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Abstract 

Background: Steroid resistant (SR) nephrotic syndrome (NS) affects up to 30% of children and is responsible for fast 
progression to end stage renal disease. Currently there is no early prognostic marker of SR and studied candidate vari‑
ants and parameters differ highly between distinct ethnic cohorts.

Methods: Here, we analyzed 11polymorphic variants, 6 mutations, SOCS3 promoter methylation and biochemical 
parameters as prognostic markers in a group of 124 Polish NS children (53 steroid resistant, 71 steroid sensitive includ‑
ing 31 steroid dependent) and 55 controls. We used single marker and multiple logistic regression analysis, accompa‑
nied by prediction modeling using neural network approach.

Results: We achieved 92% (AUC = 0.778) SR prediction for binomial and 63% for multinomial calculations, with the 
strongest predictors ABCB1 rs1922240, rs1045642 and rs2235048, CD73 rs9444348 and rs4431401, serum creatinine 
and unmethylated SOCS3 promoter region. Next, we achieved 80% (AUC = 0.720) in binomial and 63% in multinomial 
prediction of SD, with the strongest predictors ABCB1 rs1045642 and rs2235048. Haplotype analysis revealed CD73_AG 
to be associated with SR while ABCB1_AGT was associated with SR, SD and membranoproliferative pattern of kidney 
injury regardless the steroid response.

Conclusions: We achieved prediction of steroid resistance and, as a novelty, steroid dependence, based on early 
markers in NS children. Such predictions, prior to drug administration, could facilitate decision on a proper treatment 
and avoid diverse effects of high steroid doses.
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Background
Childhood nephrotic syndrome (NS) is characterized 
by massive proteinuria exceeding 40  mg/m2/hr, gener-
alized edema and hypoalbuminemia. Its prevalence is 
12–16/100 000 and the underlying cause is idiopathic in 
95% of cases [1]. Most patients that respond well to the 
standard first-line treatment with corticosteroids are 
defined as steroid sensitive (SS), while 20%–30% that fail 

to respond are defined as steroid resistant (SR), therefore, 
are more difficult to treat and 36%–50% of them progress 
to end-stage renal disease within 10  years. Also, 60%–
70% of initially sensitive patients will develop steroid 
dependence (SD), frequent relapses or secondary steroid 
resistance [2, 3]. So far, steroid resistant subtype of NS in 
children has been correlated with male sex, young age of 
onset, focal segmental glomerulosclerosis (FSGS) on kid-
ney biopsy and genetic variants including single nucleo-
tide polymorphisms (SNPs) and copy number variants 
(CNVs) identified in over 53 genes [4–7]. However, many 
of those parameters are highly divergent between patients 
of different ethnics. Differences in genetic inheritance 
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models and plethora of definitions used by the research-
ers, as well as heterogeneity of nephrotic syndrome and 
its subphenotypes themselves, make the comparisons 
among the studies interesting, yet challenging and con-
stricted. Despite extensive research, there is no early pre-
dictor of steroid unresponsiveness that could be clinically 
useful. The patient’s actual response to steroid treatment 
and renal histopathology are, so far, the foremost guide-
lines for clinicians to rely on and for a long-term prog-
nosis. Still, both are invasive and expose patients to wide 
spectrum of side effects [1, 3, 8].

Here, we present the results of prediction modeling 
using neural network approach and multifactorial analy-
sis including genetic and epigenetic variables in a cohort 
of Polish children with nephrotic syndrome. It is an 
attempt to predispose the type of steroid response and 
assess a prognosis for patients on the basis of factors 
characteristic to that ethnic population.

Methods
Patients and study design
In total, 124 patients with NS and 55 healthy controls 
were analyzed in this study. Of these, 75 NS patients 
(40 SR and 35 SS) and 32 controls comprised the  N1-set 
and were samples used in our previous study [9]. From 
the Clinic of Cardiology and Nephrology, University 
of Medical Sciences in Poznan, Poland, we recruited 
49 patients newly diagnosed with NS (13 SR and 36 SS) 
and 23 controls in 2017–2018, and they comprised the 
 N2-set. All participants were of Polish ethnic origin, from 
Wielkopolska region, and from the same hospital centre, 
therefore both sets were pooled together for statistical 
analysis inference and prediction modeling purposes. 
All patients were submitted to glucocorticosteroid treat-
ment as a first line therapy. They were further assigned 
to subgroups upon their initial response to steroid treat-
ment, according to the ISKDC definitions and guidelines 
[10]. Briefly, steroid sensitivity was defined as a complete 
remission within initial 4  weeks of treatment, steroid 
dependence—2 consecutive relapses during therapy, or 
within 2 weeks of ceasing therapy, primarily steroid sen-
sitivity (PSS)—no relapses during initial 4 weeks of treat-
ment, and steroid resistance—failure to achieve complete 
remission after 8  weeks of corticosteroid therapy. Thus, 
the samples were divided into the following subgroups: 
healthy controls and NS patients, comprising SR and 
SS, further divided into SD and PSS. Since we analyzed 
SOCS3 CpG region of the  N1-set in the previous study, 
here only the  N2-set was subjected to methylation-spe-
cific PCR. Both sets were genotyped for 16 SNPs and 1 
CNV. The study design is presented, in brief, in Fig. 1.

Laboratory parameters measured at disease onset 
were collected from the patient’s documentation (when 

available) and used for statistical analysis. eGFR was 
determined according to the Schwartz formula. The 
ranges for all studied parameters were evaluated consid-
ering the reference values for age and sex of the patients.

Sample collection
Peripheral blood was collected in EDTA tubes from all 
the patients at the first episode of NS before drug admin-
istration. Genomic DNA was purified using ExtractME 
DNA Blood Kit (Blirt S.A.) according to the manufactur-
er’s instructions and stored at − 20 °C.

Methylation analysis
72 samples (the  N2-set) were subjected to the meth-
ylation-specific PCR for two SOCS3 CpG regions 
(− 1070/− 926  bp and − 526/− 285  bp, relative to ATG 
triplet) as described in the previous study [9].

Genotyping
In total, 179 samples were genotyped for 1 CNV poly-
morphism i.e. rs5844572 and 16 single nucleotide 
changes, including 10 autosomal SNPs and 6 point 
mutations (5 autosomal, 1 mitochondrial), in 8 genes, 
i.e.: rs1922240, rs1045642 and rs2235048 in ABCB1, 
rs2070767, rs2000466 in MIF, rs37972 in GLCCI1, 
rs3124591 and rs139994842 in NOTCH1, rs9444348 
and rs4431401 in CD73, rs730882194, rs587777482 and 
rs587777481 in EMP2, rs74315342 and rs1057516414 
in NPHS2, and rs199474657 in MT-TL1. All 16 sin-
gle nucleotide changes were amplified and genotyped 
in two separate multiplex reactions, encompassing as 
follows: rs1922240, rs1045642, rs2235048, rs2070767, 
rs2000466, rs139994842, rs9444348, rs730882194 
in one reaction, and rs37972, rs3124591, rs4431401, 
rs587777482, rs587777481, rs74315342, rs1057516414 
and rs199474657 in the other reaction. Each reaction was 
performed in a 10-μl mixture containing 1  ng genomic 
DNA, 1U FastStart Taq Polymerase, 1xPCR buffer with 

Fig. 1 Study design. The  N1‑set represents the NS patients and 
controls examined for SOCS3 promoter methylation in the previous 
study [9] and the  N2‑set represents the patients added in this study. 
Here, the  N2‑set was submitted to SOCS3 promoter methylation 
analysis, and both  N1‑ and  N2‑sets were submitted to genotyping
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1.5 mM  MgCl2, 1 × GC-rich buffer, 200 μl of dNTPs (all 
components from Roche) and a proper concentration of 
primers’ mixture. Specifics for 16 variants with primers’ 
sequences and concentrations are shown in Additional 
file  1: Table  S1. Thermocycling was conducted under 
conditions: 95  °C for 10 min for 1 cycle, 95  °C for 30  s, 
60  °C for 30  s, 72  °C for30 s for 30 cycles, followed by 
72 °C for 15 min. The PCR products were cleaned using 
ExoI/rSAP mixture (New England Biolabs) according to 
the manufacturer’s instructions. Next, single base exten-
sion (sbe) PCR was performed, using 1.5 μl of SNaPshot 
reaction mix (Applied Biosystems), a proper concentra-
tion of sbe primers and 1 μl of cleaned product, in a total 
volume of 5 μl under conditions: 96  °C for 2 min, 96  °C 
for 10 s, 50 °C for 5 s, 60 °C for 30 s for 25 cycles. The sbe-
PCR products were cleaned using rSAP (New England 
Biolabs) and run on ABI3130 Genetic Analyzer under 
conditions: the injection voltage of 2.5  kV for 10  s, run 
time of 600 s at 60 °C, with POP-7 and on a 36-cm capil-
lary length array.

CNV (rs5844572) was genotyped in the PCR with For-
ward primer labeled with the fluorescent tag 6-FAM. The 
sequences of the primers were: Forward-6-FAM 5′-CTT 
GTC CTC TTC CTG CTA TGTC-3′ and Reverse 5′-ACT 
CGG GGA CCA TCT AGC -3′. The 10 μl reaction mixture 
contained 200 nM of each primer, 200 μM of each dNTP, 
1U FastStart Taq Polymerase (Roche), 1xPCR buffer 
with 1.5 mM  MgCl2 and 5 ng genomic DNA. The condi-
tions were: 95 ºC for 4 min, 95 ºC for 30 s, 57 ºC for 30 s, 
72 ºC for 1 min for 35 cycles, followed by 72 ºC for 7 min. 
The PCR product was cleaned using ExoI/rSAP mixture 
(New England Biolabs) according to the manufacturer’s 
instructions and run on ABI3130 Genetic Analyzer with 
parameters: POP-7 polymer, 36-cm capillary array, injec-
tion time 16 s, injection voltage 1.2 kV, run time 1200 s 
at 60 ºC. The position of the result peaks were as follows: 
116.5  bp for CATT 5, 120.5  bp for CATT 6 and 124.5  bp 
for CATT 7.

GeneMapper v4.0 (Applied Biosystems) was used for 
allelic discrimination. All primers were designed using 
web-based software BatchPrimer3 v1.0, and sbe primers 
were verified using OligoAnalyzer v3.1. Genes’ sequences 
and SNP’s and mutations’ information were acquired 
from Ensembl Genome Browser. SNPs’ and mutations’ 
information and "rs" numbers were verified with Variant 
Validator.

Statistics
Categorical variables were presented as frequencies 
with percentages and were analyzed using chi-square 
and Fisher’s exact tests, whereas continuous variables 
were presented as mean values with standard deviation 
and were analyzed using multiple comparison tests. We 

used the Kolmogorov–Smirnov test to determine the 
distribution normality of continuous variables. One-
way two-sided ANOVA with Holm correction [11], and 
Kruskal–Wallis test with Dunn correction based on the 
superior false discovery rate procedure [12], were applied 
in case of normal and non-normal data distribution, 
respectively.

The Fisher’s exact test was used for allele and geno-
type frequencies comparison under the allelic, dominant, 
recessive and over-dominant genetic models and for 
methylation patterns of two SOCS3 promoter fragments 
(SOCS3.1 and SOCS3.2) comparison between study sub-
groups. Deviation from HWE was estimated using chi-
square test. To provide more powerful genotype-based 
test for association we performed logistic regression 
analysis using the Cochran-Armitage trend test under 
the allelic, dominant, recessive and additive models, with 
the additional testing of additivity of multiplicative model 
with the reference minor allele. Specifics and correlation 
of each genetic model are described in detail elsewhere 
[13]. All logistic regression parameters were calculated 
in PLINK. P-value ≤ 0.05 was considered statistically sig-
nificant. The haplotype analysis and pairwise linkage dis-
equilibrium (LD) were performed using SHEsis software 
[14].

Advanced prediction modeling was assessed with Neu-
ral Network (NN) approach. In brief, Neural Network is 
an algorithm that works in a manner resembling the one 
of neurons in a human brain. It consists of three layers, an 
input, hidden and output layer. The input layer represents 
the data used as prediction variables and the output layer 
represents the model’s prediction (the summary effect of 
all incoming factors). The key component is the hidden 
layer, where the input data is modified and given weights, 
forming a set of nodes called neurons. On the basis of 
several internal functions the system is trained to self-
learn the relationship between the labels and the varia-
bles, during multiple discrete steps (iterations), each time 
calculating and updating an error to produce the best 
final prediction. In total, 17 variables (9 SNPs, 2 muta-
tions, 1 CNV, 2 methylation status and 3 demographics) 
were used in the models. For each model we used two 
data sets, i.e. the Train set, encompassing about 80% and 
the Test set encompassing the remaining 20%. Models 
were developed as follows: binomial and multinomial 
predictions of steroid resistance (SR vs. SS; SR vs. SD vs. 
PSS, respectively), binomial prediction of steroid depend-
ence (SD vs. PSS) and binomial prediction of susceptibil-
ity to nephrotic syndrome (NS vs. Controls). For the best 
performance, each model was characterized by and run 
under different hyperparameters and parameters, e.g. 50, 
200, 100 and 50 neurons in the hidden layer (respectively 
for each prediction) and a tenfold cross-validation and 10 
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epochs for all Additional file 2: Table S2. The predictions 
were described by the sensitivity, specificity and LogLoss 
value for multinomial models with addition of area under 
the curve (AUC) value for binomial models. The impor-
tance of each predictor within a model was shown as per-
centage value.

Results
Demographic and clinical characteristics
There were 66 (53%) males and 58 (47%) females with 
the male to female ratio 1.2:1 in the patients group, and 
31 (56%) males and 24 (44%) females with the male to 
female ratio 1.3:1 in the control group. The age of the 
NS onset (AOO) was available for all the patients in 
this study and categorized according to Sen et  al. [7]: 
congenital (n = 2), infantile (n = 1), childhood (n = 107) 
and juvenile (n = 14). The mean AOO is shown in 

Table 1 and it did not differ when referred to NS sub-
groups (p = 0.3687), sex or histological findings (not 
shown, ns). 46 (37%) patients were not submitted to 
biopsy. Renal biopsy results were as follows: 16 (13%) 
FSGS, 25 (20%) MPGN (including measangial prolifera-
tive glomerulonephritis with or without thickening of 
glomerular basement membrane) and 37 (30%) minimal 
change disease (MCD). FSGS was observed more fre-
quently in SR group in comparison to other subgroups, 
although the result was only significant when compared 
to SS patients (p = 0.0263). No differences were found 
between histological outcomes when referred to sex or 
AOO (ns).

In total of 72 (58%) NS patients were observed adverse 
effects of glucocorticoid administration, e.g. 33 had 
osteoarthritis (26.6%), 11—obesity (9%), 9—growth defi-
cit (7.3%), 8—steroid toxicity features on a face (6.5%), 

Table 1 Demographics and baseline laboratory characteristics of individuals used in this study

† Demographic data was analyzed by the t-student test and the laboratory data was analyzed using ANOVA with Holm adjustment (when data was normally 
distributed) and Dunn method with Benjamini–Hochberg adjustment and false discovery rate procedure (when data was not normally distributed). Post-hoc analysis 
was evaluated when global p-value reached significance, i.e. p ≤ 0.05 and significant results are shown in bold; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

NS, nephrotic syndrome; SR, steroid resistant; SS, steroid sensitive; SD, steroid dependent; PSS, primarily steroid sensitive; MCD, minimal change disease; MPGN, 
mesangial proliferative glomerulonephritis; FSGS, focal segmental glomerulosclerosis; AOO, age of onset; NA, not available, due to the biopsy not proceeded

Parameters Individuals Single comparison p‑value
Multiple comparison OR[95% CI]/ p‑value †

NS SR SS SD PSS C

Demographics n = 124 n = 53 n = 71 n = 31 n = 40 n = 55

 Male (%) 66 (53.2%) 30 (56.6%) 36(50.7%) 14 (45.2%) 22 (55%) 31 (56.4%)

 Female (%) 58 (46.8%) 23 (43.4%) 35 (49.3%) 17 (54.8%) 18 (45%) 24 (43.6%) 0.8263

 AOO [years] 5 ± 4.23 5.4 ± 4.85 4.71 ± 3.72 4.45 ± 3.95 4.9 ± 3.57 – 0.3687

Histology 0.0516

 FSGS 16 (13%) 13 (24%) 3 (4%) 3 (10%) 0 (0%) – SR vs.SS: 4.6 [1.2–17.8] p = 0.0263*
 MPGN 25 (20%) 13 (24%) 12 (17%) 9 (29%) 3 (7,5%) – SR vs.PSS: 12 [0.7–21.6] p = 0.093

 MCD 37 (30%) 17 (32%) 20 (28%) 10 (32%) 10 (25%) – SR vs.SD: 2.7 [0.7–10.9] p = 0.1518

 NA 46 (37%) 10 (20%) 36 (51%) 9 (29%) 27 (67,5%) – SD vs.PSS: 4.9 [0.2–101.7] p = 0.3095

Baseline characteristics:

 Creatinine [mg/dl] n = 111 n = 43 n = 68 n = 31 n = 37 0.0095**
0.45 ± 0.17 0.51 ± 0.16 0.41 ± 0.17 0.44 ± 0.15 0.39 ± 0.19 – SR vs.SS: p = 0.0218*

SR vs.PSS: p = 0.0131*
SR vs.SD: p = 0.3573

SD vs.PSS: p = 0.6836

 Urea [mg/dl] n = 110 n = 42 n = 68 n = 31 n = 37

30.7 ± 16.8 33.2 ± 18.1 29.2 ± 18.8 30.3 ± 15.2 28.2 ± 16.5 – 0.4318

 Uric acid [mg/dl] n = 100 n = 41 n = 59 n = 25 n = 34

4.8 ± 1.4 4.9 ± 1.6 4.8 ± 1.3 5 ± 1.5 4.6 ± 1.2 – 0.7795

 Cystatin C [mg/l] n = 66 n = 24 n = 42 n = 15 n = 27

1 (0.3) 1.1 (0.4) 0.9 (0.3) 1.0 (0.3) 0.9 (0.3) – 0.0631

 eGFR [ml/min/1,73m3] n = 111 n = 44 n = 67 n = 29 n = 38 0.0009***
116.5 ± 46.6 101.3 ± 26.5 126.5 ± 54 116.4 ± 62.5 134.2 ± 45.7 – SR vs.SS: p = 0.0141*

SR vs.PSS: p = 0.0014**
SR vs.SD: p = 0.5236

SD vs.PSS: p = 0.0141*
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5—aggressive behavior and mood swings (4%) and 4—
increased body hair (3.2%). 36 of those individuals (50%) 
were SR patients and in each subgroup more males than 
females had side effects, although not significantly.

Some patients had incomplete records at the time 
of diagnosis, therefore the total number of baseline 
laboratory characteristics is distinct for the subgroups 
(Table 1). The mean serum creatinine (s-creatinine) level 
differed significantly between SR and PSS (p = 0.0131), 
and SR and SS (p = 0.0218), while there was no signifi-
cance between other subgroups. Also significantly dif-
ferent were eGFR values, not only for comparison of SR 
vs. PSS patients (p = 0.0014) and SR vs. SS (p = 0.0141), 
but also between SD and PSS patients (p = 0.0141). 
When histological findings were considered we spotted 
significant differences in s-creatinine levels for MCD vs. 
MPGN and FSGS patients (p = 0.005 for both), as well as 
in eGFR (p = 0.0106 and p = 0.0074, respectively)(ns). No 
significance for serum levels of uric acid, urea and cysta-
tin C were observed. One PSS female patient presented 
G5 stage of kidney disease based on the eGFR measure-
ment (eGFR = 9), with a corresponding outlining levels of 
s-creatinine (7.51 mg/dl), urea (210 mg/dl) and uric acid 
(8.2  mg/dl), therefore the individual was excluded from 
these comparisons.

Methylation status
Analysis of SOCS3.2 promoter fragment revealed the full 
unmethylation pattern to be 15-fold more frequent in 
SR patients when compared both to overall SS and PSS 
as well as to SD patients (for all comparisons p < 0.0001) 
(Table 2). There were no differences in SOCS3.1 fragment 
methylation between the subgroups. The methylation 

patterns were not associated with patients’ sex or AOO 
(ns).

Genetic variables
The OR values for the frequencies of genotypes and alleles 
are shown in Additional file  3: Table  S3. We detected 
heterozygous mutation in NPHS2 (rs1057516414) in 6 
(4.8%) NS patients as well as in 5 (9.1%) controls. Also, 
1 heterozygous mutation in EMP2 (rs587777481) was 
found in 1 (1.8%) control. Among 10 studied SNPs, 1 
(rs139994842) showed a wild GG homozygote in all indi-
viduals in the study and was excluded from further sta-
tistical analyses. There were no significant differences 
in allele/genotype frequencies regarding patients’ sex 
(ns). In case of 4 SNPs (rs1922240, rs2070767, rs37972, 
rs4431401) we spotted significant differences in allele and 
genotype distribution in comparison to 1000Genomes 
data (CEU population) (ns). Significant differences were 
observed between SR and SS patients in all three ABCB1 
variants for wild homozygotes (OR = 2.5, p = 0.0308 for 
rs1922240_AA; OR = 2.8, p = 0.0179 for rs1045642_AA; 
OR = 2.5, p = 0.0281 for rs2235048_CC). The Cochran-
Armitage test and the test of deviation from additivity 
Additional file  4: Table  S4 showed that those variants 
were significant under the dominant models. Similar, 
although insignificant, OR values were spotted for SR 
vs. PSS comparison. Interestingly, when SR and PSS, 
and not SS, groups were analyzed separately, pair-
wise LD analysis gave distinct association pattern for 
rs1922240_rs1045642, and rs1922240_rs2235048, while 
rs1045642_rs2235048 were in very strong LD in both 
groups (Fig.  2). When PSS and SD patients were com-
pared, associated with steroid dependence were the 

Table 2 Methylation status of SOCS3 promoter fragments

a Refers to ATG triplet; bMM refers to full methylation of the fragment; cMU refers to partial methylation of the fragment; dUU refers to full unmethylation of the 
fragment; significant results are shown in bold, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

NS nephrotic syndrome; SR, steroid resistant; SS, steroid sensitive; SD, steroid dependent; PSS, primarily steroid sensitive

SOCS3 promoter fragment Study Group MMb n (%) MUc n (%) UUd n (%) OR [95% CI] P‑value

SOCS3_1 NS patients n = 124 3 (2%) 115 (93%) 6 (5%) NS vs. C: 2.8 [0.3–23.4] 0.3552

(− 1070/− 926 bp) a SR patients n = 53 0 (0%) 51 (96%) 2 (4%) SR vs.SS: 0.7 [0.1–3.7] 0.6351

SS patients n = 71 3 (4%) 64 (90%) 4 (6%) SR vs.SD: 0.6 [0.1–4.3] 0.5824

PSS patients n = 40 1 (2%) 37 (93%) 2 (5%) SR vs.PSS: 0.8 [0.1–5.5] 0.7736

SD patients n = 31 2 (6,5%) 27 (87%) 2 (6,5%) SD vs.PSS: 1.3 [0.2–9.9] 0.793

Controls n = 55 1 (2%) 53 (96%) 1 (2%) SS vs. C: 3.2 [0.4–29.7] 0.3015

SOCS3_2 NS patients n = 124 0 (0%) 84 (68%) 40 (32%) NS vs. C: 6.1 [2.1–18] 0.0011**
(− 256/− 285 bp) SR patients n = 53 0 (0%) 20 (38%) 33 (62%) SR vs.SS: 15.1 [5.8–39.3]  < 0.0001***

SS patients n = 71 0 (0%) 64 (90%) 7 (10%) SR vs.SD: 15.4 [5.1–57.3]  < 0.0001***
PSS patients n = 40 0 (0%) 36 (90%) 4 (10%) SR vs.PSS: 14.9 [4.6–48]  < 0.0001***
SD patients n = 31 0 (0%) 28 (90.3%) 3 (9.7%) SD vs.PSS: 1 [0.2–4.7] 0.9639

Controls n = 55 0 (0%) 51 (92.7%) 4 (7.3%) SS vs. C: 1.4 [0.4–5] 0.6113
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rare rs1045642_G variant under the additive (OR = 5.1, 
p = 0.007) and allelic (OR = 2.1, p = 0.0313) models, and 
the rare rs2235048_T variant under the dominant model 
(OR = 4.4, p = 0.0138), with comparable logistic regres-
sion results for both variants. In addition, rs1922240_G 
was more frequently observed in NS patients than in con-
trols (p = 0.0318) and gave significant results in Cochran-
Armitage test showing the strongest association in the 
additive model. Haplotype analysis (Table  3) revealed 
ABCB1_GGT to be associated with steroid sensitivity 
p = 0.0106 for SR vs. SS; OR = 0.4, p = 0.0093 for SR vs. 
PSS), while AGT haplotype was associated with steroid 
dependent (OR = 4.2, p = 0.0028) and resistant (OR = 3.3, 
p = 0.0111) subphenotypes.

CD73 rs9444348 and rs4431401 were in strong signifi-
cant LD in all groups (Fig. 2). The rare rs9444348_A and 
AA were more frequently observed in SR group when 
compared to SS group (OR = 1.7, p = 0.0401; OR = 2.3, 
p = 0.0492, respectively), but also to PSS group (OR = 1.7, 
p = 0.0815; OR = 2.9, p = 0.0433, respectively), and logis-
tic regression showed an association of rs9444348_A 
with steroid resistance under the additive model. CD73_
AG haplotype was found to be associated with steroid 
resistance, however, the comparison only for SR and SS 
patients was significant (p = 0.0462). GG haplotype was 
significantly associated with steroid sensitivity, since it 
was absent in SR group. The rest of the tested SNPs gave 
insignificant results. The most confusing variant in the 
study was MIF CNV polymorphism rs5844572 and only 
some of the results were significant Additional file  3: 
Table S3.

Interestingly, we spotted differences in allele/genotype 
and haplotype frequencies between the histological find-
ings. The wild rs1922240_A was associated with MPGN 
when compared both to MCD (OR = 2.5, p = 0.0197) and 
FSGS (OR = 2.6, p = 0.0385) (ns). In addition, though no 
differences were seen for rs1045642 and rs2235048 in single 

locus analysis, ABCB1_AGT haplotype was significantly 
associated with MPGN (p = 0.0374) (Additional file  5: 
Table  S5). Also, the rare rs2070767_A was almost three-
fold more frequent (p = 0.0101) and AA homozygote was 
almost sevenfold more frequent (p = 0.0945) in patients 
with MPGN when compared to MCD. On the other 
hand, with MCD were associated the wild rs2070767_G 
(p = 0.0101) and rs2070767_GG (p = 0.0222) when com-
pared to MPGN, but not FSGS. We spotted high OR value 
for MIF_5AG haplotype in FSGS patients in comparison 
with MCD but not MPGN patients, therefore it might be 
the result of the differences in the groups’ size, since the 
haplotype frequency was ’zero’ in both latter groups.

Prediction modeling
In total, 4 prediction models were developed and the 
results are presented in Table 4.

As s-creatinine levels differed significantly between 
patients in this study it was added as a predictor into mod-
els predicting the NS subtypes. eGFR was omitted as it was 
a derivative of the s-creatinine value. Steroid resistance pre-
diction reached 92% (area under the curve, AUC = 0.778) in 
binomial and 63% in multinomial calculations. The major-
ity of test phenotypes in binomial prediction were ascribed 
to sensitive outcome giving low SR sensitivity (33%) most 
probably due to a very limited number of SR vs. SS patients 
in the Test set (3 vs. 21). Steroid dependence was predicted 
with overall capacity of 80% (AUC = 0.720) in binomial, 
and with sensitivity of 67% in multinomial model. The 
importance of each marker in the models is presented in 
Additional file 6: Table S6.

Discussion
Prediction models have previously been assessed in med-
ical forecasting in various conditions, including renal 
disorders, e.g. MCD, IgA nephropathy and progression 
to chronic kidney disease using both categorical and 

Fig. 2 Linkage Disequilibrium (LD) plots. The plots were developed for 10 differentiated single nucleotide variants (9 SNPs, 1 mutation) and 1 
CNV analyzed in the study in subgroups: A—steroid resistant (n = 53), B—primarily steroid sensitive (n = 40), C—steroid dependent (n = 31) and 
D—controls (n = 55). Pairwise  R2 values are shown in the boxes, accompanied by the grayscale indication of the association strength. LD was 
considered significant when  R2 ≥ 0.8. All variants at different genes were put all in one plot to simplify the overview
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non-categorical variables [15–17]. Depending on an algo-
rithm and machine learning technique used, more robust 
and more quickly obtained results are being achieved. 
However, most of them apply to case–control studies 
rather than prediction of drug response or secondary 
subphenotype under the same condition. Here, we pre-
sent the results of analysis of several variables and their 
ability to predict type of steroid response in children with 
nephrotic syndrome using Neural Network—a method 
that have been successfully used in medical diagnosis of 
e.g. Huntington disease [18], osteoporosis [19], the pre-
diction of cardiovascular autonomic dysfunction [20] 
or patients prognosis depending on cancer subtypes 
and gene mutations [21]. All variables used in this study 
were chosen based on our previous experience and their 
proved/suspected role in other populations.

In this study, we achieved accuracy of 92% and 63% for 
steroid resistance prediction in NS for binomial and mul-
tinomial calculations, respectively. The strongest predic-
tion marker was methylation status of SOCS3.2 fragment, 
which was confirmed by all other statistical tests per-
formed. Previously we showed full unmethylation of the 
same promoter fragment with probable correlation with 
SOCS3 upregulation in Polish SRNS children [22]. To the 
best of our knowledge, correlation between SOCS3 and 
SRNS was only mentioned in our previous studies [9, 22]. 
Here, the results were consistent, showing about 15-fold 
higher frequency of unmethylated SOCS3 promoter in 
steroid resistant group when compared to overall steroid 
sensitive, but also to primarily sensitive and dependent, 
groups. It therefore reaffirms the hypothesis of epigenetic 
regulation mechanism of SOCS3 expression in steroid 
resistance in the course of NS in Polish children and is 
worth examining in other populations.

The strongest genetic marker turned out to be ABCB1. 
It encodes multidrug resistant protein which polymor-
phic variants have been linked to decrease in drug’s accu-
mulation in the cell. Here, the wild rs1045642_A variant 
correlated with steroid resistance which is comparable 
with most studies about steroid unresponsiveness in 
nephrotic patients of different ethnics [23–26]. The A 
allele also correlated with increased kidney graft failure 
[27] and development of interstitial fibrosis and tubular 
atrophy in kidney grafts [28], whereas the G allele low-
ered the risk of post kidney transplant complications 
in Japanese patients [29]. Only one study showed that 
African-American and CEU rs1045642_A-carriers were 
better steroid responders than the G-carriers after a 
heart transplant [30]. Worth mentioning, the frequency 
of rs1045642 alleles in general Polish population is quite 
distinct among the studies [23, 31, 32], which might be 
the result of subregions within the country that were 
taken under consideration. Notably, all three ABCB1 
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variants studied here were significantly differently dis-
tributed when compared to CEU population data, which 
suggests favorable trend for studying variants with pre-
sumable clinical correlations in highly geographically 
homogeneous groups like in this study.

Little is known about ABCB1 rs2235048. Its wild C 
variant was previously linked to poorer response in 
schizophrenia and [33], consistently, here rs2235048_C 
correlated with poorer response to steroids, however it 
might be an indirect association as rs2235048 is an intron 
variant and it was in very strong LD with rs1045642. On 
the contrary, no association has been reported so far for 
rs1922240. Here, the rare G allele was associated with 
nephrotic syndrome occurrence, whereas wild A and 
AA—with MPGN when compared to FSGS or MCD. It is 
an intriguing finding, since both FSGS and MPGN were 
equally distributed in our steroid resistant patients, and 
it is FSGS that is most often assigned to steroid resist-
ant nephrotic syndrome. In fact, Chanchlani et  al.[34] 
stated that researchers falsely tend to combine FSGS and 
SR phenotypes under one category, ironically explain-
ing the discrepancies in the results by the differences in 
definitions, clinical management and ethnic component 

among the studies. Indeed, that was acknowledged by 
many other authors [1, 4, 35–38]. Here, each of the three 
variants explained about 7% of the trait and the most det-
rimental ABCB1 haplotype was AGT, being associated 
with steroid resistance and steroid dependence (Table 3), 
and, independently, with mesangial proliferative changes 
(Additional file 5: Table S5).

We spotted promising results also for rs9444348 and 
rs4431401 in CD73, a targeted molecule of miR-30a and 
surface marker of mesenchymal stem cells as potential 
indicators of an early-stage renal damages in chronic 
kidney disease [39]. MiR-30a upregulation has been 
previously observed in urine of FSGS patients, while its 
downregulation was associated with steroid sensitiv-
ity in NS [40] Here, the rare alleles of both SNPs were 
associated with steroid resistance, therefore CD73_AG 
haplotype was a risk factor for developing steroid unre-
sponsiveness. Best of our knowledge, both variants have 
been, so far, examined in two research [39, 41], one of 
which concerned Chinese NS patients.28 Interestingly, 
the study presented CD73_AG haplotype as protective 
against nephrotic syndrome. However, consistently with 
their findings, rs3124591 in the other targeted molecule 
of miR-30a—NOTCH1, showed no association with NS 
or steroid subtypes in our study. Nevertheless, it is dif-
ficult to compare such results as the authors did not refer 
to the subtypes of drug response and because of ethnic 
differences [39, 40].

Promising, yet the most inconclusive in this study 
were MIF variants. The rare, high-expression rs5844572_
CATT 7 allele was shown to be associated with severe 
forms of steroid resistance in the course of Japanese 
ulcerative colitis patients [42], with increased MIF 
expression in more severe forms of glomerulonephritis 
[43], and with early onset of rheumatoid arthritis [44], 
while the wild, low-expression CATT 5 allele correlated 
with milder forms of a disease in the latter studies. Con-
sistently, here, CATT 7 and CATT 77 were more frequent 
in detrimental unmethylated pattern of SOCS3.2 frag-
ment and over twofold more frequent in NS patients 
when compared to controls, while CATT 5 and CATT 55 
were associated more with partial methylation in ster-
oid sensitive patients, although only some of the result 
were significant (ns). Interestingly, rs5844572 reached 
11–14% of importance in both NS and SR prediction 
models. Other MIF variant, the rare rs2070767_A, was 
significantly linked to MPGN lesion while the wild G was 
associated with MCD (ns). Little is known about true 
association of both SNPs with susceptibility to a trait and 
only Gao et al.[45] demonstrated rare rs2070767_A as a 
risk factor for higher MIF expression in acute lung injury 
in African-Americans.

Table 4 Prediction models assessed with Neural Network 
approach

NS nephrotic syndrome, SR steroid resistant, SS steroid sensitive, SD steroid 
dependent, PSS primarily steroid sensitive, AUC  area under the curve

Each model was run using aTrain set, comprising 80% of data, and bTest set, 
comprising the rest 20% of data

Prediction parameter Neural Network

Train a Test b

NS prediction Sensitivity % 75% (75/100) 38% (9/24)

NS prediction Specificity % 80% (35/44) 91% (10/11)

Total number of correct calls % 76% (110/144) 54% (19/35)

Log Loss 0.483 0.682

AUC 0.825 0.561

SR prediction Sensitivity % 68% (34/50) 33% (1/3)

SR prediction Specificity % 98% (49/50) 100% (21/21)

Total number of correct calls % 83% (83/100) 92% (22/24)

Log Loss 0.391 0.72

AUC 0.932 0.778

SD prediction Sensitivity % 62% (16/26) 80% (4/5)

SD prediction Specificity % 91% (32/35) 80% (4/5)

Total number of correct calls % 79% (48/61) 80% (8/10)

Log Loss 0.704 1.208

AUC 0.866 0.72

SR prediction Sensitivity % 82% (28/34) 63% (12/19)

SD prediction Sensitivity % 46% (13/28) 67% (2/3)

PSS prediction Sensitivity % 63% (24/38) 50% (1/2)

Total number of correct calls % 65% (65/100) 63% (15/24)

Log Loss 0.756 0.761
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The most dissatisfying results in this study were 
observed for GLCCI1, which expression was previously 
shown to be induced directly by the steroids and impaired 
by rs37972 which correlated with poorer response to 
inhaled steroids in asthmatic non-Hispanic patients, as 
well as poorer response to steroids and activity of the dis-
ease in Netherland rheumatoid arthritis patients [24, 46–
48]. In our Polish patients rs37972 alleles were equally 
distributed within all individuals, regardless the disease, 
its subtypes, age of onset, biochemical or histological 
parameters.

Out of over 50 genes and their nucleotide variants 
associated with SRNS, in only one, i.e. EMP2, single 
nucleotide variants have been assigned both to ster-
oid resistance (rs587777482) and steroid sensitivity 
(rs730882194 and rs587777481) in Turkish NS chil-
dren [49]. Interestingly, here, only rs587777481, which 
is a truncating mutation, was only present as a het-
erozygote in 1 (0,02%) control. Also, no m.3243A > G 
(rs199474657) in MT-TL1, previously linked to kid-
ney failure, FSGS and SRNS [50, 51], was found in this 
study. Next, we analyzed NPHS2 mutations that have 
been assigned to 30% of steroid resistant forms of NS in 
children, especially R138Q (rs574315342) and R229Q 
(rs1057516414), commonly attributed to SRNS in East 
Europeans [2, 4, 52]. We spotted no R138Q, whereas 
6 patients (3 SR, 2 PSS, 1 SD) and 5 controls had het-
erozygous R229Q. Although we do not know the ster-
oid responsiveness status of those controls, we were 
not able to verify mutation’ prediction capability, as its 
alleles number did not reach a threshold within sub-
groups (n = 5). Interestingly, Caridi et  al.[53] showed 
that single heterozygous R229Q is not sufficient for 
SRNS diagnosis and others demonstrated heterozygous 
R229Q to be a common variant present in 3% of the 
general European population [54, 55]. Additionally, two 
patients with age of onset at 2 and 3  months, respec-
tively, were suspected of congenital NS and were sub-
jected to sequencing of coding and non-coding regions 
of NPHS2, however, no known or novel mutations were 
spotted (ns).

When laboratory parameters were considered, we 
observed that s-creatinine level was significantly 
higher in steroid resistant in comparison with steroid 
sensitive and primarily sensitive patients. The well-
known association of higher s-creatinine level with 
steroid resistance is most probably due to its role in 
progression to end stage renal disease and long-term 
prognosis in NS, which is generally poorer for unre-
sponsive patients [35, 56, 57]. Worth mentioning, 
mean s-creatinine and eGFR differed significantly 
between MCD and other histopathological findings 
in this study, though MCD was a dominant lesion 

regardless the steroid response. Zhu et  al.[17] dem-
onstrated lower s-creatinine levels in MCD vs. other 
kidney diseases in Chinese patients, however it did 
not have enough diagnostic value in MCD risk model. 
Other serum parameters commonly used to monitor 
progression of renal disorders, i.e. urea, uric acid and 
cystatin C, did not differ when referred to our ster-
oid subgroups, sex or histological lesions. Lately, only 
one study [56], has reported that different serum urea 
levels were able to distinguish steroid responsive and 
unresponsive Turkish NS patients. Still, most studies 
focus on differentiating NS (or other disease) sub-
jects from controls, rather than on secondary features, 
e.g. drugs unresponsiveness [10, 57, 58]. Out of other 
demographic variables, i.e. male sex and younger age 
of onset, commonly ascribed to steroid unresponders 
[3, 24, 25], we did not observe such association, which 
was in agreement with others [56, 59]. Nevertheless, 
the results are difficult to compare due to differences 
in the individuals’ number and ethnic origin among 
the studies.

Despite the promising results in the steroid resist-
ance area, equally strong value of this study is 60–67% 
models’ capacity of predicting steroid dependence in 
NS. We show an association of even single ABCB1 rare 
rs1045642_G allele and rare rs2235048_T with SD out-
come, which has scarcely been studied elsewhere mainly 
due to combining steroid dependent and primarily sen-
sitive into one category. One study correlated steroid 
dependence in Egyptian NS patients with young age of 
onset, male sex and late responders, however these were 
not very specific markers and the number of individuals 
tested were quite small (n = 24) [59].

Conclusions
We demonstrated significant association of rs1922240, 
rs1045642 and rs2235048 in ABCB1 and rs9444348 and 
rs4431401 in CD73, along with serum creatinine level 
and unmethylation of a fragment of SOCS3 promoter, 
with steroid resistance in a cohort of Polish children 
with nephrotic syndrome, that comprised SR predic-
tion model. The results of MIF CNV were ambiguous, 
yet worth analyzing in a bigger cohort. The number of 
individuals were the biggest limitation of this study and 
a bigger cohort would definitely be needed for replicate 
studies. Definitely the strong value of our work is an asso-
ciation of ABCB1 rs1045642 and rs2235048 with ster-
oid dependent outcome in NS and it is worth analyzing 
both in bigger cohort, also one of other ethnicities. Next, 
worth mentioning is an association of CD73 rs9444348 
and rs4431401 and MIF rs2070767 with histopathologi-
cal lesions regardless the steroid response, which has 
previously been suggested, but not confirmed [5]. Lastly, 
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our study supports the view that highly heterogeneous 
disease such as nephrotic syndrome and its multiple 
response-to-drug outcomes should be studied in as much 
as possible homogeneous cohorts.
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