 hr at room temperature using DAPI to reveal nuclei. Coverslips were mounted 
on slides with Mowiol mounting medium (Sigma Aldrich) and analyzed in TIRF Olympus DSU IX83 
(Olympus Life Sciences Solutions). Quantification of nuclear fluorescence was done with ImageJ soft-
ware after generating a binary mask in dapi images.

qRTPCR
After 12  h of treatment with R5020 and E2, cell extracts were collected in denaturing solution (‍4 M‍ 
Guanidine thiocyanate, ‍25 mM‍ Sodium citrate pH 7, ‍0.1 M‍ 2-Mercaptoethanol, 0.5% Sarkosyl) and total 
RNA was prepared following phenol-chloroform protocol (Chomczynski and Sacchi, 1987). Integrity-
checked RNA was used to synthesize cDNA with oligodT (Biodynamics) and MMLV reverse transcriptase 
(Thermo Fisher Scientific). Quantification of candidate gene products was assessed by real-time PCR. 
Expression values were corrected by GAPDH and expressed as mRNA levels over time zero (T0). Primer 
sequences are: PGR (FW:5’-​CCCACAGGAGTTTGTCAAGC-3’ RV:5’-TAACTTCAGACATCATTTC-3’), 
ESR1 (FW:5’-​TCTA​TTCC​GAGT​ATGA​TCCTACCA-3’ RV:5’-​CAGACGAGACCAATCATCAG-3’), 
ESR2 (FW:5’-​GTCCTGCTGTGATGAACTAC-3’ RV:5’-​CCCTCTTTGCGTTTGGACTA-3’), 
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ALPP (FW:5’-​CAACCTGAGCTGCCTTTCTC-3’ RV:5’-GAACTGTGTCCCGGCTTCT-3’), TGFA 
(FW:5’-​CTTCAAGCCAGGTTTTCGAG-3’ RV:5’-​GGCAGGTTGGAAGAGATCAA-3’), TIPARP 
(FW:5’-CACACCAGCTCACTTCCA GA-3’ RV:5’-​CAGCTCAAACACGAGGTCAA-3’), GAPDH (FW:5’-​
GAGTCAACGGATTTGGTCGT-3’ RV:5’-​TTGATTTTGGAGGGATCTCG-3’), PAX2 (FW:5’-​CCAATGGT-
GAGAAGAGGAAA-3’ RV:5’-​CTCAAAGACCCGATCCAAAG-3’).

Luciferase reporter assay
Ishikawa cells were seeded and prepared for hormonal treatments as described for Proliferation assay 
without addition of gentamycin. Cells were co-transfected with MMTV LTR-Firefly Luciferase (pAGM-
MTVLu, gift from Laboratory of Patricia Elizalde) and CMV-Renilla luciferase (pRL-CMV, Promega) 
plasmids using lipofectamine plus 2000 (Thermo Fisher Scientific). After 5 hr, media were renewed 
with the addition of antibiotics and 12 hr later cells were treated with vehicle (ethanol) and R5020 
for 20 hr. Firefly and Renilla activities (arbitrary units) were determined with Dual-Luciferase Reporter 
assay system (Promega) and expressed as Firefly units relative to internal control Renilla for each 
sample (Firefly x104/Renilla).

RNAseq
Total RNA was collected from untreated (T0) and 12 hr R5020- and E2-treated Ishikawa cells using RNeasy 
Plus Mini Kit (QIAGEN) and subjected to high-throughput sequencing in Illumina HiSeq 2000 and 2,500. 
Poly-A-enriched RNA was used to prepare libraries with TruSeq RNA Sample Preparation kit v2 y v4 (ref. 
RS-122-2001/2, Illumina) according to instructions from manufacturer followed by single-end (run1) and 
paired-end (run2) sequencing. Good quality 50 bp reads were aligned to the reference human genome 
(hg19, UCSC) using Tophat software (Trapnell et al., 2009) keeping those that mapped uniquely to the 
reference with up to two mismatches and transcript assembly, abundance quantification and differential 
expression analyses were performed with the Cufflinks tool (Trapnell et al., 2010). Genes under 200 bp 
in length or with FPKM values below 0.1 were excluded from downstream analyses. Genes were classified 
into induced, repressed or non-regulated depending on log2FC value relative to untreated cells (T0). 
Threshold value was arbitrarily set at log2FC = ±0.8 and q < 0.05 (FDR). Enriched terms and TFBS were 
determined through RDAVIDWebservice (Fresno and Fernández, 2013) and DAVID web-based tool 
(Huang et al., 2009) under standard parameter settings for each tool.

Gene set enrichment analysis (GSEA)
GSEA tool was implemented following instructions from developers under default parameters (Subra-
manian et al., 2005). The expression dataset was created using Ishikawa RNAseq results, labeling 
samples as ‘R5020’ and ‘E2’ for categorical classification (phenotypes). Gene sets were constructed 
from proliferative and mid-secretory normal endometrial RNAseq samples (Chi et al., 2020). Differ-
ential expression analysis to extract genes representative of each stage was performed with DESeq2 
package (|log2FC|>2, p < 0.05) (Love et al., 2014).

Chromatin immunoprecipitation (ChIP)
ChIP experiments were performed as described in Strutt and Paro, 1999 and (Vicent et al., 2011). Anti-
bodies used for immunoprecipitation were PR (H-190, Santa Cruz Bio.), ER alpha (HC-20X and H-184X, Santa 
Cruz Bio.), PAX2 (PRB-276P, BioLegend), and normal rabbit IgG (sc-2027, Santa Cruz Bio.). Enrichment to 
DNA was expressed as percentage of input (non-immunoprecipitated chromatin, 1%) relative to untreated 
Ishikawa cells (T0) using the comparative Ct method. Ct values were acquired with BioRad CFX Manager 
software. Primers sequences are: EGFR UPS (FW:5’-​GCGT​GAGA​CACA​AACA​TTCC​AAACTGTA-3’ 
RV:5’-​GTTC​AAGC​AATG​GGAT​CGAGTTGT-3’), ALPP UPS (FW:5’-​AACTGTTCCAGCTGCGTTTT-3’ RV:5’-​
AGAA​CACG​GTCA​CTTC​CTTGA-3’), ALPP PROM (FW:5’-​TGACAGGGTGTCTTGTTCCA-3’ RV:5’-​GGGT​
GCGG​TATT​GAGT​ACAGA-3’), TGFA UPS (FW:5’-​CACATCCGGAGTTCAGACAA-3’ RV: 5’-​CACCTG-
GGAGCAGGTTACTC-3’), TGFA MID (FW:5’-​GGCATTTGGAGGGTGTCTAA-3’ RV:5’-​GAGCAGAGG-
GGTCACTGAAG-3’), TGFA P1 (FW:5’-​CTCT​CACA​CCAG​ACGA​AGCACA-3’ RV:5’-​CAGT​GACC​CCTG​
AGTT​GGAGACT-3’), TGFA PROM (FW:5’-​GGGA​AAAA​GACG​CAGA​CTAGG-3’ RV:5’-​GGTAGCCG-
CCTTCCTATTTC-3’), TIPARP PROM (FW:5’-​GAGG​CTGG​AGGC​GTCT​GGGG​AGTAGG-3’ RV:5’-​CTGC​
GGAC​AGAT​GGAG​GGTC​ACTTTG-3’), SERPINA3 (FW:5’-​GCAT​CATC​AAAC​TGAA​GCCT​GAGAA-3’ 
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RV:5’-​CAGT​AGAA​AAGC​CTCT​TTGT​TACTCCCA-3’), RPS6KA1 (FW:5’-​GGTA​CTGT​TGTC​TGGT​
CCCCCCT-3’ RV:5’-​CTCC​AGTG​AGAA​CAGC​CCAACCT-3’).

ChIPseq
After minor modifications to the ChIP protocol described in Vicent et al., 2011, purified ChIP-DNA 
was submitted to deep sequencing using Illumina HiSeq-2000. Libraries were prepared by the 
Genomics unit of the CRG Core Facility (Centre for Genomic Regulation, Barcelona, Spain) with 
NEBNext ChIPseq Library Prep Reagent Set (ref. E6200S, Illumina) and 50 bp sequencing reads were 
trimmed to remove Illumina adapters and low-quality ends using Trimmomatic (Bolger et al., 2014) 
version 0.33 in single-end mode. Good quality reads were aligned to the reference human genome 
(hg19 or hg38, UCSC) with BWA (Li and Durbin, 2009) v0.7.12 (BWA_MEM algorithm with default 
parameters) keeping alignments that mapped uniquely to the genome sequence (Samtools version 
1.2, Li and Durbin, 2009). Overlapping reads were clustered and significant signal enrichments 
(peaks) were identified by MACS2 v2.1.0 (Zhang et al., 2008) using input as background signal. FDR 
value during initial peak calling steps was set to 0.05 (q), though downstream analyses included only 
those with q < 10-5. Replication of binding sites was evaluated among treatments (time of exposure to 
hormone) and conditions (no pretreated, pretreated and FPR) using scatter plots, venn diagrams and 
heatmaps. Selected sites were validated by qPCR. When necessary peak files were converted to hg38 
coordinates using the batch conversion tool from UCSC. Statistical significance of the association 
between peak files (bed) was evaluated using bedtools (v.2.28.0 Quinlan, 2014) shuffle (parameters 
for randomization: -chrom -noOverlapping) and fisher (pairwise comparisons) modules.

Heatmaps, scatterplots, and motif analysis
Overlap of ChIPseq peak regions defined by upstream peak calling procedures (MACS2) were deter-
mined using intersectBed program from the bedTools suite (Quinlan, 2014). An overlap of at least 
one bp was considered positive. De novo motif discovery (MEME software) performed on sequences 
contained in 10 kb windows centered in peak summits. Graphs, correlation tests, non-linear regres-
sion and statistical analyses in general were performed for common peaks between ChIPseq samples 
using R (R Development Core Team). Heatmaps were plotted using the summit of the peaks as a 
reference central position. Reference positions were taken from common and exclusive peaks within 
experiments and were sorted by height of the peak. Genome aligned reads occurring between -5000 
and +5000 bp from reference sites were mapped using count_occurences program (Kremsky et al., 
2015) and the number of reads per bins of 200 bp was used for the color intensity of heatmap cells 
with R. For Motif discovery, genomic regions of top 500 peaks ranked by their height were extracted 
from each set and regions that overlap with repeats, low complexity regions or transposable elements 
(extracted from the UCSC genome browser, hg19 human assembly), were removed from the analysis. 
Motif discovery was performed using MEME program suite executed with the following parameters: 
-maxsize 250000 -revcomp -dna -nmotifs 3 -mod oops (Bailey et al., 2015). Motif enrichments were 
evaluated with the procedure and statistics described in Agirre et al., 2015. Additionally, the anal-
ysis utilized a 5mers collection of 1395 human position frequency matrices modeling transcription 
factors binding sites (Weirauch et  al., 2014), which were scanned (p-value <‍1 × 10−4 )‍ and their 
enrichment evaluated in regions of 200 bp centered in the summits of whole peaks sets. To uncover 
motif profiles, discovered and library motifs were whole-genome scanned (p-value<‍1 × 10−4 )‍. Their 
occurrences around the sets of summits were obtained with count_occurrences (±2000 bp, bin size 
= 200 bp) and the profiles showing the proportion of regions per bin having at least one match were 
plotted using R.

Binding site-gene association
Genomic coordinates of PR and ERalpha binding sites (hg38) were fed to GREAT web tool (McLean 
et al., 2010) to identify potential cis-regulatory interactions. Association was determined in a ‘basal 
plus extension’ process using a proximal regulatory domain of 5 kb upstream and 1 kb downstream 
from each TSS (GRCh38, UCSC hg38) and an extension of 100 kb in both directions. The group of 
genes associated with PRbs or ERbs were respectively intersected to R5020 and E2 RNAseq results, 
employing simple python scripting.

https://doi.org/10.7554/eLife.66034
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ATACseq
ATACseq was performed as previously described (Buenrostro et al., 2013). Briefly, 50,000 cells were 
lyzed with 50 µL cold lysis buffer (Tris-Cl pH 7.4 10 mM; NaCl 10 mM; MgCl2 3 mM; NP-40 0.1% v/v) and 
centrifuged at 500xg for 10 min at 4°C. Nuclei were resuspended in TD Buffer with 1.5 µL Tn5 Transposase 
(Nextera, Illumina) and incubated 15 min at 37°C. DNA was isolated using Qiagen MinElute column and 
submitted to 10 cycles of PCR amplification using NEBNext High-Fidelity 2 X PCR Master Mix (Univ. 
primer: ​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACA​CTCG​TCGG​CAGC​GTCA​GATGTG; Indexed primers: ​
CAAG​CAGA​AGAC​GGCA​TACG​AGAT​NNNN​NNNN​GTCT​CGTG​GGCT​CGGA​GATGT). Library were size 
selected using AMPure XP beads and sequenced on a NextSeq 500 instrument (2 × 75 nt).

Hi-C
High-throughput chromosome conformation capture assays were performed as previously described 
(Lieberman-Aiden et al., 2009; Rao et al., 2014). Adherent cells were directly cross-linked on the plates 
with 1% formaldehyde for 10 min at room temperature. After addition of glycine (125 mM final) to stop 
the reaction, cells were washed with PBS and recovered by scrapping. Cross-linked cells were incubated 
30 min on ice in 3 C lysis Buffer (‍10 mM‍ Tris-HCl pH = 8, ‍10 mM‍ NaCl, 0.2% NP40, 1 X anti-protease cock-
tail), centrifuged 5 min at 3000 rpm and resuspended in 190 µL of NEBuffer2 1 X (New England Biolabs 
- NEB). 10 µL of 10% SDS were added and cells were incubated for 10 min at 65°C. After addition of 
Triton X-100 and 15 min incubation at 37°C, nuclei were centrifuged 5 min at 3000 rpm and resuspended 
in 300 µL of NEBuffer2 1 X. Digestion was performed overnight using 400 U MboI restriction enzyme 
(NEB). To fill-in the generated ends with biotinylated-dATP, nuclei were pelleted and resuspended in 
fresh repair buffer 1 x (1.5 µL of ‍10 mM‍ dCTP; 1.5 µL of ‍10 mM‍ dGTP; 1.5 µL of ‍10 mM‍ dTTP; 37.5 µL of 
‍0.4 mM‍ Biotin-dATP; 50 U of DNA Polymerase I Large (Klenow) fragment in 300 µL NEBuffer2 1 X). After 
45 min incubation at 37°C, nuclei were centrifuged 5 min at 3,000 rpm and ligation was performed 4 hr 
at 16°C using 10,000 cohesive end units of T4 DNA ligase (NEB) in ‍1.2 mL‍ of ligation buffer (120 µL of 
10X T4 DNA Ligase Buffer; 100 µL of 10% Triton X-100; 12 µL of 10 mg/ml BSA; 963 µL of H2O). After 
reversion of the cross-link, DNA was purified by phenol extraction and EtOH precipitation. Purified DNA 
was sonicated to obtain fragments of an average size of 300–400 bp using a Bioruptor Pico (Diagenode; 
eight cycles; 20 s on and 60 s off). Three µ g of sonicated DNA was used for library preparation. Briefly, 
biotinylated DNA was pulled down using 20 µL of Dynabeads Myone T1 streptavidine beads in Binding 
Buffer (‍5 mM‍ Tris-HCl pH7.5; ‍0.5 mM‍ EDTA; ‍1 M‍ NaCl). End-repair and A-tailing were performed on beads 
using NEBnext library preparation end-repair and A-tailing modules (NEB). Illumina adaptors were ligated 
and libraries were amplified by 8 cycles of PCR. Resulting Hi-C libraries were first controlled for quality 
by low sequencing depth on a NextSeq500 prior to higher sequencing depth on HiSeq2000. Hi-C data 
were processed using an in-house pipeline based on TADbit (Serra et al., 2017). Reads were mapped 
according to a fragment-based strategy: each side of the sequenced read was mapped in full length 
to the reference genome Human Dec. 2013 (GRCh38/hg38). In the case reads were not mapped when 
intra-read ligation sites were found, they were split. Individual split read fragments were then mapped 
independently. We used the TADbit filtering module to remove non-informative contacts and to create 
contact matrices as previously described (Serra et al., 2017) PCR duplicates were removed and the 
Hi-C filters applied corresponded to potential non-digested fragments (extra-dandling ends), non-ligated 
fragments (dandling-ends), self-circles, and random breaks.

CNV
The copy number variation (CNV) analysis was estimated comparing the coverage obtained in the 
Hi-C datasets with the expected coverage for a diploid genome based on the density of restriction 
sites and genomic biases (Vidal et al., 2018). Indeed, the linear correlation between number of Hi-C 
contacts and number of restriction sites is lost in case of altered copy number allowing the estimation 
of a relative number of copy as compared to diploid chromosomes in each dataset. Such estimations 
are consistent with other analyses and with karyotyping (Le Dily et al., 2014).

Virtual 4C
Hi-C matrices were normalized for sequencing depth and genomic biases using OneD (Vidal et al., 
2018) and further smoothed using a focal average. Virtual 4 C plots were generated from the matrices 
locally normalized and expressed as normalized counts per thousands within the region.

https://doi.org/10.7554/eLife.66034


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

La Greca et al. eLife 2022;11:e66034. DOI: https://doi.org/10.7554/eLife.66034 � 25 of 31

Intra-TAD interactions between specific loci
Each bin of a TAD was labeled as part of a PgCR or TSS (or ‘others’ if they did not belong to the previous 
types). We collected the observed contacts between the different types of bins and computed the 
expected contacts frequencies based on the genomic distance that separate each pair. In the figure, 
results are expressed as Log2 of the ratio of observed contacts between the different types of pairs 
above the intra-TAD background.

Endometrial cancer samples (TCGA)
Raw count data from human endometrial cancer RNAseq samples (n = 575) were downloaded from 
The Cancer Genome Atlas (TCGA), project TCGA-UCEC. Each sample was matched to its corre-
sponding clinical metadata including FIGO stage and histologic type and only protein coding genes 
above arbitrary threshold (mean expression among samples > 100 counts) were kept for further anal-
yses. Raw counts were normalized and transformed (variance stabilization) in DESeq2 package and 
later used for filtering Stage I samples by ESR and PGR expression levels. Considering the inher-
ently heterogeneous nature of tissue samples, only samples clustered together above threshold were 
kept for further analysis (see Figure 7—figure supplement 1A). After filtering, the raw counts of 
488 samples were used to find differential expressed genes (DEG) between stages, downstream heat-
maps (pheatmap R package Kolde and Kolde, 2015) and Principal Component Analysis in DESeq2 and 
PCAtools packages (Blighe et al., 2019). To construct the normal distribution of intersected genes we 
randomly sampled (without replacement) a group of the same size of DEGs among all possible protein 
coding genes (GENCODE v38) 10,000 times using custom python scripting (code is publicly avail-
able at https://github.com/SaraguetaLab/ishikawa_scripting, copy archived at swh:1:rev:25a4757c-
c21053544bbc45144f34d3f033e7e7d2, La Greca, 2021), then intersected each one with PgCR-genes 
to produce the curve. Statistical significance of our non-random intersection was determined by calcu-
lating the 2.5 and 97.5 percentiles in the distribution (95% confidence interval).
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