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Abstract

In this study, we investigate the ability of human observers to detect spatial inhomogeneities in the

glossiness of a surface and how the performance in this task depends on several context factors.

We used computer-generated stimuli showing a single object in three-dimensional space whose

surface was split into two spatial areas with different microscale smoothness. The context factors

were the kind of illumination, the object’s shape, the availability of motion information, the degree

of edge blurring, the spatial proportions between the two areas of different smoothness, and the

general smoothness level. Detection thresholds were determined using a two-alternative forced

choice (2AFC) task implemented in a double random staircase procedure, where the subjects had

to indicate for each stimulus whether or not the surface appears to have a spatially uniform

material. We found evidence that two different cues are used for this task: luminance differences

and differences in highlight properties between areas of different microscale smoothness. While

the visual system seems to be highly sensitive in detecting gloss differences based on luminance

contrast information, detection thresholds were considerably higher when the judgment was

mainly based on differences in highlight features, such as their size, intensity, and sharpness.
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Introduction

Humans are able to recognize the material of an object solely on the basis of visual infor-
mation (Adelson, 2001; Fleming, 2014), an ability that has been found to be fairly accurate
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and quick (Sharan, Rosenholtz, & Adelson, 2014; Wiebel, Valsecchi, & Gegenfurtner, 2013)
and that seems to be established during early childhood (Balas, 2017). A common approach
assumes that in order to determine the material of an object, a number of surface properties
such as the diffuse color or texture, transparency, or glossiness would have to be estimated
by the visual system (Fleming, Wiebel, & Gegenfurtner, 2013). Each material can then be
represented by a specific combination of such surface properties (Fleming, 2017).

However, glossiness is not necessarily a constant property of a surface but can be
subject to temporal changes or spatial inhomogeneities. It has been shown, for example,
that the glossiness of several foods, such as carrots, strawberries, or fish, is negatively
correlated with the degree of decomposition and that this information is used by human
observers to judge their freshness (Murakoshi, Masuda, Utsumi, Tsubota, & Wada, 2013;
Péneau, Brockhoff, Escher, & Nuessli, 2007). This demonstrates that temporal changes in
the glossiness of an object can provide useful information about the current state of its
material (although one may argue whether these are different states of the same material,
for example, “carrot material,” or whether fresh and old carrots should be considered as
different materials).

One and the same object, especially when it is a man-made object or an object of utility,
may have surface areas that differ in the degree of gloss (Figure 1). The most obvious cases
are objects that are composed of different materials or whose surfaces have some local
impurities, for instance, when they are covered with patina. Objects can also show more
or less severe signs of wear or corrosion which could locally affect the roughness of their
surface and therefore the way the incoming light is reflected. For example, objects with
leather surfaces, such as boots, bags, wallets, or sitting furniture, can appear matte in
some areas and shiny in other areas when they were accidentally roughened or polished in
a spatially nonuniform manner. In addition to such mechanical influences, also chemical
processes can locally change the gloss properties of a surface (see, e.g., Ged, Obein, Silvestri,
Le Rohellec, & Viénot, 2010), where in some cases not only the microscale structure is
changed but the material itself, for example, when iron turns into rust. Many of these
local changes in the degree of gloss are also accompanied by changes in the diffuse color
or the texture of the surface. In this study, however, we will focus on the question, to what
extent the visual system is able to detect local differences in the reflection properties of a
surface when only differences in microscale roughness occur.

Figure 1. The occurrence of spatially-varying reflection characteristics on a surface can be due to several
causes: Many objects are made of different materials, such as the Euro coins in the left image which consist of
two parts with different metal alloys. Some surfaces are partly covered with layers of impurities, such as
patina (center image). Other materials, like leather (right image), are comparatively sensitive to mechanical
influences and can be easily roughened or polished which may locally affect their light reflecting behavior. (All
images were taken from pixabay.com.)
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In the field of computer vision and computer graphics, this issue has already been

addressed and a number of models have been developed that particularly deal with the

recognition of spatially-varying materials (see, e.g., Alldrin, Zickler, & Kriegman, 2008;

Goldman, Curless, Hertzmann, & Seitz, 2010; Hui & Sankaranarayanan, 2017; an overview

of some earlier models can be found in Lensch et al., 2005). However, several reasons speak

against the idea that these kinds of models, which are generally based on an inverse optics

approach, are suitable to describe the perceptual performance of a human observer. For

instance, in these models the relevant information is usually obtained under strictly con-

trolled conditions which include many restrictions and assumptions that are hardly fulfilled

in everyday situations (e.g., as input to the model usually a series of images of the surface is

required, taken from a fixed viewpoint under varying light directions, where the illumination

is often assumed to be a distant directional light source with known position and each

material is assumed to be an additive mixture of a limited set of fundamental materials).

Another unrealistic aspect of such models is the kind of information that is required to

estimate the reflection properties of a surface. In the aforementioned models, a material is

usually represented as a BRDF (bidirectional reflectance distribution function; see

Nicodemus, Richmond, Hsia, Ginsberg, & Limperis, 1977), which means that for an appro-

priate estimate a sufficiently large number of intensity measurements under different direc-

tions of incident and/or reflected light are required for each pixel on the surface (see, e.g., Hui

& Sankaranarayanan, 2017).
In general, the human visual system does not seem to rely on such a point-based material

evaluation but on visual cues that are extracted from larger areas of the surface (see,

however, Mausfeld, Wendt, & Golz, 2014): The spatial properties of highlights (or more

generally of mirror images of the illumination), such as their size, or the relative proportion

of the surface that is covered with such features, as well as the sharpness of their contours,

have been shown to be relevant cues for the glossiness of a surface (Beck & Prazdny, 1981; Di

Cicco, Wijntjes, & Pont, 2019; Forbus, 1977; Kim, Marlow, & Anderson, 2012; Kim, Tan, &

Chowdhury, 2016; Marlow & Anderson, 2013; Marlow, Kim, & Anderson, 2012; Qi,

Chantler, Siebert, & Dong, 2014, 2015). In addition, the luminance contrast between the

highlights and the diffusely reflecting areas, for which a comparison between different loca-

tions on the surface is needed, has been found to play a role in the perception of glossiness

(Hansmann-Roth, Pont, & Mamassian, 2017; Hunter, 1975; Leloup, Pointer, Dutré, &

Hanselaer, 2010; Pellacini, Ferwerda, & Greenberg, 2000). Hence, in order to detect local

differences in the glossiness of a surface, such highlight features must be perceived as differ-

ent across different areas on the surface (left image in Figure 2), an ability that might also be

influenced by an effect that Hansmann-Roth and Mamassian (2017) describe as simulta-

neous gloss contrast. These authors have recently shown that the perceived glossiness at a

fixed location on a surface is affected by the glossiness of neighboring areas.
A further potential source of information that does not rely on the presence of distinct

highlights or mirror images is the luminance contrast at the border between two areas with

different microscale smoothness (right image in Figure 2) which can make the two areas

appear to have different albedos (see also Hansmann-Roth & Mamassian, 2017; Sawayama,

Adelson, & Nishida, 2017; Toscani, Valsecchi, & Gegenfurtner, 2017). As Figure 3 illus-

trates, this luminance contrast is always 0 when exclusively diffusely reflected light reaches

the eye of the observer. If the eye also receives specularly reflected light, the two adjacent

areas will generally differ in luminance whereby the contrast polarity is not fixed but changes

in dependence on the two roughness values and the angle between the viewing direction and

the dominant direction of reflection (see also Ged et al., 2010).
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Aim of the Study

The aim of this study is to examine the ability of human observers to detect differences in the

glossiness of two surface areas with different microscale smoothness (Figure 2). In addition,

we test how the detection performance depends on several context factors, such as the shape

of the surface, the kind of illumination (point light source versus real-world environment

map), the availability of motion information, the sharpness of the edge between the two areas

(sharp versus blurry), and the relative spatial proportions of the two smoothness areas. Some

of these context factors have already been found to have an influence on gloss perception:

For instance, it was shown that the gloss impression strongly depends on the local curvature

of an object (Nishida & Shinya, 1998; Olkkonen & Brainard, 2011; Vangorp, Laurijssen, &

Dutré, 2007; Wendt, Faul, Ekroll, & Mausfeld, 2010) as well as on the lighting conditions

(Adams, Kucukoglu, Landy, & Mantiuk, 2018; Fleming, Dror, & Adelson, 2003; Motoyoshi

& Matoba, 2012; Olkkonen & Brainard, 2010, 2011; Pont & te Pas, 2006; Todd & Norman,

2018; Wendt & Faul, 2017) and the presence of motion information (Doerschner, Fleming,

Yilmaz, Schrater, Hartung, & Kersten, 2011; Hartung & Kersten, 2002; Sakano & Ando,

2010; Wendt & Faul, 2018; Wendt et al., 2010). For the present task, it is to be expected that

these context factors will differently affect the availability of the cues and thus also detection

performance. For example, in order to make use of highlight properties for a comparison

between different areas, the surface must provide a sufficiently complex highlight pattern

which in general only occurs on surfaces with a complex three-dimensional (3D) geometry or

under a complex illumination (Figure 2). On the other hand, the flatter the surface the more

pronounced the border contrast between the two areas of different smoothness may be

perceived (right image in Figure 2), especially when these areas are separated by a sharp

rather than by a blurred edge. As these few examples already suggest, interactions between

individual factors are also likely to occur.

Figure 2. Both images show a surface of uniform greenish diffuse color that is split into two areas with
different microscale smoothness. In the left image, the surface has a bumpy shape and was rendered under a
real-world environment map (“Eucalyptus grove”; see Debevec, 1998). The surface is covered with a com-
plex highlight pattern and the two areas of different smoothness differ with respect to several highlight
features: Highlights in the high gloss area generally have a smaller size, sharper contours, and a higher
luminance contrast than those in the low gloss area. In the right image, the surface is completely flat and a
single point light source was used as illumination. Under these conditions, no distinct highlight pattern
appears on the surface. However, as an alternative cue for the presence of spatially-varying materials, the
prominent luminance contrast between the two adjacent smoothness areas may be used (see Figure 3).
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Experiment

As already mentioned, the aim of the experiment was to determine how the detection thresh-

olds for spatially-varying surface reflection properties depends on a number of context

factors. In the experiment, a single computer-generated test object was presented to the

subject during each trial, and the subject was asked to indicate whether the surface appeared

to be made entirely of the same material or whether it consists of areas with different

reflection characteristics. We used the Unity game engine (version 2018.1.1) for the display

of the stimuli and the control of the experiment.

(c)

(d)

(c)

(d)(b)

(a)

Figure 3. A flat surface (green) showing a spatially inhomogeneous specular reflection under a fixed ori-
entation and a fixed direction of the incoming light (yellow arrow in (a)). The area that is occupied by the
center patch has a higher microscale smoothness than the rest of the surface. The different reflective
behaviors of these two areas are schematically depicted in (a) by the different forms of the cross section of
the two BRDFs (see Nicodemus et al., 1977): For all possible viewing directions (black arrows), the relative
amount of light that is reflected from the center of the surface to the observer is shown as a colored curve
(orange for the area with higher smoothness, blue for the one with lower smoothness), where the intensity
of the reflected light is represented by the distance between the point at which the incident light hits the
surface (tip of the yellow arrow) and the respective point on the curve. At viewing directions where the eye
exclusively receives diffusely reflected light (hemispherical parts of the two curves), the surface looks
homogeneously colored (see (b) and the gray segment in (a)). When the surface is viewed from angles near
the mirror direction of the incident light (orange segment in (a)), those parts with higher smoothness look
considerably brighter than the remaining parts of the surface (d). From all other viewing directions (blue
segments in (a)), the surface area with higher smoothness appears darker than the surrounding (c), since at
these angles the specular lobe that is associated with the low gloss area (blue curve in (a)) provides higher
intensity values compared to the specular lobe of the high gloss area (for a demonstration of this effect with a
real glossy object, see Lensch et al., 2005, p. 62). Because realistic BRDFs have to obey the law of energy
conservation (i.e., the volume enclosed by the two BRDFs in (a) must be identical), the specular lobes of
different BRDFs will always show a partial overlap, at least when they share the same diffuse component. This
means that the luminance contrast effect described here always occurs between areas on the same surface
that only differ in specular reflection.
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Methods

Surface

The test object was a single computer-generated bumpy surface with a square base whose
height profile was generated by summing a number of sine gratings according to the follow-
ing equation (left image in Figure 4; see also Wendt et al., 2010):

y ¼
X40f�1

k¼0

exp �k2= 40fð Þ2
h i

sin xcos okð Þ þ zsin okð Þ� � pk
1000

þ pk

� �
(1)

The square base consisted of a 100� 100 grid of equally spaced points in the (x, z) plane,
where for both dimensions integer values between 1 and 100 were used. The y-coordinate
represents the respective height of these points. Each of the sine gratings had a unique
frequency between 0 and 2 times the maximum frequency f (cycles per side-length). Its
orientation ok and phase pk were drawn randomly from the intervals [0, p] and [0, 2p],
respectively. We used an exponential weighting function for the amplitude of the sine gra-
tings such that higher frequencies contributed less to the overall height profile of the surface.
We used a value of 3.0 for the maximum frequency parameter f. The resulting mesh, which
consisted of 20,000 triangles, was first scaled along the height dimension y such that the
distance between the lowest and the highest y value was equal to 40% of the side-length of
the square base. After the mesh was imported into the Unity game engine, it was equally
scaled along all dimensions such that the base had a side length of 0.2 units. For the camera
settings and viewing conditions used in the experiment, this corresponds to a side-length of
5.16� of visual angle when the surface is oriented frontoparallel to the line of sight (i.e., when
the global surface normal points in the direction of the observer). Note that during the
experiment the height was systematically varied.

y

z

y

x

yy

x

(a) (b)

Figure 4. (a) The original shape of the surface (view from front). Note that in the experiment, where we
tested the influence of the bumpiness on detection performance, the surface was scaled along its height
dimension, such that in the extreme case a completely flat surface resulted. (b) Schematic representation of
the stimulus scene (view from positive x-direction): The surface rotated back and forth between the two
depicted orientations about its horizontal middle axis with a constant speed of 48�/second (blue arc). The
directions to the observer and the point light are represented by a red and a yellow arrow, respectively.
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In some conditions, the surface was presented dynamically by rotating the surface back

and forth in a range of 60� between two fixed orientations (at 5� and 65� relative to the

y-axis) around its horizontal middle axis (x-axis in Figure 4) with a constant speed of

48�=second (see Figure 4(b)). Note that in the experiment a short adaptation period of

1-second duration during which no stimulus was visible was inserted between the presenta-

tion of two subsequent stimuli (see section “Procedure”). However, internally the rotation

cycle continued during this period such that the initial orientation of the surface was not

constant in each stimulus but depended on the surface’s orientation in the previous stimulus

at the time a decision was submitted (i.e., the orientation of the surface in the next stimulus

was shifted forward by 48� within the rotation cycle relative to the last visible orientation of

the surface in the previous stimulus). In another condition, the surface was presented stat-

ically, where the global surface normal was oriented along the half-angle between the viewing

direction and the direction of the point light (22.5�).

Material of the Surface

For the material of the surface, we used the physically based standard shader from Unity

with the specular setup under the opaque rendering mode. The diffuse component, or albedo,

was set to a greenish color (with rgb¼ 0, 0.808, 0.141). The smoothness parameter was set to

1.0. However, since we used two-dimensional glossmaps under all stimulus conditions to

realize spatially-varying smoothness areas, this parameter only served as a factor for the

values stored in these glossmaps.
As basic glossmaps, we generated eight different textures consisting of irregular black and

white structures that look similar to the black and white patched coat of Holstein Friesian

cattle (see Figure 5(a)). These textures were generated with a procedure that was mainly

based on Perlin noise (Perlin, 1985; see Appendix A for a detailed description of the con-

struction process). Four of them were created such that the black and white areas had the

same number of pixels (top row in Figure 5(a)) while the other four textures had a black to

white proportion of 3:1 (bottom row in Figure 5(a)). Smoothness values for the glossmaps

between 0.2 and 0.8 were used. These actual smoothness parameters replaced the black and

white patches, respectively, of the basic maps. To approximate a perceptually equidistant

b:
w

 =
 3

:1
b:

w
 =

 1
:1

(a) (b)

Figure 5. (a) The eight basic textures used for the glossmaps, both for a black to white pixel proportion of
1:1 (top row) and 3:1 (bottom row). (b) The same basic glossmap shown with different degrees of edge
sharpness. In the upper left image, the original glossmap with sharp edges is shown. The corresponding
glossmaps with blurred edges were generated by applying Gaussian smoothing with a standard deviation of 10
(middle image) or 50 (bottom image).
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scale, we used a modified version of the smoothness scale implemented in Unity, where scaled

smoothness¼ original smoothness1/1.77 (for more details, see Wendt & Faul, 2017). If not

otherwise stated, the term “smoothness” refers to this scaled smoothness parameter.
In the experiment, we also investigated how the detection threshold is influenced by the

sharpness of the edge between the two different smoothness areas. Sharp edges often occur

on surfaces made of different materials (see the left image in Figure 1), while blurred edges

are often caused by impurities or external influences on surfaces of uniform material (see the

middle and right images in Figure 1). Glossmap textures with blurred edges were generated

by applying Gaussian smoothing to the original images, using the MATLAB function

imgaussfilt with standard deviations of 10 and 50, respectively (see Figure 5(b)). Planar

texture mapping was used to project the final glossmap to the surface. The backside of the

surface had a diffuse black color (rgb¼ 0, 0, 0).

Lighting

We used two different kinds of lighting, namely, a single point light and a real-world illu-

mination map that includes interreflections from the environment. In the point light condi-

tion, the light source was located at position (0.0, 3.5355, –3.5355), that is, to the top front of

the surface with a distance of 5 units to the center of the object (Figure 5(b)) and an angle of

45� relative to the viewing direction (negative z-axis in Figure 4(b)). The color of the light was

white (rgb¼ 1.0, 1.0, 1.0) with an intensity of 2.0. The effective range, that is, the distance

beyond which the light energy drops to 0, was set to 10.0 units. For the remaining light

parameters, the default settings were used, which includes the use of soft shadows.
For the second lighting condition, we used the “St. Peter’s” environment map from

Debevec’s Light Probe Gallery (Debevec, 1998), which provides a full spherical panorama

of the inside of the St. Peter’s Basilica in Rome. The HDR (high dynamic range) image (from

www.pauldebevec.com/Probes/) was imported to Unity as texture type “Default” with the

texture shape “Cube.” The mapping was set to “Mirrored Ball (Spheremap)” with the con-

volution type “Specular (Glossy Reflection).” The wrap mode was set to “Clamped” and the

filter mode to “Trilinear.” The maximum size was set to 1,024 pixels and the compression to

“High Quality.” The remaining settings were unchanged. In the “Environment Reflections”

section of Unity’s lighting window, the map was inserted with the compression option

“Uncompressed” and an intensity multiplier of 0.414. This latter parameter value was

chosen such that both the point light source and the environment map produced reflections

on a reference surface with approximately equal mean luminances, which was measured in

both cases using a fixed orientation of the reference surface (which was tilted 22.5� back-

wards relative to a starting orientation where the global surface normal points to the direc-

tion of the observer) with a spatially uniform smoothness of 0.3. The height profile of the

surface was scaled with the factor 0.5 in these cases. For both kinds of illumination, an

additional ambient component was used with achromatic color rgb¼ (0.6, 0.6, 0.6).

Apparatus and Viewing Conditions

A color calibrated TFT monitor (EIZO CG243W) was used in our experiments to display the

stimuli. The screen had a width of 52 cm and a height of 32.5 cm with a resolution of

1,920� 1,200 pixels. The CIE 1931 color coordinates of the maximum white with rgb¼
(1.0, 1.0, 1.0) were xyY¼ (0.324, 0.324, 115.8). The stimuli were always presented stereo-

scopically by means of a mirror stereoscope (SceenScope) to enhance the perception of gloss

(Wendt, Faul, & Mausfeld, 2008). The total distance between the screen and the eyes of the
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observer was 50 cm. The two monocular half-images of the stimulus were computed with

two perspective cameras located in the scene at positions (–0.03, 0, –1) and (0.03, 0, –1) for

the left and the right eye, respectively. The original settings for both camera components

were 60� for the field of view and 0.5 and 3.0 units for the near and the far clipping plane,

respectively. However, since we used the off-axis projection according to Kooima (2008),

these values were generally changed by a script as soon as the experiment started. As further

camera settings we chose a black background color (rgb¼ 0, 0, 0) and enabled HDR ren-

dering. We used tonemapping to rescale the HDR values such that the images could be

displayed on our LDR display device. To this end, we activated the “Color Grading” effect

of Unity’s post-processing stack where we used the “Neutral” tonemapper with the default

settings (“Black In”¼ 0.02, “White In”¼ 10, “Black Out”¼ 0, “White Out”¼ 10, “White

Level”¼ 5.3, and “White Clip”¼ 10). The two monocular half-images had a size of 25% of

the width and 50% of the height of the screen and were presented side by side in the center of

the screen.

Procedure

In each trial, a single test object was presented to the subjects where the surface consisted of

two areas that generally differed in microscale smoothness (see Figure 2). In a two-alterna-

tive forced choice (2AFC) task, the subjects had to indicate whether or not the stimulus

appeared to have a spatially homogeneous material. A double random staircase procedure

(Cornsweet, 1962; Kingdom & Prins, 2010; Meese, 1995) was used to determine the detection

threshold for a spatially heterogeneous material. The detection threshold is defined as the

point of subjective equality (PSE) between a surface with spatially homogeneous and a

surface with spatially heterogeneous material.
To this end, one of the two areas was held constant at a baseline smoothness level b while

the smoothness level of the second area varied between b (where the entire surface has the

same smoothness level) and bþ 0.4 in steps of 0.01. The two staircases SA and SB started at

opposite ends of this smoothness interval, that is, one at baseline level b and the other one at

smoothness level bþ 0.4, with a step size of 0.2. Whenever a reversal occurred in a staircase,

that is, whenever the judgment changed from “homogeneous” to “heterogeneous” or vice

versa, the step size was halved and the resulting smoothness value was then rounded to the

second decimal place (since the glossmaps were pre-rendered with a step size of 0.01 for the

variable smoothness area). For each step in a trial one of the two staircases, SA or SB was

randomly chosen as the currently active one. The trial ended when either both staircases had

at least six reversals or when the total number of steps exceeded 50. In either case, the mean

of the smoothness values of the variable area observed in the last six steps was taken as the

threshold value.
In each trial, the detection performance was tested under a different combination of

context factors. The context factors were surface shape (between flat and bumpy in three

levels with scaling factors 0, 0.33, and 0.67, respectively, see Figure 6), the light field (single

point light vs. a real-world environment map), the availability of motion information (rotat-

ing vs static presentation of the surface), the sharpness of the edge between the two areas of

different smoothness (three levels from sharp to blurry, see Figure 5(b)), the relative spatial

proportions of the areas (with the two levels 1:1 and 3:1, see Figure 5), and the baseline level

b of the microscale smoothness (with the two levels b¼ 0.2 and 0.4). The entire set of 144

different condition combinations was tested 3 times, resulting into a total of 432 stimuli that

were presented in random order. As part of the instruction, a small set of four different
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example stimuli had to be completed by the subject prior to the experiment while the inves-
tigator was present.

Using a single glossmap bears the danger that the subjects quickly learn the exact locations
of areas of different smoothness and focus only on these parts of the surface. To encourage
the subjects to base their material judgment on the entire surface, one of 16 different gloss-
map structures (four glossmap textures of a kind, see Figure 5(a), each in four different
orientations between 0� and 270� in steps of 90�) was randomly selected in each step.

The keys to be used were indicated by the text “homogeneous or heterogeneous?” together
with a left and a right arrow symbol, respectively, underneath the stimulus. During a short
adaptation period of 1 second after each trial, only the response text field and a trial counter
at the top of the stimulus were visible on an otherwise black screen.

As our goal was to explore the general detection performance under approximately real-
istic viewing conditions, no time restrictions were imposed on the subjects to complete a trial.
However, the subjects were informed that the time and the number of steps they needed to
complete a trial were recorded. The subjects could pause and continue the experiment by
pressing the space bar. During the pause, the stimulus disappeared and “PAUSE” was shown
at the center of the screen. After the pause, the current trial was stopped and restarted from
the beginning. On average, the subjects needed about 11 hours to complete the experiment,
distributed over 5 to 6 sessions.

Subjects

Six subjects participated in the experiment, including one of the authors (G. W.), who had
normal or corrected to normal visual acuity. This study was conducted in accordance with
the Code of Ethics of the World Medical Association (Declaration of Helsinki) and informed
consent was obtained for the experimentation with human subjects.

Results

As a measure for the detection threshold, we used the difference in smoothness (Dsmoothness)
between the two areas of the surface at the PSE. The overall average threshold was 0.083, the
average threshold values for the single condition combinations ranged from 0.0064 (for the

Figure 6. Screenshots of three example stimuli (each one showing the right monocular half-image of the
stereo pair). We examined three different shapes for the surface which only differed in the scaling of the
height profile. All stimuli are shown under otherwise identical conditions, namely, under static presentation
and the real-world environment map “St. Peter’s,” with a spatial proportion of 1:1 between the two
smoothness areas which are separated by a sharp edge. The two different reflection areas have smoothness
values 0.4 for the baseline b and 0.8 for the remaining parts of the surface, respectively.
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combination “point light”� “spatial smoothness proportion of 1:1”� “sharp edge”� “base

smoothness level 0.4”� “static surface”� “flat surface shape”) to 0.1806 (for the combination

“environment lighting”� “spatial smoothness proportion of 3:1”� “strongly blurred edge”

� “base smoothness level 0.2”� “dynamic surface”� “bumpy shape”).
A six-way analysis of variance (ANOVA) was performed on the data, using the threshold

values as dependent variable and all six factors “lighting,” “spatial proportion,” “edge

blurring,” “base smoothness,” “motion,” and “shape” as independent variables. Table B1

(see Appendix B) shows the results for all main effects, all first-order interaction effects, and

all significant interaction effects of higher order. In the same way, we evaluated the decision

time data, that is, the average time per step within each trial that was needed by the subjects

to submit a response (see Table C1 in Appendix C).

Threshold Results

With respect to the threshold data, all but the factors “motion” and “base smoothness” had a

significant effect (see Figure 7). Specifically, the detection performance was significantly

better with a point light source than with the real-world illumination “St. Peter’s” (top

left diagram in Figure 7). Thresholds were also lower when the spatial proportions of the

two smoothness areas on the surface were balanced than when the high smoothness area

occupied only 25% of the surface. The degree of edge blurring (top right diagram in

Figure 7) and the bumpiness of the surface (bottom right diagram in Figure 7) also had a

strong influence on the detection threshold: The sharper the edge between the two smooth-

ness areas and the less bumpy the shape of the surface, the better the detection performance.
Six of the first-order interaction effects between the factors were significant (see Figure 8).

The detection threshold was disproportionally higher for strongly blurred edges when a real-

world illumination map was used (top left diagram in Figure 8), or when the spatial pro-

portion of the two smoothness areas was unbalanced (3:1, see bottom left diagram in

Figure 8). Detection performance was more improved for a flat surface compared to the

two other shape levels, when a point light was used instead of an illumination map (top right

diagram in Figure 8). When the smoothness areas were separated by a strongly blurred edge,

the detection performance decreased more strongly with a flat surface than for surfaces with
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a more or less bumpy shape (bottom middle diagram in Figure 8). We further found signif-

icantly lower thresholds for a flat surface when in addition the surface was presented dynam-

ically instead of statically, while for bumpy surfaces this trend was reversed (bottom right

diagram in Figure 8). Although the main effect for the factor “motion” was not significant,

there was a significantly better detection performance for a static surface compared to a

rotating surface when a point light was used as the light source (top middle diagram in

Figure 8). Noticeable second-order interaction effects are shown in Figure 9 and will be

discussed in detail in the Discussion section.

Decision Time Results

On average, the subjects viewed each stimulus for 1.76 sec before submitting their decision.

For the 144 different condition combinations the average decision time ranged from 0.935

sec (for the combination “point light”� “spatial smoothness proportion of 1:1”� “blurred

edge”� “base smoothness of 0.4”� “static surface”� “flat surface shape”) to 4.236 sec

(for the combination “environment lighting”� “spatial smoothness proportion of
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1:1”� “strongly blurred edge”� “base smoothness level 0.4”� “rotating surface”� “strongly
bumpy surface shape”).

Note that the average decision times should be treated with some caution: It is reasonable
to assume that the time the subjects needed to decide whether or not there is a material
difference depended on the actual smoothness difference between the two surface areas. This
decision will generally take longer near and below the threshold than for stimuli that are well
above the detection threshold. Hence, especially for those initial steps of a trial that started at
a maximum smoothness difference between the two surface areas, particularly low decision
times were to be expected with the consequence that the entire set of decision times of a
condition combination may not be normally distributed but negatively skewed. In addition,
since for the average decision time all steps of a trial were taken into account, these temporal
“outliers” may have lowered the average value—a bias that would be the stronger the smaller
the number of steps required for a trial. In order to check whether there were systematic
differences in the number of steps between different context conditions, we analyzed the
respective data and found that on average the subjects needed 27.73 steps per trial, with
mean values for the 144 different condition combinations ranging from 24.72 to 33.5 steps.
Although we found significant main effects of the two context factors “edge blurring”
(F(2,2448)¼ 40.57, p< .001, gp

2 ¼ 0.0321) and “base smoothness” (F(1,2448)¼ 11.03,
p< .001, gp

2 ¼ 0.0045) on the step numbers, the effect sizes were rather small and the absolute
average values between the single levels of each factor differed only slightly: For the three
different levels of the factor “edge blurring” these average step numbers ranged from 26.74
to 29.22 (the more blurry the edge the more steps were required) and for the two different
levels of the factor “base smoothness” the average step numbers were 27.34 (for b¼ 0.2) and
28.13 (for b¼ 0.4), respectively. Furthermore, three higher order interaction effects
turned out to be significant, which were also characterized by rather small effect sizes
(with gp

2 < 0.0048). This suggests that the above-mentioned bias was quite similar between
the different conditions and did not seem to affect the general trends we have found in the
decision time data.

The main effects on the decision time found with a six-way ANOVA are depicted in
Figure 10 (see also Table C1): With the exception of the factor “spatial smoothness
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proportion” (top middle diagram in Figure 10), all factors had a significant main effect. For
the two factors “lighting” and “shape,” the decision time seems to be correlated with the
threshold data in the way that low thresholds are accompanied by small decision times and
vice versa. A notable exception could be found for the factor “edge blurring”: Although
sharp edges between areas of different smoothness generally led to a considerable decrease in
the thresholds, the subjects needed on average significantly more time to judge stimuli with
sharp edges than those with blurred edges. The remaining two factors “base smoothness”
and “motion,” that is, those factors that did not had any significant influence on the thresh-
olds, had significant main effects on decision time: Statically presented surfaces were judged
considerably faster than rotating surfaces and surfaces with a base smoothness of 0.2 faster
than those with a higher base smoothness level of 0.4.

Two of the first-order interaction effects were also significant (see also Table C1), one
being the interaction between the factors “edge blurring” and “shape”: While for a complete-
ly flat surface the decision time seems to systematically increase with the degree of edge
blurring, this trend is rather reversed for the two bumpy shape conditions (left diagram in
Figure 11). The other significant interaction effect was the interaction between the factor
“shape” and the availability of motion information. Under both levels of the motion factor,
the decision time systematically increases with increasing bumpiness of the surface, however,
for the rotating stimuli this increase was steeper than with statically presented surfaces (right
diagram in Figure 11).

Discussion

In this study, we tested the ability of human observers to detect spatial differences in the
glossiness of a surface in dependence on six context factors. In the following, we will discuss
the influence on the detection performance separately for each of these factors.

Motion

It may be surprising that, on average, there was no statistically significant difference in the
detection performance for statically presented and rotating surfaces. A priori, we expected
the rotating surface to provide more task relevant information, especially when the real-
world illumination is used at the same time, as we assumed that due to object rotation larger
areas of the environment would be reflected to the observer and that this would increase the
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chance to capture a section of the environment that produces an especially diagnostic pattern
on the surface. As can be seen in the corresponding interaction diagram (top middle diagram
in Figure 8), this was generally not the case, as there is no significant difference in threshold
with a rotating and a statically presented surface under the St. Peter’s illumination map.
However, if the factor “shape” is additionally taken into account, one can see in the corre-
sponding diagram (left diagram in Figure 9) that our initial assumption actually holds for a
completely flat surface, that is, for that shape which reflects the smallest (but therefore
undistorted, see Fleming, Torralba, & Adelson, 2004) section of the environment to the
observer (see the dashed blue line in the left diagram of Figure 9). For the two remaining
levels of the shape factor, that is, for surfaces that show some local curvatures (with scaling
factors 0.33 and 0.67, respectively) a slight trend in the opposite direction can be seen, that is,
the detection performance was always slightly better for static surfaces, irrespective of the
kind of illumination. At least for the point light, this latter finding is not surprising, because
the respective static stimuli were constructed in a way that the surface had an ideal orien-
tation relative to the light direction and the viewing direction (see Figure 4(b)). It was
therefore almost guaranteed that diagnostic information was available on the surface.

Regarding the decision time data, subjects needed on average significantly more time for
their decision when the surface was presented with a rotation compared to a static surface
(see the bottom middle diagram in Figure 10). On average, the rotating stimuli were viewed
for about 2.03 seconds (compared to 1.49 seconds in the static case) which means that the full
sequence of different orientations of the surface (within the 60� cycle, see Figure 4(b)) was
viewed more than 1.6 times. This suggests that the subjects took the opportunity to wait for
an orientation of the surface that provides the most diagnostic features for the presence of
spatially-varying materials. As we have just seen, this strategy seemed to be successful at least
in cases with a flat surface under a complex illumination map (see the bottom right diagram
in Figure 8). However, such an advantage of longer viewing times for rotating stimuli was
not found when the surfaces had a bumpy shape: Although in these cases, where at certain
orientations of the surface relevant information about its spatial material distribution may
have been blocked from view, even more time was needed for a decision (up to 2.43 seconds,
see the right diagram in Figure 11), this did not improve the detection performance (bottom
right diagram in Figure 8).

Lighting

The fact that the scenes were constructed in a way that created almost ideal conditions for
the point light source has probably contributed to the result that the detection performance
was on average considerably better and the decision time significantly shorter (see top left
diagram in Figure 10) with a point light than with a complex illumination map. It is to be
expected that the result with a complex illumination depends also on the specific environment
map used. Relevant properties of the map could be the presence, the extension, and spatial
distribution of direct light sources (or generally of bright spots) in the map (see also Wendt &
Faul, 2017).

However, the difference in detection performance between the two lighting conditions also
varies with other context factors and there were some cases where this difference was com-
paratively small. For instance, as can be seen in the right diagram of Figure 9, the combi-
nation of a strongly bumpy surface with strongly blurred edges between the smoothness
areas leads to a nonsignificant threshold difference of less than 0.0049 smoothness units
between the two lighting conditions (see also Figure 12(d)). Under these context conditions,
observers have to base their judgment mainly on the difference in perceived highlight features
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such as their sharpness, their size, and their intensity, and in this case these features are

similar under both kinds of illumination.
With a flat surface, however, there are no distinct highlight patterns on the surface and the

only information that can be used to detect differences in the surface material is the lumi-

nance contrast between areas of different smoothness (see also Figure 3). Although this

luminance contrast is considerably stronger under the point light condition, the detection

thresholds are rather similar in the two lighting conditions, if there is a sharp edge between

the smoothness areas (with a difference of 0.011 smoothness units, see the right diagram in

Figure 9; also compare the two stimuli in Figure 12(a)). Indeed, the detection of spatial

material differences seems to be reduced to edge detection in these cases, a mechanism that

on an absolute scale leads to rather low detection thresholds, even for the comparatively

small luminance contrasts produced by the real-world illumination map.
However, the detection performance dramatically decreases under the real-world illumi-

nation compared to the point light condition when areas of different smoothness are sepa-

rated by a strongly blurred edge (with a difference of 0.077 smoothness units, see the right

diagram in Figure 9 and Figure 12(b)). This is in line with the finding that the sensitivity to

detect luminance contrasts is reduced with blurred edges (Hood, 1973). Hence, considerably

larger differences in smoothness are required (see Figure 3) to compensate for the compar-

atively low intensity in the relevant sections of the “St. Peter’s” illumination map.
While the static flat surface under the point light condition always led to a vivid impres-

sion of a glossy surface, this was not the case for the same surface under the “St. Peter’s”

illumination map. This indicates that the detectability of highlight disparity information

Flat surface
Sharp edges

Flat surface
Strongly blurred edges

Strongly bumpy surface
Strongly blurred edges

Po
in

t l
ig

ht
St

. P
et

er
‘s

Strongly bumpy surface
Sharp edges

(a) (b) (c) (d)

Figure 12. Some example stimuli from the experiment used to illustrate the effects of the interaction
between the factors “shape,” “edge blurring,” and “lighting” on the detection performance (shown are only
the right half-images of the respective stereo-pairs). Columns (a) and (b) show a completely flat surface,
columns (c) and (d) a strongly bumpy surface. The two different smoothness areas of the surfaces in columns
(a) and (c) are separated by a sharp edge while in columns (b) and (d) this edge is strongly blurred. The stimuli
in the top row were rendered using a point light. For the stimuli in the bottom row the complex environment
map “St. Peter’s” (see Debevec, 1998) was used as illumination. The remaining factors were kept constant: All
stimuli were taken from the static presentation condition and the two smoothness areas have a balanced
spatial proportion (1:1). The base smoothness level was 0.4 while the high smoothness area was set to
a value of 0.7.
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from the luminance distributions of the stereoscopically presented surfaces is reduced with

the illumination map (Wendt et al., 2008). The subtle luminance variations that result in this

condition may be interpreted as a surface texture rather than a mirror image of the environ-

ment. The strong reduction of the thresholds with dynamic presentation (see the dashed blue

line in the left diagram of Figure 9) suggests that this ambiguity might be resolved by motion

induced cues (Doerschner et al., 2011; Sakano & Ando, 2010).

Shape

Our data suggest that in general the detection performance is significantly higher and the

decision time systematically shorter (see bottom left diagram in Figure 10) when the judgment

can be based on the luminance contrast between adjacent areas of different smoothness and not

on differences in certain highlight features (cf., e.g., Figure 12(a) with Figure 12(c) or 12(d)). The

availability of these two cue classes for the detection of material differences is mainly modulated

by the 3D geometry of the surface (see also Figure 6): At least under the conditions realized in

the present experiment, a completely flat surface predominantly provides luminance contrast

information that is caused by different smoothness values in the two areas (see Figure 3).

Especially in combination with a sharp edge between the smoothness areas, rather low detection

thresholds were found with such stimuli (Dsmoothness of about 0.016; see bottom middle

diagram in Figure 8). Bumpy surfaces, on the other hand, usually show more or less complex

highlight patterns (see also Figure 2) which seem to provide much less diagnostic information

for the detection of material differences (bottom right diagram in Figure 7).
Although the luminance contrast cue is also available on bumpy shapes, it is considerably

less pronounced than on flat surfaces and it is therefore much more difficult to detect the sharp

edge between the areas of different smoothness on a bumpy than on the flat surface (cf. Figure

12(a) and (c)). The reduced luminance contrast is caused by at least two factors: First, as

illustrated in Figure 3, the magnitude of the contrast depends on the geometrical relationship

between the light direction, the viewing direction, and the orientation of the surface normal.

Since the orientation of the normal varies with position on a bumpy surface, the magnitude of

the luminance contrast also generally varies along the edge between the two areas of different

smoothness. Second, while the luminance variations that appear on a flat surface are to a large

part determined by the microscale smoothness (see Figure 12(a) and (b)), the spatial luminance

distribution on a bumpy surface also depends on further effects: Due to the complex 3D

geometry with a variety of local curvatures, not only the complex highlight structure but

also diffuse shading and self-shadowing contribute to the intensity pattern of the surface.

The presence of this complex intensity pattern may then interfere, as a kind of “noise,” with

the detection of a luminance contrast edge between adjacent smoothness areas.
Hence, the considerably lower detection performance as well as the longer decision times

with bumpy surfaces may not only result from the presence of a less effective cue (i.e., a

complex highlight pattern) but also from impairing the detectability of a more effective cue

(i.e., a luminance contrast border).

Edge Blurring

The threshold data show a systematic decrease in the detection performance with an increase of

edge blurring between the two adjacent areas of different smoothness. Some potential reasons

for this result have already been discussed in previous sections. For instance, the sensitivity to

detect luminance differences between the areas of different smoothness might be reduced with

blurred edges (Hood, 1973). Furthermore, in the case of bumpy surfaces, the visual system may
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rely more on highlight properties than on luminance contrast information when the edge is
blurred, and the former cue class seems to be less accurate (cf. Figure 12(c) with Figure 12(d)).

Another reason may result from the unequal distribution of smoothness values between
the respective glossmaps. With a sharp edge, the glossmap contains only two different
smoothness values, one at the baseline level b (see the top image in Figure 5(b)) and the
other at bþDsmoothness. With a blurred edge, however, the glossmap contains further
smoothness values that lie between these two extreme values (see the middle and bottom
images in Figure 5(b)). This has two consequences for the areas containing the two extreme
values: The absolute number of pixels in these areas decreases and the distance between these
areas increases with increasing edge blurring. Since it is plausible that the detection perfor-
mance is enhanced when the sizes of the areas that comprise the maximum difference in
perceived glossiness (which correspond with the two extreme values) are larger and the
distance between these areas is smaller, this may have contributed to our result.

With respect to decision times, it might be surprising that they are, on average, signifi-
cantly higher for stimuli with sharp edges than for those with blurred edges (see the top right
diagram in Figure 10) although the detection performance with sharp edges was considerably
higher. However, as one can see in the left diagram of Figure 11, this trend only holds for
bumpy surfaces. In the previous section, we have argued that the detectability of a sharp edge
is considerably decreased in bumpy surfaces due to the presence of luminance “noise.” It is
therefore plausible that an observer needs more time to detect a luminance edge in bumpy
than in flat surfaces.

Spatial Proportion of Areas of Different Smoothness

On average the detection performance was found to be slightly better and the decision time
slightly shorter when the two areas of different smoothness had a spatial proportion of 1:1
instead of an unbalanced proportion of 3:1 (see the top middle diagrams in Figures 7 and 10,
respectively). Our first intuition was that this might be due to the fact that the edge between
the two smoothness areas was generally longer under the balanced condition (with an aver-
age length of 1,519.25 pixels for the four different glossmap textures, see the top row in
Figure 5(a)) than under the 3:1 proportion condition (with an average length of 1,223 pixels,
see the bottom in Figure 5(a)): Simply because pixels that belong to a luminance edge are
more frequent, a material difference should be easier to detect in stimuli with a balanced
spatial proportion, especially when the two smoothness areas are separated by a sharp edge.
However, as can be seen in the bottom left diagram in Figure 8, which illustrates the inter-
action between the factors “edge blurring” and “spatial proportion,” there is no statistically
significant difference between the 1:1 and the 3:1 proportion when a sharp edge is present.

The fact that such a difference in detection threshold only occurs with blurred edges rather
suggests an explanation in terms of the extreme values in the glossmaps (see the last section
“Edge Blurring”): We found that the actual proportion of black to white pixels (that is, the
two extreme values, representing the low gloss and the high gloss areas of the surface,
respectively) is strongly influenced by the degree of edge blurring when the sizes of the
areas in the original glossmap are unbalanced (see also Figure 13 where we present the
results of a simulation using a simple bipartite field as glossmap texture). With sharp
edges, the black to white proportion is as intended, that is, 1:1 and 3:1, respectively for
the two levels of the factor “spatial proportion.” With blurred edges, these proportions were
on average 1.001:1 for the balanced but 3.574:1 for the unbalanced condition, which already
deviates noticeably from the original proportion for the unbalanced condition (note that for
the analysis a black pixel was defined as belonging to the bottom 10% and a white pixel to
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the top 10% of the intensity range of the respective glossmap). With strongly blurred edges,

this deviation in the unbalanced condition increases further with an average proportion of

black to white of 10.888:1 (while the corresponding proportion in the balanced condition was

on average 0.92:1). Hence, it is plausible that the weaker detection performance in stimuli

with an unbalanced spatial proportion is due to the strong decrease of the size of the high

gloss area (represented by the white pixels) in relation to the size of the low gloss area

(represented by the black pixels) with increasing edge blurring: A comparatively small

high gloss area that does not stand out sharply from its surroundings, might be hard to

detect—which also explains the longer viewing times in the unbalanced condition.

Base Smoothness

No statistically significant main effect of the factor “base smoothness” on the threshold was

found. This suggests that the sensitivity of the visual system to detect spatial differences in

the glossiness of a surface does not depend on the position of the base level on the smooth-

ness scale (see the bottom left diagram in Figure 7). Since this smoothness scale was con-

structed as a perceptually equidistant scale where equal differences on the scale correspond

to equal differences in perceived glossiness (see section “Material of the Surface”), this result

seems to confirm that this scale has the desired property. However, the finding that there was

a significant main effect of this factor on decision time (see the bottom left diagram in

Figure 10), with an advantage for stimuli at a lower smoothness level, currently lacks a

meaningful interpretation.

General Notes

One may ask whether in this study it was necessary to use objects as stimuli whose surfaces

were split into two different spatial areas with different materials and whether the same

results could have been obtained by measuring just-noticeable differences (jnd) using two

separate surfaces instead. Although this remains an empirical question, we assume that this

may depend on the specific set of context conditions: With both methods, similar results can

be expected for stimuli that comprise complex highlight patterns, as they are caused by

surfaces with complex curvatures (see Figure 6). However, for surfaces where luminance

0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

Width of blurred edge (α/2W )0

Bl
ac

k/
w

hi
te

pr
op

or
tio

n
(B

/W
)

α αB W = W0 B W B W

(a) (b) (c) (d)

Figure 13. Schematic illustration of how the actual spatial proportion of black (B) to white (W) pixels
depends on the width of the blurred edge (a). (a) The glossmap texture in its original form with a sharp edge
where the black to white proportion is 3:1 (for demonstration purposes we use a simple bipartite texture for
the glossmap). (b) and (c) With increasing blurring the edge becomes wider and the numbers of black and
white pixels become smaller accordingly. For unbalanced glossmaps, the actual spatial proportion of the
remaining black to white pixels deviates more and more from the original proportion with increasing width of
the blurred edge (see the blue curve in (d)). For balanced glossmaps, however, the black to white proportion
stays constant, irrespective of the amount of blurring (orange curve in (d)).
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contrasts play the major role in the detection of material differences, the results may differ:

For instance, we found extremely low thresholds with flat surfaces, especially when the two

smoothness areas were separated by a sharp rather than by a blurred edge. When two

separate surfaces were used, however, it would not even be possible to apply the attribute

“edge blurring” to the stimuli. In addition, luminance differences between two separate

surfaces may not necessarily be interpreted as differences in the material, but as being

caused by different illuminations or as shadowing effects, especially when the stimuli are

presented statically. Hence, since the aim of this study was to measure thresholds for the

detection of spatially-varying materials on the same surface, the best way to avoid such

potential problems was to use a stimulus that simulates a single surface with exactly these

heterogeneous reflection properties.

Conclusions

We examined the ability of the visual system to detect spatial differences in the glossiness of a

surface in dependence of several context factors. Our results indicate that the visual system

can make use of two different cues for this task: We found that the luminance contrast

between areas of different microscale smoothness provides a highly effective cue. If, under

favorable context conditions, this source of information is available in an unadulterated

form (e.g., on a perfectly flat surface with a sharp edge between adjacent smoothness

areas), material differences are detected comparatively fast and the thresholds are extremely

low. As another potential cue, the visual system can rely on certain highlight features, such as

their size, intensity, and sharpness. However, our results suggest that the visual system is in

general much less sensitive to differences in these highlight features between areas of different

microscale smoothness than to differences in lightness. In addition, the presence of a complex

highlight pattern, which is usually caused by surfaces with complex 3D geometries, seems to

reduce the detectability of luminance contrasts.

Acknowledgements

The authors wish to thank an anonymous reviewer for several suggestions that have helped to improve

the paper and Phillip Marlow, especially for sharing some ideas for future studies on the perception of

spatially-varying materials.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or

publication of this article: This work was supported by the Deutsche Forschungsgemeinschaft (DFG

grant FA 425/3-1).

ORCID iD

Franz Faul https://orcid.org/0000-0002-7158-2920

20 i-Perception 10(5)

https://orcid.org/0000-0002-7158-2920
https://orcid.org/0000-0002-7158-2920


References

Adams, W. J., Kucukoglu, G., Landy, M. S., & Mantiuk, R. K. (2018). Naturally glossy: Gloss per-

ception, illumination statistics, and tone mapping. Journal of Vision, 18, 4. doi:10.1167/18.13.4
Adelson, E. H. (2001). On seeing stuff: The perception of materials by humans and machines.

Proceedings of the SPIE, 4299, 1–12. doi:10.1117/12.429489
Alldrin, N., Zickler, T., & Kriegman, D. (2008). Photometric stereo with non-parametric and spatially-

varying reflectance. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Anchorage, AK, June 23–28 (pp. 1–8). Piscataway, NJ: IEEE. doi:10.1109/

CVPR.2008.4587656
Balas, B. (2017). Children’s use of visual summary statistics for material categorization. Journal of

Vision, 17, 22. doi:10.1167/17.12.22
Beck, J., & Prazdny, S. (1981). Highlights and the perception of glossiness. Perception & Psychophysics,

30, 407–410. doi:10.3758/BF03206160
Cornsweet, T. N. (1962). The staircase-method in psychophysics. American Journal of Psychology, 75,

485–491. doi:10.2307/1419876
Debevec, P. E. (1998). Rendering synthetic objects into real scenes: Bridging traditional and image-

based graphics with global illumination and high dynamic range photography. Proceedings of

SIGGRAPH, 98, 189–198. doi:10.1145/1401132.1401175
Di Cicco, F., Wijntjes, M. W. A., & Pont, S. C. (2019). Understanding gloss perception through the lens

of art: Combining perception, image analysis, and painting recipes of 17th century painted grapes.

Journal of Vision, 19, 1–15. doi:10.1167/19.3.7
Doerschner, K., Fleming, R. W., Yilmaz, O., Schrater, P. R., Hartung, B., & Kersten, D. (2011). Visual

motion and the perception of surface material. Current Biology, 21, 2010–2016. doi:10.1016/j.

cub.2011.10.036
Fleming, R. W. (2014). Visual perception of materials and their properties. Vision Research, 94, 62–75.

doi:10.1016/j.visres.2013.11.004
Fleming, R. W. (2017). Material perception. Annual Review of Vision Science, 3, 365–388. doi:10.1146/

annurev-vision-102016-061429
Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003). Real-world illumination and the perception of

surface reflectance properties. Journal of Vision, 3, 347–368. doi:10.1167/3.5.3
Fleming, R. W., Torralba, A., & Adelson, E. H. (2004). Specular reflections and the perception of

shape. Journal of Vision, 4, 798–820. doi:10.1167/4.9.10
Fleming, R. W., Wiebel, C., & Gegenfurtner, K. (2013). Perceptual qualities and material classes.

Journal of Vision, 13, 1–20. doi:10.1167/13.8.9
Forbus, K. (1977). Light source effects (Massachusetts Institute of Technology Artificial Intelligence

Laboratory Memo No. 422). Retrieved from https://dspace.mit.edu/handle/1721.1/6280
Ged, G., Obein, G., Silvestri, Z., Le Rohellec, J., & Viénot, F. (2010). Recognizing real materials from
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Appendix A—Generation of the Glossmap Textures

The glossmaps were generated with MATLAB. The 512� 512 pixel maps were exported as
32-bit RGBA PNG images, where the alpha channel was used to store the spatially-varying
smoothness values. The RGB layers were all set to a spatially constant value of 0.5. As basic
maps we generated eight different textures consisting of irregular black and white structures
(see Figure 5) using a procedure that to a large part was based on Perlin noise (Perlin, 1985;
see Figure A1): For each texture, we started with three two-dimensional images of 513� 513
pixels with equally spaced points arranged in a grid (the addition of an extra row and column
to the image was needed in the generation process to have a full grid). The three images
differed in the number of the square grid cells, which were 4, 16, and 64 (corresponding to a
frequency of 2, 4, and 8, respectively, see the left column in Figure A1). An intensity value of
either 0 or 1 was randomly assigned to each of the grid points. In the next step, the pixels
within each grid cell were also assigned an intensity value, which resulted from a bilinear
interpolation of the intensities of the four corner points of the cell, using a smoothing func-
tion as described in Perlin (2002; see second column in Figure A1). The three frequency
images were then additively combined into one image with weights that were the multipli-
cative inverses of their frequencies (third column in Figure A1; the excess 513th row and
column of each image were ignored at this point, so that a texture with a size of 512� 512
pixels remained). In the final step, the resulting cloudy grayscale image was transformed into
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a black and white image with pre-defined relative pixel proportions for the two colors (in our

experiment, we used either a black to white proportion of 1:1 or of 3:1, see Figure 5). To this

end, we examined the intensity histogram of the grayscale image and determined the intensity

threshold at which the total pixel numbers to the left and right of this threshold met the pre-

defined proportion. Pixels with intensities less than or equal to this threshold were set to

black, the remaining pixels were set to white (right column in Figure A1).

Appendix B—ANOVA Results for the Threshold Data
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Figure A1. Schematic representation of the procedure used to generate the basic textures for the gloss-
maps (see text for details).

Table B1. Results of the Six-Way Analysis of Variance of the Threshold Data, Using All Six Experimental
Factors: Lighting Condition (“Lighting”), Spatial Smoothness Proportion (“Proportion”), Edge Blurring
(“Blurring”), Base Smoothness (“Smoothness”), Type of Surface Motion (“Motion”), and Bumpiness of the
Surface’s Shape (“Shape”).

Source

Sum of

squares df

Mean

squares F p gp
2

Lighting 0.358 1 0.358 150.62 <.001 0.0579

Proportion 0.037 1 0.037 15.70 <.001 0.0064

Blurring 1.920 2 0.960 403.54 <.001 0.2479

Smoothness 0.002 1 0.002 0.65 .4191 0.0003

Motion 0.005 1 0.005 2.15 .1425 0.0009

Shape 2.866 2 1.433 602.34 <.001 0.3298

Lighting� Proportion 0.006 1 0.006 2.62 .1059 0.0011

Lighting�Blurring 0.054 2 0.027 11.37 <.001 0.0092

(continued)
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Appendix C—ANOVA Results for the Decision Time Data

Table B1. Continued.

Source

Sum of

squares df

Mean

squares F p gp
2

Lighting� Smoothness 0.004 1 0.004 1.81 .1783 0.0007

Lighting�Motion 0.014 1 0.014 5.92 .0151 0.0024

Lighting� Shape 0.058 2 0.029 12.14 <.001 0.0098

Proportion�Blurring 0.016 2 0.008 3.33 .0361 0.0027

Proportion� Smoothness <0.001 1 <0.001 0.03 .8552 <0.0001

Proportion�Motion 0.004 1 0.004 1.60 .2067 0.0007

Proportion� Shape 0.002 2 0.001 0.42 .6542 0.0003

Blurring� Smoothness 0.013 2 0.007 2.80 .0611 0.0023

Blurring�Motion 0.013 2 0.007 2.80 .0613 0.0023

Blurring� Shape 0.167 4 0.042 17.50 <.001 0.0277

Smoothness�Motion 0.002 1 0.002 0.79 .3750 0.0003

Smoothness� Shape 0.006 2 0.003 1.32 .2671 0.0011

Motion� Shape 0.032 2 0.016 6.76 .0012 0.0055

Lighting� Proportion�Motion 0.012 1 0.012 5.09 .0242 0.0021

Lighting�Blurring� Smoothness 0.021 2 0.010 4.34 .0131 0.0035

Lighting�Blurring� Shape 0.148 4 0.037 15.58 <.001 0.0248

Lighting� Smoothness� Shape 0.027 2 0.013 5.65 .0036 0.0046

Lighting�Motion� Shape 0.032 2 0.016 6.65 .0013 0.0054

Blurring�Motion� Shape 0.029 4 0.007 3.06 .0158 0.0050

Lighting�Blurring� Smoothness� Shape 0.046 4 0.012 4.86 <.001 0.0079

Error 5.824 2,448 0.002

Total 11.859 2,591

As a measure for the effect size, the last column shows the partial eta-squared (gp
2) for each effect. Note that for higher

order interaction effects, only results with p< .05 are shown.

Table C1. Results of the Six-Way Analysis of Variance of the Decision Time Data, Using All Six
Experimental Factors: Lighting Condition (“Lighting”), Spatial Smoothness Proportion (“Proportion”), Edge
Blurring (“Blurring”), Base Smoothness (“Smoothness”), Type of Surface Motion (“Motion”), and Bumpiness
of the Surface’s Shape (“Shape”).

Source

Sum of

squares df

Mean

squares F p gp
2

Lighting 41.543 1 41.543 27.08 <.001 0.0109

Proportion 0.920 1 0.920 0.60 .4388 0.0002

Blurring 26.475 2 13.238 8.63 <.001 0.0070

Smoothness 49.078 1 49.078 31.99 <.001 0.0129

Motion 190.341 1 190.341 124.06 <.001 0.0482

Shape 182.182 2 182.182 59.37 <.001 0.0463

Lighting� Proportion 0.429 1 0.429 0.28 .5969 0.0001

Lighting�Blurring 5.642 2 2.821 1.84 .1592 0.0015

Lighting� Smoothness 0.009 1 0.009 0.01 .9393 <0.0001

Lighting�Motion 3.110 1 3.110 2.03 .1547 0.0008

Lighting� Shape 7.177 2 3.589 2.34 .0966 0.0019

Proportion�Blurring 0.692 2 0.346 0.23 .7981 0.0002

Proportion� Smoothness 1.224 1 1.224 0.80 .3718 0.0003

(continued)
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Table C1. Continued.

Source

Sum of

squares df

Mean

squares F p gp
2

Proportion�Motion 0.048 1 0.048 0.03 .8595 <0.0001

Proportion� Shape 5.210 2 2.605 1.70 .1833 0.0014

Blurring� Smoothness 2.327 2 1.163 0.76 .4686 0.0006

Blurring�Motion 4.042 2 2.021 1.32 .2681 0.0011

Blurring� Shape 68.249 4 17.062 11.12 <.001 0.0178

Smoothness�Motion 0.804 1 0.804 0.52 .4692 0.0002

Smoothness� Shape 6.094 2 3.047 1.99 .1374 0.0016

Motion� Shape 13.767 2 6.884 4.49 .0113 0.0037

Lighting� Proportion� Blurring 13.012 2 6.506 4.24 .0145 0.0035

Blurring� Smoothness�Motion 11.101 2 5.550 3.62 .0270 0.0029

Lighting� Proportion� Blurring� Shape 20.170 4 5.043 3.29 .0107 0.0053

Lighting� Proportion�Motion� Shape 14.671 2 7.335 4.78 .0085 0.0039

Lighting�Blurring�Motion� Shape 19.824 4 4.956 3.23 .0118 0.0052

Proportion�Blurring�
Smoothness� Shape

19.700 4 4.925 3.21 .0122 0.0052

Proportion�Blurring�
Motion� Shape

23.733 4 5.933 3.87 .0039 0.0063

Error 3,755.79 2,448 1.534

Total 4,638.54 2,591

As a measure for the effect size, the last column shows the partial eta-squared (gp
2) for each effect. Note that for higher

order interaction effects, only results with p< .05 are shown.
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