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Abstract
Type 2 diabetes (T2D) has a complex etiology which is not yet fully elucidated. The identification of gene perturbations and 
hub genes of T2D may deepen our understanding of its genetic basis. We aimed to identify highly perturbed genes and hub 
genes associated with T2D via an extensive bioinformatics analytic workflow consisting of five steps: systematic review of 
Gene Expression Omnibus and associated literature; identification and classification of differentially expressed genes (DEGs); 
identification of highly perturbed genes via meta-analysis; identification of hub genes via network analysis; and downstream 
analysis of highly perturbed genes and hub genes. Three meta-analytic strategies, random effects model, vote-counting 
approach, and p value combining approach, were applied. Hub genes were defined as those nodes having above-average 
betweenness, closeness, and degree in the network. Downstream analyses included gene ontologies, Kyoto Encyclopedia 
of Genes and Genomes pathways, metabolomics, COVID-19-related gene sets, and Genotype-Tissue Expression profiles. 
Analysis of 27 eligible microarrays identified 6284 DEGs (4592 downregulated and 1692 upregulated) in four tissue types. 
Tissue-specific gene expression was significantly greater than tissue non-specific (shared) gene expression. Analyses revealed 
79 highly perturbed genes and 28 hub genes. Downstream analyses identified enrichments of shared genes with certain 
other diabetes phenotypes; insulin synthesis and action-related pathways and metabolomics; mechanistic associations with 
apoptosis and immunity-related pathways; COVID-19-related gene sets; and cell types demonstrating over- and under-
expression of marker genes of T2D. Our approach provided valuable insights on T2D pathogenesis and pathophysiological 
manifestations. Broader utility of this pipeline beyond T2D is envisaged.

Keywords  Differential gene expression · Highly perturbed genes · Hub genes · Meta-analysis · Type 2 diabetes

Introduction

According to an analysis of global data through years 
1990–2018, diabetes was prevalent in almost half a bil-
lion people, a number expected to rise by 25% and 51%, 

respectively, by 2030 and 2045 (Saeedi et al. 2019). Type 2 
diabetes (T2D) accounts for over 90% of all diabetes cases 
(Zheng et al. 2018), affecting nearly 6.8% (537 million) of 
the world population in year 2021 (Sun et al. 2022). Current 
evidence suggests a complex and multifactorial etiology of 
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T2D characterized by genetic and environmental interac-
tions (Arroyo et al. 2021), although T2D pathogenesis is 
not yet fully elucidated. There are likely varying degrees 
of shared genetic origins in the pathogenesis of T2D and 
other diabetes phenotypes such as type 1 diabetes (T1D) 
(Aylward et al. 2018), latent autoimmune diabetes in adults 
(Basile et al. 2014), and maturity-onset diabetes of the young 
(MODY) (Bonnefond et al. 2020). Recent studies also sup-
port the deconstruction of T2D heterogeneity to define T2D 
sub-types (Udler et al. 2018) and the delineation of a con-
tinuum of diabetes sub-types (Flannick et al. 2016) instead 
of the status quo characterized by a few distinct diabetes 
phenotypes. Understanding the genetic basis of T2D is 
fundamental to precision medicine approaches striving for 
impeccable matching and an individualized level of T2D 
care (Prasad and Groop 2019).

Cardinal tissues of the body impacted by heightened 
insulin resistance and diminished insulin secretion in T2D 
include the pancreas, liver, skeletal muscle, and adipose 
tissue (Batista et al. 2021). Exploration of gene perturba-
tions in these tissues can deepen our understanding of the 
molecular etio-pathology of T2D. Highly up- and down-
regulated genes expressed consistently across different tis-
sue types may uncover potential genome-wide biomarkers 
or “gene signatures,” which are integral to achieving pre-
cision diagnostic, prognostic, monitoring, and treatment 
approaches. Topologically, hub genes are defined as highly 
and tightly connected nodes in typically scale-free gene 
regulatory networks (GRN) (Buchberger et al. 2021). As 
such, criteria such as high correlation in candidate modules 
(Liu et al. 2019a) and above-average betweenness, close-
ness, and degree (Liu et al. 2019b) in GRN have been used 
to demarcate hub genes in previous studies. Functionally, 
they perform critical regulatory roles in biological processes 
interacting with many other genes in associated pathways. 
Given their crucial structural and functional characteristics, 
hub genes are highly sought-after in precision medicine 
approaches as plausible niches for developing drug and treat-
ment targets (Liu et al. 2021). In this context, the importance 
of identifying highly perturbed genes and hub genes associ-
ated with T2D for the purpose of individualizing T2D care 
is unequivocal.

Downstream analyses of gene sets provide invaluable 
insights into associated core biological functions, path-
ways, diseases, drugs, and many other aspects. Frequently 
used gene ontology (GO) analysis provides evidence as a 
snapshot of contemporary biological knowledge related to a 
given gene including its function at the molecular level, the 
cellular location(s) it functions at, and the biological pro-
cesses reliant on it (Hill et al. 2008). Pathway analyses such 
as Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(Kanehisa and Goto 2000) entail derivation of coherent and 
meaningful biological phenomena attributable to input genes 

(Nguyen et al. 2019). Additional downstream analyses of 
diseases, drugs, metabolomes, and tissue enrichment are 
also available and can provide valuable insights into associ-
ated genes. Taken together, downstream analysis of highly 
perturbed and hub genes associated with T2D may render 
valuable information on aspects such as affected biologi-
cal processes, dysregulated pathways, related diseases, and 
metabolomic biomarkers.

Advances in high-throughput technologies have generated 
a wealth of gene expression data, while the availability of 
open-source platforms such as the National Center for Bio-
technology Information Gene Expression Omnibus (NCBI 
GEO) (Edgar et al. 2002; Barrett et al. 2013) and simultane-
ous advent in big data and bioinformatics analytic tools such 
as microarray and RNA-seq meta-analysis and gene–gene 
interaction network analysis strategies have offered unprec-
edented opportunities for high-level evidence synthesis from 
a multitude of gene expression datasets. Such approaches are 
likely to render new knowledge on complex diseases like 
T2D and acquire adequate statistical power to identify genes 
associated with a disease that may not have been evoked via 
prior analysis of a single or a few datasets.

Yet, to date, no comprehensive evidence synthesis study 
has been performed to identify highly perturbed genes and 
hub genes associated with T2D in human adults using an 
extensive bioinformatics analytic pipeline. Prior studies were 
limited to identifying hub genes in a few (n = 3) microarrays 
from a single tissue type (pancreatic islets) (Lin et al. 2020) 
or performing an ad hoc gene expression meta-analysis of all 
diabetes phenotypes (n = 13) (Mei et al. 2017). In this study, 
we aimed to identify highly perturbed genes and hub genes 
associated with T2D in different tissues of adult humans via 
a pre-defined and extensive bioinformatics analytic work-
flow consisting of systematic review, meta-analysis, identi-
fication and classification of differentially expressed genes 
(DEGs), network analysis, and downstream analysis.

Methods

The methodological approach consisted of five sequen-
tial steps: (1) systematic review of NCBI GEO expression 
data and related publications, (2) analysis of microarrays 
to identify DEGs, (3) meta-analysis of DEGs to identify 
highly perturbed genes in T2D, (4) network analysis of 
gene–gene/protein–protein interactions to identify hub 
genes in T2D, and (5) downstream analysis of highly per-
turbed genes and hub genes associated with T2D.

Systematic review

A preliminary search on the NCBI GEO database was first 
run on 1st February 2021 using a pre-defined search string: 
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“(“diabetes mellitus, type 2” [MeSH Terms] OR type 2 
diabetes[All Fields]) AND “Homo sapiens” [porgn] AND 
“Expression profiling by array” [Filter].” The resulting 
microarrays and related publications were further screened 
against pre-defined eligibility criteria. Microarrays of con-
ditions other than T2D, all diabetes phenotypes other than 
T2D, and early dysglycemic conditions such as impaired 
glucose tolerance, insulin resistance, and prediabetes were 
excluded. Studies with non-human specimens, children, 
without healthy controls, or with notable comorbidity in 
control samples were also excluded. We also omitted stud-
ies involving long non-coding RNA (lncRNA), micro RNA 
(miRNA), samples subject to drug treatments and other 
interventions, pluripotent stem cells, xenografts, transfected 
or transgenic tissues, undifferentiated tissues, and sub-sam-
ples in super-series. Microarrays passing these eligibility 
criteria were selected for manual curation which were then 

further screened along with the full texts of related publica-
tions (where available) for the presence of adequate infor-
mation such as clinical diagnosis (healthy vs T2D) and gene 
symbol/Entrez ID. Following this, all microarrays with suf-
ficient information were selected for subsequent analyses.

Identification of DEGs

All microarrays selected from the systematic review were 
imported to R using getGEO function of GEOquery package 
(Davis and Meltzer 2007). In each expression set, pheno-
Data component was examined to determine the number 
of eligible samples and confirm the presence of outcome 
(T2D vs controls) variable, while featureData component 
was explored to verify the presence of gene annotation 
information. Where required, non-normalized gene expres-
sion matrices were log2 transformed in order to alleviate 

Table 1   Number of 
differentially expressed genes in 
type 2 diabetes identified from 
different tissues of adult humans 
(n = 27)

a, differentially expressed genes were defined as BH-adjusted p value < 0.05 and log2FC > 1|log2FC <  − 0.5; 
b, upregulated genes were defined as BH-adjusted p value < 0.05 and log2FC > 1; c, downregulated genes 
were defined as BH-adjusted p value < 0.05 and log2FC <  − 0.5
DEGs, differentially expressed genes; PBMCs, peripheral blood mononuclear cells

Dataset Number of 
DEGsa

(n = 6284)

Upregulatedb

(n = 1692)
Downregulatedc

(n = 4592)
Tissue

GSE156993 0 0 0 PBMCs
GSE15932 309 79 230 Peripheral blood
GSE21321 37 15 22 Peripheral blood
GSE13015 3 0 3 Whole blood
GSE13760 0 0 0 Arterial tissue
GSE78721 1 0 1 Adipocytes
GSE71416 13 0 13 Omental adipose tissue
GSE54350 2 2 0 Visceral adipose tissue
GSE29231 1655 1051 604 Visceral adipose tissue
GSE16415 0 0 0 Visceral adipose tissue
GSE29226 967 159 808 Subcutaneous adipose tissue
GSE27949 0 0 0 Subcutaneous adipose tissue
GSE76895 101 31 70 Pancreatic islets
GSE76894 478 2 476 Pancreatic islets
GSE38642 0 0 0 Pancreatic islets
GSE25724 2164 76 2088 Pancreatic islets
GSE20966 56 26 30 Beta cells from pancreatic tissue
GSE64998 0 0 0 Liver
GSE23343 0 0 0 Liver
GSE15653 0 0 0 Liver
GSE73034 0 0 0 Skeletal muscle
GSE55650 30 9 21 Skeletal muscle
GSE29221 185 26 159 Skeletal muscle
GSE25462 8 6 2 Skeletal muscle
GSE19420 0 0 0 Skeletal muscle
GSE22309 275 210 65 Skeletal muscle
GSE21340 0 0 0 Skeletal muscle
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skewness and create symmetric distributions (Le et  al. 
2020). Samples were assessed for the presence of any batch 
effects between the two groups by running principal compo-
nents analysis on transposed expression matrices and were 
rectified using removeBatchEffect function in limma pack-
age (Ritchie et al. 2015). Relevant features were annotated 
with expression matrices to generate curated data for run-
ning differential gene expression analysis. Samples were 
ascribed to the relevant group (T2D/control) using model.
matrix function of limma package (Ritchie et al. 2015) pro-
ducing a binary design matrix. As the detection of DEGs can 

be enhanced by filtering genes with a low expression level, 
we assumed a median (50%) cut-off for the gene expres-
sion level. A uniform analytic pipeline consisting of the fol-
lowing sequential steps was applied to each microarray: (1) 
median expression levels were calculated, and those above 
the median were retained. (2) From the resulting genes, 
those expressed in more than two samples were retained, 
while the others were removed. (3) Model fitting was per-
formed using lmFit function of limma (Ritchie et al. 2015) 
to enumerate expression levels of T2D and control groups. 
(4) Contrasts were defined as “T2D, control,” and empirical 

Fig. 1   Clustered bar chart depicting the number of differentially expressed (up- and downregulated) genes in the 16 datasets
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Bayes step was run to derive differential expression results. 
(5) The DEGs, defined as those with log2FC > 1 and Ben-
jamini–Hochberg (BH)-adjusted p < 0.05 for upregulated 
genes and log2FC <  − 0.5 and BH-adjusted p < 0.05 for 
downregulated genes, were identified for each microarray.

Microarrays with no DEGs were excluded, and those with 
non-zero DEGs were visualized with a clustered bar chart. 
Furthermore, DEGs were classified by tissue types and visu-
alized as a Venn diagram. Information on clinical and other 
features of the microarrays with non-zero DEGs, individual 
DEGs identified by each dataset, and tissue-based classifica-
tion of DEGs were also summarized.

Meta‑analysis of DEGs: identification of highly 
perturbed genes

In order to identify highly perturbed genes associated with 
T2D, we conducted meta-analysis of DEGs using Meta-
VolcanoR package (Prada et al. 2020). We implemented 
all 3 meta-analytic strategies incorporated in this pack-
age, namely, random effects model (REM), vote-counting 
approach (VC), and p value combining approach (CA).

In brief, REM synthesizes a summary fold-change of mul-
tiple microarrays based on variance, producing a summary p 
value which indicates the probability that the summary fold-
change is not different to zero. The metathr parameter can 
be specified to filter the desired percentage of the top-most 
consistently perturbed genes. Gene perturbation is ranked 

as per the topconfects approach (Harrison et al. 2019). The 
VC algorithm produces highly perturbed genes according 
to user-specified p values and fold-change cut-off levels, 
taking into account both the number of studies in which a 
DEG appeared and its gene fold-change sign consistency. 
Here also, metathr parameter can be defined to extract the 
required percentage of highly perturbed genes. Meta-synthe-
sis of gene perturbation by CA algorithm is at the mean or 
median level along with p values derived by Fisher method. 
A required proportion of top-most DEGs can be identified 
by specifying metathr parameter with CA as well (Prada 
et al. 2020).

As required by the package, all microarray datasets 
with non-zero DEGs; each consisting of the columns gene 
name (symbol), fold-change (log2FC), and p value; and 
confidence intervals of the fold-change (CI.L and CI.R) 
were merged to build a list item. For all 3 meta-analytic 
models, metathr was set at 0.01. For VC, p value and 
absolute fold-change thresholds were set at 0.05 and 0, 
respectively.

Highly perturbed genes identified by each model as 
well as the compiled list of all highly perturbed genes were 
presented in tabular format. Volcano plots were drawn to 
illustrate the top-most perturbed genes identified by REM, 
VC, and CA methods. Inverse cumulative distribution of 
consistently differentially expressed genes as per VC was 
plotted to demonstrate the number of genes with perturbed 
expression in ≥ 1 studies. Detailed meta-analytic outputs 

Fig. 2   Venn diagram depicting 
the number of differentially 
expressed genes by the 4 tissue 
types
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from all 3 approaches and the highly perturbed genes 
identified by each method were also compiled.

Network analysis: identification of hub genes

The list of highly perturbed genes was fed into GENEMA-
NIA (Warde-Farley et al. 2010) to determine the gene–gene 
interaction network. The interaction network formulated 
by the GENEMANIA gene function prediction program, 
based on the multiple association network integration algo-
rithm (MANIA), incorporates a multitude of functional 
associations including co-expression, pathways, physical 
interactions, co-localization, genetic interactions, and pro-
tein domain similarity. It has been found more accurate and 
computationally efficient than other gene function prediction 
methods (Mostafavi et al. 2008; Peña-Castillo et al. 2008). 
The gene–gene interaction network was first constructed 
and visualized in GENEMANIA. Next, these interactions 
were imported to visualize the protein–protein interaction 
(PPI) network in STRING version 11.0 (Szklarczyk et al. 
2019). We used the Centiscape application (Scardoni et al. 
2009) in the Cytoscape software (Shannon et al. 2003) to 
analyze the PPI network and determine the hub nodes. After 
removing nodes with a connection number < 2, the network 

was visualized in Cytoscape. Hub genes were defined as 
those nodes in the network with betweenness, closeness, and 
degree higher than their mean values. A similar approach 
has been previously used to demarcate hub genes (Liu et al. 
2019b). Topological features of the hub nodes and details of 
the PPI network derived by Centiscape were summarized.

Downstream analysis of highly perturbed genes 
and hub genes

Using Enrichr (Chen et al. 2013; Kuleshov et al. 2016; Xie 
et al. 2021) platform, we ran a series of downstream analyses 
for both highly perturbed genes and hub genes as outlined 
below:

•	 Ontologies: GO Biological Process 2018 (Hill et  al. 
2008)

•	 Pathways: KEGG 2019 Human (Kanehisa and Goto 
2000)

•	 Diseases/drugs: COVID-19-related gene sets
•	 Cell types: GTEx tissue sample gene expression profiles 

up and GTEx tissue sample gene expression profiles 
down

•	 Miscellaneous: HMDB metabolites

Fig. 3   Highly perturbed genes 
(n = 49) identified by random 
effects model meta-analysis in 
MetaVolcanoR package with 
metathr set at 0.01. Consistently 
upregulated genes appear in red 
and consistently downregulated 
genes appear in blue
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The Genotype-Tissue Expression (GTEx) portal contains tis-
sue-specific gene expression and regulation data (GTEx Consor-
tium 2013), whereas the Human Metabolome Database (HMDB) 
records human metabolomics data (Wishart et al. 2018).

Results

The bioinformatic analytic workflow is summarized in 
Online Resource 1.

Systematic review outputs

The preliminary search resulted in 178 eligible microarrays, 
while 45 of these were selected for manual curation. We selected 
27 microarrays with sufficient information for subsequent analy-
ses, the details of which are provided in Online Resource 2.

Differential gene expression analysis outputs

The number of DEGs identified by each dataset is shown in 
Table 1. There were 11 microarrays with no DEGs. In Fig. 1, 

microarrays with non-zero DEGs (n = 16) are visualized as 
a clustered bar chart. The identified DEGs belonged to four 
tissue types (i.e., circulatory; adipose; digestive; skeletal 
muscle) as visualized in the Venn diagram (Fig. 2). Clinical 
and other information of the 16 microarrays with non-zero 
DEGs is presented in Online Resource 3. Details of DEGs 
identified by each dataset are presented in Online Resource 
4, while DEGs classified by tissue type are presented in 
Online Resource 5.

A significantly larger proportion of genes associated 
with T2D is downregulated

Of all the DEGs identified by different tissues (n = 6284), 
the proportion of downregulated genes (n = 4592) was 
significantly higher than the proportion of upregulated 
genes (n = 1692) (p < 0.00000001). At the level of tissue 
type, circulatory (255 downregulated vs 94 upregulated; 
p < 0.000001), adipose (1426 downregulated vs 1212 upreg-
ulated; p = 0.000017), and digestive (2664 downregulated 
vs 135 upregulated; p < 0.000001) tissues revealed a similar 
pattern, while the skeletal muscle (247 downregulated vs 

Fig. 4   Highly perturbed genes (n = 27) identified by vote-counting 
approach meta-analysis in MetaVolcanoR package with metathr set at 
0.01. Consistently upregulated genes appear in red and consistently 
downregulated genes appear in blue

Fig. 5   Highly perturbed genes (n = 8) identified by p value combining 
approach meta-analysis in MetaVolcanoR package with metathr set at 
0.01. Consistently upregulated genes appear in red and consistently 
downregulated genes appear in blue
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251 upregulated; p = 0.44653) showed no such over-expres-
sion of downregulated genes. Of the 27 microarrays, 11 con-
tained no DEGs, while the two datasets containing the high-
est number of DEGs were from pancreatic islets (GSE25724; 
2164 DEGs) and visceral adipose tissue (GSE29231; 1655 
DEGs) (Table 1, Fig. 1).

Tissue‑specific DEGs are predominant compared 
to DEGs shared between tissues in T2D

Proportions of tissue-specific DEGs were significantly higher 
than the proportions shared with one or more other tissue types 
in circulatory (242 specific vs 89 non-specific; p < 0.000001), 
adipose (1989 specific vs 342 non-specific; p < 0.000001), and 
digestive (1875 specific vs 409 non-specific; p < 0.000001) 
groups, while skeletal muscle (244 specific vs 217 non-specific; 
p = 0.112959) had no such over-expression (Fig. 2).

Meta‑analytic outputs

As shown in Table 2, the three meta-analytic algorithms 
REM, VC, and CA identified 49, 27, and 8 highly perturbed 
genes, respectively. The compiled list, after removing 
redundancies, comprised 79 highly perturbed genes. 
Volcano plots illustrating the top-most perturbed genes 
identified by REM, VC, and CA are given in Figs. 3, 4, 
5, respectively. Figure 6 presents the inverse cumulative 
distribution of consistently differentially expressed genes 

as per VC, plotted to demonstrate the number of genes with 
perturbed expression in ≥ 1 studies. We present detailed 
meta-analytic outputs from all 3 approaches in Online 
Resource 6 and highly perturbed genes identified by each 
method in Online Resource 7.

Highly perturbed genes associated with T2D 
comprise both up‑ and downregulated genes

There was no significant difference (p = 0.410983) between 
the proportions of up- (38/79) and downregulated (41/79) 
genes that constituted the highly perturbed gene set (n = 79) 
identified by all 3 meta-analytic algorithms (Table 2, Figs. 3, 
4, 5, 6). The 38 upregulated genes were ALDOB; BCL3; 
CNTFR; CNTNAP2; CRTAC1; DYRK3; EGR2; ELFN1; 
ERAP2; ESPNL; ISLR; LOC100008589; LOC644422; 
LOC649456; MCL1; MGRN1; MMP9; NPTX2; PCOLCE2; 
PHACTR3; PHLDA1; PI3; POMZP3; PRIMA1; PVRL2; 
RASL11B; RNF19B; SCN1B; SLC9A3R2; SOD3; TAPBP; 
TNFAIP6; U2AF2; VNN2; XYLT1; ZBTB16; ZNF423; and 
ZNF75. The 41 downregulated genes were API5; APOL4; 
ARG2; ASCL2; C14orf132; C19orf33; COG2; CTSC; 
DHRS2; DYRK2; ENPP2; ENTPD3; FUT11; HADH; HLA-
DRB4; HLA-DRB5; IAPP; IFNA7; KIAA1279; KIAA1984; 
LARP4; LOC389286; LOC650885; LOC731682; MARK1; 
MCOLN3; MTRR​; NAALAD2; NMNAT2; OR8B12; PAAF1; 
POPDC3; PPM1K; PPP1R1A; RPL14; SLC2A2; SNAP25; 
STMN2; TAP2; TMEM37; and UGT2B7.

Fig. 6   Inverse cumulative distribution of the consistently differentially expressed genes as per vote-counting approach
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Network analysis outputs

Network analysis identified 28 hub genes, the topological 
features of which are summarized in Table 3. Figure 7 pre-
sents the gene–gene interaction network produced on GENE-
MANIA, and details of this network are given in Online 
Resource 8. The PPI network visualized on STRING version 
11.0 (Szklarczyk et al. 2019) is given in Fig. 8. The network 
created by Cytoscape is provided in Fig. 9. Details of the 
PPI network derived by Centiscape are provided in Online 
Resource 9.

Hub genes associated with T2D also comprise 
both up‑ and downregulated genes

The 28 hub genes consisted of 13 upregulated, 9 downregu-
lated, and 6 predicted genes. There was no significant differ-
ence (p = 0.261216) between the proportions of up- (13/22) 

and downregulated (9/22) genes constituting the hub gene 
set. The 13 upregulated hub genes were CNTFR; CNTNAP2; 
ISLR; MCL1; MMP9; PHLDA1; RASL11B; SCN1B; SOD3; 
TNFAIP6; XYLT1; ZBTB16; and ZNF423. The 9 downregu-
lated genes were CTSC; ENPP2; HADH; PPP1R1A; RPL14; 
SLC2A2; SNAP25; STMN2; and UGT2B7. The 6 hub genes 
predicted by GENEMANIA were ARG1; CD226; DPEP1; 
PPP1R15A; TAP1; and ZMIZ1 (Table 3).

Downstream functional analysis outputs

Findings from downstream analyses of highly perturbed 
genes are summarized in Tables 4, 5, 6 and illustrated in 
Figs. 10, 11, 12 with details in Online Resource 10. Results 
from downstream analyses of hub genes are presented in 
Tables 7, 8, 9 and visualized in Figs. 13, 14, 15 with details 
in Online Resource 11.

Table 3   Topological 
characteristics of the hub genes 
(n = 28) identified via network 
analyses

* Genes included in the network as predicted by GENEMANIA

Gene Betweenness Closeness Degree Regulation

Mean = 115.5333333 Mean = 0.004988249 Mean = 12.68888889
PHLDA1 213.0074 0.005618 22 Upregulated
CTSC 149.7385 0.005495 18 Downregulated
HADH 208.3918 0.00578 18 Downregulated
RPL14 139.3092 0.005464 17 Downregulated
ZBTB16 127.1864 0.005405 14 Upregulated
SOD3 198.8821 0.005714 21 Upregulated
SNAP25 380.1873 0.005814 30 Downregulated
SLC2A2 438.8331 0.005747 26 Downregulated
ISLR 465.6411 0.005952 27 Upregulated
SCN1B 175.7841 0.005376 14 Upregulated
MMP9 196.9649 0.005682 22 Upregulated
ENPP2 230.6537 0.005618 17 Downregulated
TAP1* 189.4171 0.005376 40 -
MCL1 320.3027 0.005917 27 Upregulated
DPEP1* 133.0483 0.005208 15 -
CNTNAP2 761.7546 0.006494 39 Upregulated
STMN2 200.277 0.005618 18 Downregulated
PPP1R1A 219.8601 0.005587 18 Downregulated
ZNF423 406.5439 0.006061 21 Upregulated
CNTFR 200.657 0.005319 16 Upregulated
TNFAIP6 162.3969 0.005208 14 Upregulated
PPP1R15A* 119.5084 0.005155 13 -
XYLT1 194.4998 0.00565 18 Upregulated
ZMIZ1* 392.1699 0.005682 26 -
RASL11B 168.9444 0.005376 13 Upregulated
ARG1* 124.961 0.005263 18 -
UGT2B7 247.0102 0.005682 19 Downregulated
CD226* 222.4953 0.005495 17 -
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Enriched biological processes associated with highly 
perturbed genes and hub genes of T2D

Ontology analysis of highly perturbed genes identified 
89 enriched biological processes (Online Resource 10). 
The top 10 enriched biological processes were intrinsic 
apoptotic signaling pathway in response to DNA dam-
age (GO:0,008,630); intrinsic apoptotic signaling path-
way in response to DNA damage by p53 class mediator 
(GO:0,042,771); antigen processing and presentation of 
peptide antigen via MHC class I (GO:0,002,474); cel-
lular response to oxidative stress (GO:0,034,599); 
plasma membrane bounded cell projection organization 
(GO:0,120,036); intrinsic apoptotic signaling pathway 
by p53 class mediator (GO:0,072,332); myeloid cell dif-
ferentiation (GO:0,030,099); nicotinamide nucleotide 
metabolic process (GO:0,046,496); regulation of intrinsic 
apoptotic signaling pathway (GO:2,001,242); and myeloid 
leukocyte differentiation (GO:0,002,573). Three of these, 
antigen processing and presentation of peptide antigen via 
MHC class I (GO:0,002,474); myeloid cell differentiation 

(GO:0,030,099), and regulation of intrinsic apoptotic signal-
ing pathway (GO:2,001,242), were associated with upregu-
lated genes in T2D (Table 4).

Ontological analysis of hub genes identified 179 
enriched biological processes (Online Resource 11). 
Top 10 enriched biological processes were neutrophil 
degranulation (GO:0,043,312); neutrophil activation 
involved in immune response (GO:0,002,283); neutro-
phil-mediated immunity (GO:0,002,446); regulation of 
intrinsic apoptotic signaling pathway (GO:2,001,242); 
negative regulation of intrinsic apoptotic signaling path-
way (GO:2,001,243); positive regulation of cell projec-
tion organization (GO:0,031,346); cellular response to 
reactive oxygen species (GO:0,034,614); negative regu-
lation of apoptotic signaling pathway (GO:2,001,234); 
negative regulation of cysteine-type endopeptidase activ-
ity involved in apoptotic process (GO:0,043,154); and 
regulation of peptide hormone secretion (GO:0,090,276). 
Of these, three (regulation of intrinsic apoptotic signal-
ing pathway (GO:2,001,242); negative regulation of 
intrinsic apoptotic signaling pathway (GO:2,001,243); 

Fig. 7   Gene–gene interactions 
network visualized in GENE-
MANIA
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negative regulation of apoptotic signaling pathway 
(GO:2,001,234)) were associated with upregulated genes 
in T2D, whereas one (regulation of peptide hormone 
secretion (GO:0,090,276)) was associated with down-
regulated genes in T2D (Table 6).

Enriched KEGG pathways associated with highly 
perturbed genes and hub genes of T2D

As per KEGG analysis of highly perturbed genes, 21 path-
ways were enriched (Online Resource 10). The top 10 path-
ways were Epstein–Barr virus infection; antigen processing 
and presentation; autoimmune thyroid disease; maturity-
onset diabetes of the young; asthma; allograft rejection; 
graft-versus-host disease; type 1 diabetes mellitus; intesti-
nal immune network for IgA production; and cell adhesion 
molecules (CAMs). Seven of these (autoimmune thyroid dis-
ease; maturity-onset diabetes of the young; asthma; allograft 
rejection; graft-versus-host disease; type 1 diabetes mellitus; 
intestinal immune network for IgA production) were associ-
ated with downregulated genes in T2D (Table 4).

According to KEGG analysis of hub genes, 12 pathways 
were enriched (Online Resource 11). The top 10 pathways 
were insulin secretion; apoptosis; adrenergic signaling in 
cardiomyocytes; cell adhesion molecules (CAMs); JAK-
STAT signaling pathway; transcriptional mis-regulation in 
cancer; arginine biosynthesis; maturity-onset diabetes of 
the young; ascorbate and aldarate metabolism; and fatty 
acid elongation. Four of these (insulin secretion; maturity-
onset diabetes of the young; ascorbate and aldarate 
metabolism; fatty acid elongation) were associated 
with downregulated genes in T2D, while two pathways 
(JAK-STAT signaling pathway and transcriptional mis-
regulation in cancer) were associated with upregulated 
genes in T2D (Table 6).

COVID‑19 related gene sets associated with highly 
perturbed genes and hub genes of T2D

Downstream analyses revealed 20 COVID-19-related gene 
sets associated with the highly perturbed genes of T2D 
(Online Resource 10), and the top 10 of these are visual-
ized in Fig. 11a. There were 23 COVID-19-related gene sets 
associated with the hub genes of T2D (Online Resource 11), 
the top 10 of which are visualized in Fig. 14a.

HMDB metabolites associated with highly 
perturbed genes and hub genes of T2D

Four HMDB metabolites (zinc (HMDB01303), man-
ganese (HMDB01333), magnesium (HMDB00547), 
C10H13N2O7P (HMDB01570)) were associated with 
the highly perturbed genes of T2D (Online Resource 
10). Of these, Zinc (HMDB01303) was associated 
with upregulated genes in T2D, while C10H13N2O7P 
(HMDB01570) was associated with downregulated genes 
in T2D (Table 5).

There were 45 HMDB metabolites associated with the hub 
genes of T2D (Online Resource 11). The top 10 metabolites 
were zinc (HMDB01303); ethyl glucuronide (HMDB10325); 
3-acetoacetyl-CoA (HMDB01484); (S)-methylmalonate semi-
aldehyde (HMDB02217); C18H31NO14S (HMDB00632); 
ornithine (HMDB00214); 17beta-estradiol glucuronide 
(HMDB10317); (3alpha,5beta,20S)-20-hydroxypregnan-
3-yl beta-D-glucopyranosiduronic acid (HMDB10318); 
3,17-androstanediol glucuronide (HMDB10321); and 
17alpha-estradiol-3-glucuronide (HMDB10322). Seven of 
these (Ethyl glucuronide (HMDB10325); 3-acetoacetyl-
CoA (HMDB01484); (S)-methylmalonate semialdehyde 
(HMDB02217); 17beta-estradiol glucuronide (HMDB10317); 
(3alpha,5beta,20S)-20-hydroxypregnan-3-yl beta-D-glu-
copyranosiduronic acid (HMDB10318); 3,17-andros-
tanediol glucuronide (HMDB10321); and 17alpha-estra-
diol-3-glucuronide (HMDB10322)) were associated with 

Fig. 8   Protein–protein interactions network visualized in STRING
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downregulated genes in T2D. One metabolite (C18H31NO14S 
(HMDB00632)) was associated with upregulated genes of 
T2D (Table 8).

Gene expression in different cell types associated 
with highly perturbed genes and hub genes of T2D

There were 168 downregulated GTEx profiles (Online 
Resource 10) associated with highly perturbed genes 
of T2D, the top 10 of which consisted of one brain, two 
thyroids, and seven blood tissue samples (Table  6 and 
Fig. 12). There were 77 upregulated GTEx profiles (Online 
Resource 10) associated with highly perturbed genes of 
T2D, the top 10 of which consisted of six adipose and one 
each of lung, breast, heart, and blood vessel tissue samples 
(Table 6 and Fig. 12).

There were 223 downregulated GTEx profiles (Online 
Resource 11) associated with hub genes of T2D, the top 
10 of which consisted of five nervous system (three brain, 
one nerve, one pituitary), three blood, one breast, and one 
bladder tissue samples (Table 9 and Fig. 15). There were 178 
upregulated GTEx profiles (Online Resource 11) associated 
with hub genes of T2D, the top 10 of which consisted of six 
adipose, two blood, and two skin tissue samples (Table 9 
and Fig. 15).

Discussion

In this study, we identified highly perturbed genes and 
hub genes associated with T2D in different tissues of adult 
humans, via an extensive bioinformatics analytic workflow. 
Downstream analyses revealed valuable insights on T2D 
pathogenesis, including associations with other diabetes 
phenotypes and COVID-19 and patterns of tissue-specific 
and tissue non-specific differential gene expression as well 
as pathophysiological manifestations such as those related 
to insulin action, immunity, and apoptosis. Salient findings 
of the study which contribute towards the understanding of 
the genetic basis of T2D are further discussed below. The 
comprehensive evidence synthesis approach with open-
source gene expression data exemplified in this study could 
be replicated to gain high-level evidence synthesis for other 
clinical conditions.

Patterns of differential gene expression in T2D

Our findings indicate that T2D seems rather a disorder of gene 
downregulation than upregulation, when the whole genome is 
considered. This is consistent with previous studies where a 
preponderance of gene downregulation was associated with 
T2D (Takematsu et al. 2020; Palsgaard et al. 2009). Also, 

Fig. 9   Two different presentations of the protein–protein interactions network in Centiscape 
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Table 4   Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: GO bio-
logical processes and KEGG pathways

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; T2D, type 2 diabetes

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

Ontologies: GO biological processes
Intrinsic apoptotic signaling 

pathway in response to DNA 
damage (GO:0,008,630)

3/48 9.03E-04 0.230983 17.43509 122.2228 DYRK2; BCL3; MCL1 -

Intrinsic apoptotic signaling 
pathway in response to DNA 
damage by p53 class media-
tor (GO:0,042,771)

2/20 0.002795 0.230983 28.72006 168.8714 DYRK2; BCL3 -

Antigen processing and 
presentation of peptide 
antigen via MHC class I 
(GO:0,002,474)

2/28 0.005448 0.230983 19.87512 103.5986 ERAP2; TAPBP Up

Cellular response to oxidative 
stress (GO:0,034,599)

3/115 0.010668 0.230983 6.981555 31.69995 MMP9; DHRS2; SOD3 -

Plasma membrane bounded 
cell projection organization 
(GO:0,120,036)

3/118 0.011436 0.230983 6.798398 30.39569 CNTNAP2; STMN2; NPTX2 -

Intrinsic apoptotic signaling 
pathway by p53 class media-
tor (GO:0,072,332)

2/43 0.012527 0.230983 12.59424 55.1606 DYRK2; BCL3 -

Myeloid cell differentiation 
(GO:0,030,099)

2/44 0.013091 0.230983 12.29375 53.30386 DYRK3; ZBTB16 Up

Nicotinamide nucleo-
tide metabolic process 
(GO:0,046,496)

2/45 0.013665 0.230983 12.00725 51.54622 NMNAT2; ALDOB -

Regulation of intrinsic 
apoptotic signaling pathway 
(GO:2,001,242)

2/47 0.014845 0.230983 11.47244 48.2997 MMP9; MCL1 Up

Myeloid leukocyte differentia-
tion (GO:0,002,573)

2/50 0.016695 0.230983 10.75379 44.01114 MMP9; DHRS2 -

Pathways: KEGG
Epstein–Barr virus infection 6/201 0.000144 0.012503 8.31444 73.51986 IFNA7; HLA-DRB5; HLA-

DRB4; ENTPD3; TAP2; 
TAPBP

-

Antigen processing and pres-
entation

4/77 0.000245 0.012503 14.50082 120.5547 HLA-DRB5; HLA-DRB4; 
TAP2; TAPBP

-

Autoimmune thyroid disease 3/53 0.001205 0.040983 15.68763 105.436 IFNA7; HLA-DRB5; HLA-
DRB4

Down

Maturity-onset diabetes of the 
young (MODY)

2/26 0.004708 0.12006 21.53355 115.3862 SLC2A2; IAPP Down

Asthma 2/31 0.006651 0.135681 17.81639 89.31323 HLA-DRB5; HLA-DRB4 Down
Allograft rejection 2/38 0.009878 0.159725 14.34704 66.24726 HLA-DRB5; HLA-DRB4 Down
Graft-versus-host disease 2/41 0.011434 0.159726 13.24142 59.20461 HLA-DRB5; HLA-DRB4 Down
Type I diabetes mellitus 

(T1DM)
2/43 0.012527 0.159726 12.59423 55.1606 HLA-DRB5; HLA-DRB4 Down

Intestinal immune network for 
IgA production

2/48 0.015452 0.175118 11.22247 46.79817 HLA-DRB5; HLA-DRB4 Down

Cell adhesion molecules 
(CAMs)

3/145 0.019771 0.181561 5.49824 21.5726 CNTNAP2; HLA-DRB5; HLA-
DRB4

-
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hyperglycemia-induced global downregulation of gene expres-
sion in adipose and skeletal muscle tissues have been docu-
mented previously (Meugnier et al. 2007). A similar pattern 
has been observed in T1D (Yip et al. 2020) and other endo-
crine disorders such as polycystic ovary syndrome (Idicula-
Thomas et al. 2020). In contrast, highly perturbed genes and 
hub genes associated with T2D, which might together consti-
tute the candidate gene set critical for pathogenicity of T2D, 
were found to contain both up- and downregulated genes. This 

presentation suggests a more complex dysregulation at the 
crux of the GRN of T2D, involving actions and interactions 
between both repressed and augmented genes.

Tissue‑specific and tissue non‑specific DEGs 
associated with T2D

Results of the present study indicate the predominance of 
tissue-specific DEGs in T2D. This supports the use of target 

Table 5   Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: COVID-
19-related gene sets and HMDB metabolites

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

Diseases: COVID-19-related gene sets
Upregulated by SARS-CoV-2 

in pancreatic organoids from 
GSE151803

9/500 0.000155 0.01841 5.08787 44.64083 TMEM37; PPP1R1A; VNN2; 
BCL3; TAP2; ELFN1; 
MMP9; DHRS2; SCN1B

-

SARS perturbation down 
genes mouse lung from 
GSE19137:GPL1261:2

5/246 0.002908 0.08566 5.51755 32.22428 PCOLCE2; RPL14; HADH; 
CTSC; MCL1

-

SARS perturbation up 
genes mouse lung from 
GSE19137:GPL1261:3

6/366 0.003262 0.08566 4.46598 25.56907 SLC9A3R2; HLA-DRB5; 
U2AF2; ZBTB16; RPL14; 
MCL1

-

Healthy lung biopsy vs. 
COVID-19 infected lung 
series 15 from GSE147507 
up genes

7/500 0.003599 0.08566 3.8313 21.55896 POPDC3; HLA-DRB5; 
TNFAIP6; VNN2; BCL3; 
RNF19B; CTSC

-

Upregulated by SARS-
CoV-2 in lung tissue from 
GSE147507

7/500 0.003599 0.08566 3.8313 21.55896 POPDC3; HLA-DRB5; 
TNFAIP6; VNN2; BCL3; 
RNF19B; CTSC

-

SARS-CoV perturba-
tion up genes bronchial 
epithelial 2B4 from 
GSE17400:GPL570:6

6/402 0.005143 0.100484 4.05251 21.35735 ERAP2; VNN2; TAP2; 
RNF19B; PPM1K; DHRS2

-

SARS perturbation up 
genes mouse lung from 
GSE19137:GPL1261:5

5/291 0.005911 0.100484 4.63877 23.80141 HLA-DRB5; U2AF2; 
ZBTB16; RPL14; MCL1

-

Upregulated by SARS-CoV-1 
in Calu-3 from GSE148729

6/498 0.013921 0.16867 3.24574 13.87347 APOL4; EGR2; TAP2; 
RNF19B; PPM1K; DHRS2

-

Upregulated by SARS-
CoV-2 in Calu-3 24 h from 
GSE148729

6/499 0.014047 0.16867 3.23899 13.81541 APOL4; EGR2; ERAP2; 
TAP2; RNF19B; PPM1K

-

Upregulated by SARS-CoV-2 
in NHBE from GSE147507

6/500 0.014174 0.16867 3.23227 13.75766 ENTPD3; BCL3; TAP2; PI3; 
MMP9; CTSC

-

Miscellaneous: HMDB metabolites
Zinc (HMDB01303) 4/82 0.000312 0.025909 13.56786 109.52001 ZBTB16; ALDOB; MMP9; 

SOD3
Up

Manganese (HMDB01333) 4/193 0.007193 0.127982 5.56811 27.4768 ARG2; DYRK2; PPM1K; 
SOD3

-

Magnesium (HMDB00547) 6/463 0.009991 0.127982 3.50061 16.12387 DYRK3; DYRK2; ENTPD3; 
PPM1K; NMNAT2; MARK1

-

C10H13N2O7P 
(HMDB01570)

1/11 0.042612 0.127982 25.52692 80.55315 ENTPD3 Down
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tissue gene expression analysis as a viable avenue for iden-
tifying tissue-specific T2D biomarkers. A previous analysis 
integrating multiple tissue transcriptomics and PPI data to 
explore molecular biomarkers of T2D confirmed the pres-
ence of common signatures (Calimlioglu et al. 2015). We 
also observed common DEGs across different tissue types 
which can act as confluent molecular signatures of T2D. 
Identification of tissue-specific and non-specific molecular 
gene signatures of T2D facilitates downstream exploration 

of key pathways amenable to therapeutic targeting and drug 
repurposing efforts.

Shared gene enrichment across diabetes 
phenotypes

As revealed by KEGG pathway analyses, both MODY and 
T1D were enriched pathways associated with highly per-
turbed genes of T2D, while MODY was also an enriched 

Fig. 10   Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: a GO bio-
logical processes, b KEGG pathways

Fig. 11   Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: a COVID-
19 related gene sets, b HMDB metabolites
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pathway associated with hub genes of T2D. Specifically, 
SLC2A2 (GLUT2), and IAPP genes were commonly 
enriched in MODY, while HLA-DRB4 and HLA-DRB5 
genes were underlying the enrichment with T1D. A gene 
expression meta-analysis also revealed the existence of pos-
sible pleiotropic mechanisms manifest via common gene 
signatures (PGRMC1 and HADH) across different diabetes 
phenotypes (Mei et al. 2017).

Downregulation of SLC2A2 is associated with not only 
T2D (Solimena et al. 2018) but also neonatal diabetes (San-
sbury et al. 2012) and early childhood diabetes (Alhaidan 
et al. 2020), suggesting a likely role in insulin secretion. 
Amylin (IAPP), a gluco-modulatory hormone co-expressed 
with insulin by pancreatic β cells, is downregulated in both 
T1D and advanced T2D (Abedini et al. 2013), while amylin 
agonists are considered novel therapeutic agents for treat-
ing diabetes (Sonne et al. 2021). Moreover, human amylin 
plays a protective role against autoimmune diabetes induc-
ing CD4 + Foxp3 + regulatory T cells (Zhang et al. 2018). 
Downregulation of HLA-DRB4 in peripheral blood mono-
nuclear cells is associated with T2D as well as dyslipidemia 
and periodontitis (Corbi et al. 2020), while a meta-analysis 
revealed that the lack of HLA-DRB5 increased T2D risk 
(Jacobi et al. 2020). Of note, both HLA-DRB4 and HLA-
DRB5 are associated with β cell autoantibodies and T1D 
(Zhao et al. 2016), with previous studies reporting that both 
T1D and T2D share HLA class II locus components (Jacobi 
et al. 2020). Interestingly, two of the hub genes of T2D found 

in our study (MMP9, ARG1) have been found as hub genes 
of T1D in a previous analysis (Yang et al. 2020). Collec-
tively, these findings support some degree of shared genetic 
architecture between T2D and other diabetes pathologies.

T2D as a disorder of insulin secretion and action

Downstream analyses provided insights into the characteriza-
tion of T2D as a disorder of insulin secretion and action. We 
found that insulin secretion was the most significant KEGG 
pathway associated with hub genes, whereby two downregu-
lated hub genes (SLC2A2, SNAP25) in T2D were underlying 
this enrichment. Zinc, the most significant HMDB metabolite 
associated with both highly perturbed genes and hub genes 
of T2D, is an essential element with key regulatory roles in 
insulin synthesis, storage, and secretion (Kim and Lee 2012). 
Other metabolomic markers associated with highly perturbed 
genes included magnesium which is necessary for insulin 
signaling (Piuri et al. 2021) as well as manganese which is 
involved in insulin synthesis and secretion (Chen et al. 2018). 
Together, these findings underscore the effects on insulin pro-
duction and action as pivotal to T2D pathogenesis.

Pathophysiological manifestations of T2D

Apoptosis  Downstream analyses revealed that multiple GO 
and KEGG pathways associated with apoptosis, including 
intrinsic apoptotic signaling pathway, were enriched in T2D. 

Fig. 12   Downstream analyses of highly perturbed genes (n = 79) associated with type 2 diabetes in different tissues of human adults: a GTEx tis-
sue sample gene expression profiles down, b GTEx tissue sample gene expression profiles up
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It is known that hyperglycemia-induced β cell apoptosis, 
a hallmark in T2D progression, occurs via intrinsic path-
ways causing reduced islet mass and metabolic abnormali-
ties (Wali et al. 2013). Hyperglycemia-induced apoptosis 

has been reported to occur in other sites such as renal cells 
(Jung et al. 2012) and coronary arteries (Kageyama et al. 
2011), indicating a possible role in disease progression and 
the onset of complications.

Table 7   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: GO biological pro-
cesses and KEGG pathways

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; T2D, = type 2 diabetes

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

Ontologies: GO biological processes
Neutrophil degranulation 

(GO:0,043,312)
5/479 0.000481 0.061879 8.94239 68.31934 SNAP25; TNFAIP6; ARG1; 

MMP9; CTSC
-

Neutrophil activation involved 
in immune response 
(GO:0,002,283)

5/483 0.000499 0.061878 8.86574 67.39777 SNAP25; TNFAIP6; ARG1; 
MMP9; CTSC

-

Neutrophil-mediated immunity 
(GO:0,002,446)

5/487 0.000518 0.061878 8.79036 66.49468 SNAP25; TNFAIP6; ARG1; 
MMP9; CTSC

-

Regulation of intrinsic 
apoptotic signaling pathway 
(GO:2,001,242)

2/47 0.001965 0.081572 34.06324 212.28967 MMP9; MCL1 Up

Negative regulation of intrinsic 
apoptotic signaling pathway 
(GO:2,001,243)

2/62 0.003393 0.081572 25.5282 145.15226 MMP9; MCL1 Up

Positive regulation of cell 
projection organization 
(GO:0,031,346)

2/63 0.003501 0.081572 25.10844 141.97721 STMN2; SCN1B -

Cellular response to reac-
tive oxygen species 
(GO:0,034,614)

2/65 0.003722 0.081572 24.30891 135.96666 DPEP1; MMP9 -

Negative regulation of 
apoptotic signaling pathway 
(GO:2,001,234)

2/65 0.003722 0.081572 24.30891 135.96666 MMP9; MCL1 Up

Negative regulation of 
cysteine-type endopeptidase 
activity involved in apoptotic 
process (GO:0,043,154)

2/68 0.004066 0.081572 23.20046 127.71724 DPEP1; MMP9 -

Regulation of peptide hormone 
secretion (GO:0,090,276)

2/73 0.004671 0.081572 21.56121 115.70462 SNAP25; SLC2A2 Down

Pathways: KEGG
Insulin secretion 2/86 0.006424 0.166054 18.21245 91.9304 SNAP25; SLC2A2 Down
Apoptosis 2/143 0.016992 0.166054 10.81887 44.08705 CTSC; MCL1 -
Adrenergic signaling in cardio-

myocytes
2/145 0.017442 0.166054 10.66648 43.18703 PPP1R1A; SCN1B -

Cell adhesion molecules 
(CAMs)

2/145 0.017442 0.166054 10.66648 43.18703 CNTNAP2; CD226 -

JAK-STAT signaling pathway 2/162 0.021472 0.166054 9.525 36.58529 CNTFR; MCL1 Up
Transcriptional mis-regulation 

in cancer
2/186 0.027752 0.166054 8.27257 29.65238 ZBTB16; MMP9 Up

Arginine biosynthesis 1/21 0.029006 0.166054 36.94814 130.80559 ARG1 -
Maturity-onset diabetes of the 

young (MODY)
1/26 0.035792 0.166054 29.55111 98.40622 SLC2A2 Down

Ascorbate and aldarate 
metabolism

1/27 0.037143 0.166054 28.4131 93.5634 UGT2B7 Down

Fatty acid elongation 1/27 0.037143 0.166054 28.4131 93.5634 HADH Down
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Table 8   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: COVID-19-related gene 
sets and HMDB metabolites

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

Diseases: COVID-19-related gene sets
SARS perturbation down 

genes mouse lung from 
GSE19137:GPL1261:2

5/246 0.000021 0.002066 17.79812 191.63596 RPL14; DPEP1; HADH; 
CTSC; MCL1

-

Upregulated by SARS-CoV-2 
in NHBE from GSE147507

4/500 0.004909 0.106835 6.54435 34.79441 PPP1R15A; TAP1; MMP9; 
CTSC

-

Upregulated by SARS-CoV-2 
in pancreatic organoids from 
GSE151803

4/500 0.004909 0.106835 6.54435 34.79441 PPP1R1A; TAP1; MMP9; 
SCN1B

-

SARS perturbation down 
genes airway epi-
thelium (HAE) from 
GSE47961:GPL6480:2

3/264 0.005837 0.106835 9.06253 46.61365 RASL11B; ENPP2; MMP9 -

SARS perturbation up genes 
PBMCs GDS1028:GPL201

3/280 0.006865 0.106835 8.53213 42.50101 PPP1R15A; ARG1; MMP9 -

SARS-CoV-2/human interac-
tome gene set from Guzzi

2/92 0.007319 0.106835 16.99316 83.55855 ISLR; MCL1 Up

SARS perturbation up 
genes mouse lung from 
GSE19137:GPL1261:5

3/291 0.007631 0.106835 8.20166 39.98742 ZBTB16; RPL14; MCL1 -

SARS perturbation up 
genes mouse lung from 
GSE68820:GPL7202:4

3/357 0.013276 0.142647 6.65016 28.74044 TNFAIP6; ARG1; TAP1 -

SARS perturbation up 
genes mouse lung from 
GSE19137:GPL1261:3

3/366 0.014189 0.142647 6.48231 27.58368 ZBTB16; RPL14; MCL1 -

Downregulated by IAV-infec-
tion in mouse spleen

3/455 0.025142 0.142647 5.1823 19.08734 ISLR; ENPP2; SOD3 -

Miscellaneous: HMDB metabolites
Zinc (HMDB01303) 4/82 4.99E-06 0.000264 42.50854 518.98916 ZBTB16; DPEP1; SOD3; 

MMP9
-

Ethyl glucuronide 
(HMDB10325)

1/13 0.018053 0.035712 61.60493 247.30909 UGT2B7 Down

3-Acetoacetyl-CoA 
(HMDB01484)

1/13 0.018053 0.035712 61.60493 247.30909 HADH Down

(S)-Methylmalonate semialde-
hyde (HMDB02217)

1/14 0.019428 0.035712 56.86324 224.09815 HADH Down

C18H31NO14S 
(HMDB00632)

1/14 0.019428 0.035712 56.86324 224.09815 XYLT1 Up

Ornithine (HMDB00214) 1/15 0.020802 0.035712 52.79894 204.47351 ARG1 -
17beta-Estradiol glucuronide 

(HMDB10317)
1/19 0.026278 0.035712 41.05761 149.40806 UGT2B7 Down

(3alpha,5beta,20S)-20-Hy-
droxypregnan-3-yl beta-D-
glucopyranosiduronic acid 
(HMDB10318)

1/19 0.026278 0.035712 41.05761 149.40806 UGT2B7 Down

3,17-Androstanediol glucuron-
ide (HMDB10321)

1/19 0.026278 0.035712 41.05761 149.40806 UGT2B7 Down

17alpha-Estradiol-3-glucuron-
ide (HMDB10322)

1/19 0.026278 0.035712 41.05761 149.40806 UGT2B7 Down
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Table 9   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: GTEx tissue sample 
gene expression profiles

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

Cell types: GTEx tissue sample gene expression profiles down
GTEX-OHPK-1726-SM-

48TC4 nerve female 
50–59 years

4/178 0.00010 0.140263 18.9636 173.71976 SNAP25; CNTNAP2; ARG1; 
CD226

-

GTEX-R55E-0011-R11A-
SM-2TC6I brain male 
20–29 years

8/1275 0.00026 0.140263 5.905288 48.68668 TNFAIP6; ZBTB16; RPL14; 
TAP1; DPEP1; MMP9; 
CTSC; MCL1

-

GTEX-N7MS-0011-R11A-
SM-2HMJS brain male 
60–69 years

10/2072 0.00031 0.140263 4.82541 38.89372 ISLR; TNFAIP6; ZBTB16; 
XYLT1; TAP1; CD226; 
SOD3; MMP9; CTSC; 
MCL1

-

GTEX-PVOW-2726-SM-
48TCA pituitary male 
40–49 years

5/447 0.00035 0.140263 9.60554 76.42437 TNFAIP6; ARG1; ZBTB16; 
XYLT1; MCL1

-

GTEX-T6MN-0002-SM-
3NMAH blood male 
50–59 years

12/2999 0.00036 0.140263 4.26473 33.74814 CNTNAP2; CNTFR; ISLR; 
RASL11B; PPP1R1A; 
ZBTB16; STMN2; DPEP1; 
ZNF423; PHLDA1; SOD3; 
SCN1B

-

GTEX-PSDG-1626-SM-
48TCQ breast male 
50–59 years

5/487 0.00051 0.165673 8.79036 66.49468 SNAP25; CNTNAP2; 
RASL11B; STMN2; CD226

-

GTEX-SNOS-0526-SM-
4DM54 bladder male 
40–49 years

3/144 0.00104 0.232779 16.87744 115.77124 TNFAIP6; PPP1R1A; STMN2 -

GTEX-R55E-2526-SM-
2TC6H brain male 
20–29 years

5/570 0.00105 0.232779 7.4671 51.1853 TNFAIP6; ZBTB16; TAP1; 
DPEP1; CTSC

-

GTEX-TML8-0001-SM-
3NMAF blood female 
40–49 years

11/2914 0.00119 0.232779 3.80456 25.59278 CNTFR; ISLR; RASL11B; 
PPP1R1A; ARG1; ZBTB16; 
STMN2; ZNF423; PHLDA1; 
SOD3; SCN1B

-

GTEX-XYKS-0002-SM-
4BRWN blood female 
60–69 years

11/2979 0.001443 0.232779 3.70707 24.24791 SNAP25; CNTNAP2; CNTFR; 
ISLR; RASL11B; PPP1R1A; 
ZBTB16; STMN2; ZNF423; 
SOD3; SCN1B

-

Cell types: GTEx tissue sample gene expression profiles up
GTEX-XGQ4-2226-SM-

4AT4Y adipose tissue male 
50–59 years

6/722 0.000413 0.606044 7.33469 57.14262 CNTFR; PPP1R1A; ZBTB16; 
XYLT1; HADH; ZNF423

-

GTEX-XGQ4-1026-SM-
4AT4L adipose tissue male 
50–59 years

5/598 0.001305 0.606044 7.10426 47.18102 PPP1R15A; CNTFR; 
PPP1R1A; HADH; MCL1

-

GTEX-W5X1-0008-SM-
4LMKA skin female 
40–49 years

6/955 0.001779 0.606044 5.466902 34.61318 ISLR; RPL14; ENPP2; 
XYLT1; DPEP1; CTSC

-

GTEX-QV44-0008-
SM-447AX skin male 
50–59 years

8/1765 0.002254 0.606044 4.14684 25.2735 PPP1R15A; ISLR; RASL11B; 
ENPP2; XYLT1; PHLDA1; 
CTSC; MCL1

-

GTEX-XBED-1326-SM-
4AT4F adipose tissue male 
60–69 years

5/690 0.002448 0.606044 6.120913 36.80156 PPP1R15A; CNTFR; ENPP2; 
MMP9; MCL1

-

GTEX-R55C-1626-SM-
48FEG adipose tissue male 
40–49 years

5/720 0.002943 0.606044 5.854971 34.12304 CNTFR; PPP1R1A; ZBTB16; 
ENPP2; XYLT1

-
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Immunity  Downstream analyses also revealed that multiple 
immunity-related GO and KEGG pathways, encompassing 
both innate and humoral immune responses, were enriched 
in T2D. These included multiple ontologies involving neu-
trophils and antigen processing and presentation as well as 
severe immune reactions such as graft-versus-host disease 
and allograft rejection. Impaired immunity in T2D and con-
sequent susceptibility to infections and complications is 
frequently observed (Berbudi et al. 2020). A deeper under-
standing of the genomics underlying impaired immunity in 
T2D might provide opportunities to personalize the manage-
ment of comorbidities and pharmacotherapy.

COVID‑19 and T2D

Epidemiological studies strongly suggest poorer prognosis 
of COVID-19 among people with T2D (Selvin and Jura-
schek, 2020), although underlying mechanisms are not well-
understood (Apicella et al. 2020). Downstream analysis of 
highly perturbed genes and hub genes of T2D in the present 
study revealed a large number of enriched COVID-19-re-
lated gene sets, providing support for this putative link at a 
more granular level.

Table 9   (continued)

Term Overlap p value Adjusted p value Odds ratio Combined score Genes Regu-
lation 
in T2D

GTEX-XUW1-0526-SM-
4BOP3 adipose tissue female 
50–59 years

5/735 0.003217 0.606044 5.730196 32.88661 CNTFR; PPP1R1A; ZBTB16; 
ENPP2; HADH

-

GTEX-R55C-0005-SM-
3GAE9 blood male 
40–49 years

6/1090 0.003461 0.606044 4.752096 26.92674 TNFAIP6; ARG1; CD226; 
MMP9; CTSC; MCL1

-

GTEX-WH7G-1126-SM-
3NMBK adipose tissue male 
40–49 years

5/758 0.003672 0.606044 5.54853 31.11036 CNTFR; TNFAIP6; 
PPP1R1A; HADH; MCL1

-

GTEX-OIZH-0005-SM-
2HMJN blood male 
50–59 years

6/1105 0.003703 0.606044 4.68351 26.221 TNFAIP6; ARG1; TAP1; 
CD226; MMP9; MCL1

-

Fig. 13   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: a GO biological pro-
cesses, b KEGG pathways
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Over‑ and under‑expression of genes in different 
tissues associated with T2D

Downstream analysis of GTEx profiles identified tissues 
that are likely to demonstrate under- and over-expression 
of DEGs associated with T2D. Findings indicate that 

adipose tissue tends to over-express marker genes of T2D, 
while these might be under-expressed in other tissues 
such as those of the nervous system. These findings 
have implications for biomarker discovery and can guide 
further research on tissues which should be explored for 
identifying DEGs.

Fig. 14   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: a COVID-19-related 
gene sets, b HMDB metabolites

Fig. 15   Downstream analyses of hub genes (n = 28) associated with type 2 diabetes in different tissues of human adults: a GTEx tissue sample 
gene expression profiles down, b GTEx tissue sample gene expression profiles up
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Conclusions

Findings of this study contribute towards the understanding 
of the genetic basis of T2D, and further research is war-
ranted to substantiate the molecular mechanisms under-
lying these findings which is fundamental to establishing 
precision T2D medicine initiatives. The proposed bioinfor-
matics pipeline may have broader use as a judicious strat-
egy to identify gene perturbations and pathophysiological 
mechanisms of other clinical conditions beyond T2D which 
ought to be validated in future research. Finally, this study 
describes an exemplary approach to applying comprehen-
sive evidence synthesis using existing open-source gene 
expression data. Other researchers are encouraged to apply 
this methodology to obtain high-level evidence from exist-
ing multiple datasets, thereby getting the most value from 
existing bioinformatics sources.
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