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Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory

tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to

transient immune-suppression. BoHV-1 is the number one infectious agent in cattle

that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily

members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the

synthetic corticosteroid dexamethasone, consistently induce reactivation from latency

in latently infected calves and rabbits. Increased corticosteroid levels due to stress have

a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene

expression and replication, and (2) impairing antiviral immune responses, thus enhancing

virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG,

UL49.5, and VP8, which interfere with key antiviral innate immune responses in the

absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes

and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune

responses during acute infection. BoHV-1 induced immune-suppression can initiate the

poly-microbial disorder known as bovine respiratory disease complex, which costs the

US cattle industry more than one billion dollars annually. Furthermore, interfering with

antiviral responses may promote viral spread to ovaries and the developing fetus, thus

enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant

cows. The focus of this review is to describe the known mechanisms, direct and

indirect, by which BoHV-1 interferes with antiviral immune responses during the course

of infection.

Keywords: bovine herpesvirus 1 (BoHV-1), immune evasion, VP8, infected cells protein 0 (bICP0), abortion, bovine

respiratory disease complex

BOHV-1 IS AN IMPORTANT VIRAL PATHOGEN

Bovine herpesvirus 1 (BoHV-1) is an α-herpesvirinae subfamily member that causes
significant economical losses to the cattle industry (1). Three well-defined subtypes
exist, BoHV-1.1, BoHV-1.2a, and BoHV-1.2b (2b) (2). Subtype 1 virus isolates are
prevalent in Europe, North America, and South America: these subtypes are frequently
detected in cattle suffering from infectious bovine rhinotracheitis (IBR) and the
respiratory tract of aborted fetuses. Subtype 2a strains are prevalent in Brazil and are
associated with respiratory and genital tract infections, including IBR, infectious pustular
vulvovaginitis (IPV), balanopostitis (IPV), and abortions (3). Subtype 2b strains, which are
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frequently isolated in Australia or Europe (4), are associated with
respiratory disease and IPV/IPB, but not abortion (3, 5). The
seroprevelance of BoHV-1 ranges from 14 to 90% depending
on the age of cattle and geographical location (6, 7). Serological
testing and removal of infected animals has eliminated BoHV-1
from Denmark, Switzerland, and Austria (8).

BoHV-1 is the most frequently diagnosed cause of viral
abortion in North American cattle (9). Exposure of a susceptible
herd to BoHV-1 can result in abortion storms ranging from 25
to 60% of cows undergoing abortion. Commercially available
modified live vaccines also induce abortions in pregnant
cows. Furthermore, several studies concluded that naïve heifers
vaccinated with an inactivated BoHV-1 vaccine are more likely to
have a normal estrous cycle and significantly higher pregnancy
rates relative to heifers vaccinated with a modified live (MLV)
vaccine (9–13).

The incubation period for the genital forms of BoHV-1 is 2–
6 day and initial clinical signs are frequent urination and a mild
vaginal infection (14). It is also common to observe swollen vulva
or small papules followed by erosions and ulcers on the mucosal
surface. In bulls, similar lesions occur on the penis and prepuce. If
secondary bacterial infections occur, inflammation of the uterus
and transient infertility with purulent vaginal discharge occurs
for several weeks. BoHV-1 infection, virulent field strains or
modified live vaccines, of sero-negative heifers can target the
ovary and corpus luteum during estrus and early in gestation (9).

Bovine respiratory disease complex (BRDC), a poly-microbial
disease initiated by stress and/or virus infection, is the most
economically important disease that affects beef and dairy cattle.
Annual BRDC losses in the U.S. are ∼$1 billion (15–18).
A gram negative bacterium, Mannheimia haemolytica (MH),
exists in the upper respiratory tract of healthy ruminants (19,
20). Following stressful stimuli or co-infections with other
viruses (21), this commensal relationship is disrupted and MH
becomes the predominant organism that causes life threatening
bronchopneumonia in many BRDC cases (22–25). BoHV-1
infection frequently causes upper respiratory tract disease (26,
27), high fever, conjunctivitis, and erodes mucosal surfaces of
the upper respiratory tract. Consequently, colonization of MH
occurs in the lower respiratory tract (22, 23, 25), thus enhancing
interactions between the MH leukotoxin, bovine peripheral
blood mononuclear cells, and neutrophils (28, 29). Co-infection
of calves with BoHV-1 andMH consistently leads to pneumonia
(30). Finally, a BoHV-1 protein that is required for virus entry was
identified as a significant BRDC susceptibility gene in Holsteins
(31) confirming BoHV-1 is an important BRDC cofactor.

THE BOHV-1 LATENCY-REACTIVATION
CYCLE IS IMPORTANT FOR VIRUS
TRANSMISSION

Acute Infection Leads to High Levels of
Virus Shedding
Acute BoHV-1 infection of cattle is initiated on mucosal surfaces
and results in high levels of programmed cell death (32, 33).
Acute infection leads to high levels of virus production and

secretion in ocular, oral, nasal, or genital cavities for 7–10
days after infection. BoHV-1 gene expression during productive
infection is operationally divided into three distinct phases:
immediate early (IE), early (E), or late (L) (32, 33). IE gene
expression is stimulated by VP16, a tegument protein (34, 35).
Thus, IE mRNA expression does not require de novo protein
synthesis. Two IE transcription units exist: IE transcription unit
1 (IEtu1) and IEtu2. IE transcription unit 1 (IEtu1) encodes
two transcriptional regulatory proteins, bICP0 and bICP4,
because a single IE transcript is differentially spliced and then
translated into bICP0 or bICP4 (36–38). The bICP0 protein is
also translated from an E mRNA (E2.6) because a separate E
promoter drives expression of the bICP0 E transcript (36–39).
The bICP0 protein has similar properties as HSV-1 encoded
ICP0 (40), including a RING finger that is crucial for stimulating
viral promoters and productive infection (41, 42). bICP4 is
likely to possess similar functions as the HSV-1 encoded ICP4.
bICP4 autoregulates the IEtu1 promoter, but activates the bICP0
E promoter.

E gene expression requires de novo protein expression,
including bICP0 and bICP4, which transactivate E viral
promoters. In general, the E proteins encode proteins that
promote DNA synthesis. Example of early viral proteins include
the DNA polymerase, thymidine kinase, small and large subunits
of the ribonucleotide reductase, dUTPase, and origin binding
protein. In general, the E proteins are non-structural.

The L genes are divided into two classes: Gamma-1 and
Gamma-2 genes. Transcription of Gamma-1 genes requires de
novo protein synthesis, including bICP0 and bICP4, but does not
require viral DNA replication. Transcription of Gamma-2 genes
requires de novo protein synthesis, including bICP0 and bICP4,
and abundant expression requires viral DNA replication. In
general, L proteins encode structural proteins and their synthesis
culminates in virion assembly and release.

Summary of Latency-Reactivation Cycle
Viral particles enter the peripheral nervous system via cell-
cell spread. If infection is initiated within the oral, nasal, or
ocular cavity, the primary site for latency is sensory neurons in
trigeminal ganglia (TG). Viral gene expression (43) and infectious
virus (44) are detected in TG from 2 to 6 days after infection.
Lytic gene expression is then extinguished, and surviving infected
neurons harbor viral genomes (establishment of latency).

Abundant expression of the viral encoded latency related (LR)
gene occurs in latently infected neurons, but infectious virus
is not readily detected (maintenance of latency) (32, 33, 45–
48). LR-RNA overlaps the bICP0 gene (49, 50), has two open
reading frames (ORF1 and ORF2), two reading frames lacking
an initiating ATG, and encodes two micro-RNAs. A LR mutant
virus strain with three stop codons at the N-terminus of ORF2
has reduced virus shedding from the eye, TG, or tonsils of
infected calves (44, 51, 52). LR-encoded proteins are expressed
late during productive infection when infected with wild-type
(wt) or LR-rescued virus, but have reduced or no expression
after infection with the LR mutant virus (53, 54). Wt BoHV-
1, but not the LR mutant virus, reactivates from latency (44).
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The anti-apoptosis activity of ORF2 (41, 55–57) and the micro-
RNAs, which interfere with bICP0 expression (58) regulate the
latency-reactivation cycle.

The synthetic corticosteroid dexamethasone (DEX) initiates
reactivation from latency in latently infected calves or rabbits
100% of the time (27, 32, 33, 44, 47, 59). Within 6 h after
latently infected calves are treated with DEX, viral regulatory
proteins (ICP0 and VP16) (60, 61) and lytic cycle viral RNA
expression are detected in TG neurons (62, 63). Within 3 h after
DEX treatment, 11 cellular genes are induced more than 10-fold
in TG (64). Pentraxin 3, a regulator of innate immunity and
neuro-degeneration, is stimulated more than 30-fold at 3 or 6 h
after DEX treatment. Two transcription factors, promyelocytic
leukemia zinc finger (PLZF) and Slug are induced more than
15-fold 3 h after DEX treatment, which can enhance productive
infection. Additional DEX induced transcription factors, SPDEF
(Sam-pointed domain containing Ets transcription factor),
Krüppel-like transcription factor 15 (KLF15), KLF4, KLF6,
and GATA6, stimulate productive infection and certain key
viral promoters. The finding that four KLF family members
are stimulated during DEX induced reactivation from latency
is intriguing because KLF family members resemble the Sp1
transcription factor family and both family of transcription
factors interact with GC rich motifs, reviewed in Bieker (65) and
Kaczynski et al. (66). The BoHV-1 genome is GC rich and many
viral promoters contain Sp1 consensus binding sites and other
GC rich motifs suggesting specific KLF transcription factors bind
to viral sequences and stimulate viral transcription during early
stages of reactivation from latency.

The IEtu1 promoter that drives bICP0 and bICP4 expression
is stimulated by DEX and contains two consensus GR binding
sites that are bound by the activated GR (67, 68). The GR and
KLF15 are frequently expressed in the same TG neuron during
reactivation and cooperatively stimulate productive infection
and IEtu1 promoter activity. A host cellular factor 1 (HCF-
1), which forms a complex with VP16 and Oct1 to bind to
the IE enhancer core via the TAATGARAT motif, is important
for GR mediated activation of the IEtu1 promoter suggesting
glucocorticoid induction of viral reactivation may proceed via an
HCF-1-GR mechanism in the absence of the viral IE activator
VP16 (69). Stress-mediated activation of key viral promoters
is predicted to be a very early event during reactivation from
latency; then viral transactivators activate all other viral genes
and virus production occurs. Hence, stress has a two-pronged
effect on reactivation from latency by directly activating viral
gene expression and indirectly enhancing viral spread via
immunosuppression (70–72).

IMMUNE RESPONSE TO BOHV-1
FOLLOWING ACUTE INFECTION

Cattle acutely infected with BoHV-1 develop an innate immune
response (73–76); however, efficient virus replication and spread
occurs. For example, virus neutralizing antibodies are detected
after acute infection that recognize envelope glycoproteins,
including gB, gC, gD, and gH (77, 78). Cytotoxic T cell responses

to viral glycoproteins occur in cattle following infection (79–81).
Infection of cultured cells also induces inflammasome formation
(82), consistent with inflammation in the nasal cavity and upper
respiratory tract during acute infection.

Although the host immune response clears virus after acute
infection, viral infection impairs immune-recognition on several
levels impairs: (1) cell-mediated immunity (83–86), (2) CD8+
T cell recognition of infected cells (68, 87–89), (3) CD4+ T cell
functions because BoHV-1 infect these cells and rapidly inducing
apoptosis after viral entry (90, 91), and (4) interferon responses
(92–95). The known viral genes that antagonize immune
responses are discussed below (see Figure 1 for a schematic that
summarizes how viral genes impair immune responses).

VIRAL PROTEINS INTERFERE WITH
INNATE IMMUNE RESPONSES AND
IMMUNE-SURVEILLANCE

The amino-terminus of the bICP0 protein contains
transcriptional activation domains, a nuclear localization
signal (NLS) necessary for efficient transcriptional activation
(99), and a C3HC4 zinc RING finger that is conserved in all ICP0
proteins (100, 101). Point mutations within the C3HC4 zinc
RING finger domain of bICP0 interfere with transactivation of a
simple viral promoter (99), stimulation of productive infection
(41, 102), and reduces IFN-β promoter activity (92–95). bICP0
co-localizes with and disrupts the anti-viral promyelocytic
leukemia (PML) protein-containing nuclear domains (41, 101).
PML bodies are comprised of numerous proteins, which regulate
the cell cycle, apoptosis, senescence, stress, DNA damage, and
innate immune responses (103). Many DNA viruses reorganize
or dissolve PML bodies, thus increasing viral replication.
Interferon treatment increases components of PML bodies,
Sp100, and PML for example (104, 105) and PML bodies increase
beta-interferon (IFN-β) expression (106).

bICP0 inhibits IFN-β promoter activity in transient
transfection studies (92, 94) by reducing IRF3 (interferon
regulatory factor 3) protein levels. The RING finger of bICP0
(107) is an E3 ubiquitin ligase suggesting it mediates IRF3
degradation in a proteasome dependent manner. bICP0 also
interacts with IRF7 and impairs activation of IFN-β promoter
activity, but does not reduce IRF7 protein levels (94). IRF3 and
IRF7 are transcription factors that stimulate IFN-β promoter
activity (96–98). IRF3 directly binds several consensus DNA
binding sites, including an ISRE (IFN response elements), and
can activate IFN-stimulated promoters in the absence of IFN
(108, 109). A recent study concluded PML regulates intrinsic and
innate immune responses to HSV-1 infection, which is ablated
by ICP0 (110). The ability of bICP0 to reduce IFN-β promoter
activity correlates with IRF3 degradation, IRF7 interactions, and
dissolving PML bodies.

The BoHV-1 bICP27 protein is expressed from an early
promoter and based on similarity with the HSV-1 ICP27 is
expected to shuttle RNA from the nucleus to the cytoplasm and
regulate transcription (111). HSV-1 encoded ICP27 regulates IFN
expression (112) by interfering with activation of the stimulator
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FIGURE 1 | BoHV-1 encoded immune-evasion genes that promote productive infection. Cellular mechanisms leading to innate immune antiviral signaling pathways

are denoted in blue. Red lettering denotes viral genes that counteract antiviral signaling pathways. It is well-established that two protein kinases (IKK-ε +TBK1) activate

the transcription factors (IRF3 and IRF7), which are required for activating the IFN-β promoter (96–98). The JNK protein kinase (c-Jun N-terminal kinases) activates the

AP1 (activating protein 1) and ATF2 (activating transcription factor 2), which are also required for activating the IFN-β promoter (96–98). For further details, see the text.

of interferon genes (STING) by tank binding protein kinase 1
(TBK1) (113). Interestingly, bICP27 reduces bovine IFN-β1 and
IFN-β3 promoter activity in transfected cells (114). Bos Taurus
encodes three functional IFN-β genes; all have anti-viral activity
but each gene contains a unique promoter (115, 116).

Glycoprotein G (gG) promotes cell to cell spread (117) and
maintains adherence of infected cells (118). gG is a unique viral
glycoprotein because it can exist in three isoforms: a full-length
membrane-bound form, a smaller membrane-bound form, and
a secreted form. gG interferes with chemokine binding to their
specific receptors and glycosaminoglycans (119). Although it is
not known what role gG plays during acute infection of calves,
the ability of chemokines to control the migratory patterns and
positioning of immune cells (120) would likely be altered by gG.

The BoHV-1 UL49.5 ORF, also known as glycoprotein N
(gN), is a 96 amino acid protein (121). The BoHV-1 and
pseudorabies virus UL49.5 proteins interfere with processing of
the transporter-associated antigen processing (TAP)-mediated
transport of cytosolic peptides into the endoplasmic reticulum
because UL49.5 renders the TAP complex susceptible to
proteolytic degradation (122, 123). Peptide transport by TAP is
crucial for MHC class I antigen presentation and recognition
of infected cells by CD8+ T cells (122, 124–126). Infection of
calves with a UL49.5 BoHV-1 mutant leads to increased levels of
virus neutralizing antibody and cellular immune responses when
compared to the parental wild-type virus (127).

VP8, the most abundant tegument protein in the virion,
enhances growth in cultured cells and is required for
pathogenesis in calves (128). VP8 interacts with DDB1
(DNA damaging-binding protein 1) that is associated with a
E3 ubiquitin ligase complex (129), and remodels PML nuclear
bodies (130). Recent studies demonstrated VP8 interacts with
STAT1 (Signal transducer and activator of transcription 1)
and prevents STAT1 from entering the nucleus (131). Stat1
is bound to the IFN-γ receptor and upon IFN-γ binding to

its receptor (Jak1 and Jak2) phosphorylates specific tyrosine
residues on STAT1. STAT1 subsequently enters the nucleus and
stimulates GAS (IFN-γ activated sequences) setting off a second
wave of IFN-γ (132). Following IFN-α or IFN-β stimulation,
STAT1 forms a heterodimer with STAT2 and this heterodimer
binds an ISRE element and activates transcription (133).
VP8 also interferes with IFN-β signaling activity by reducing
an interferon sensitive response element (ISRE) responsive
promoter in transfected or infected cells. Thus, VP8 is a potent
IFN antagonist that can interfere with host innate immune
responses in the absence of de novo viral protein synthesis.

CONCLUSIONS/DISCUSSION

BoHV-1 is a very successful pathogen because it encodes
several genes that impair intrinsic and innate immune responses
throughout productive infection (see Figure 1). VP8 is likely
the initial anti-viral protein that impairs antiviral IFN responses
because high levels of VP8 are present in the tegument of
incoming viral particles. bICP0, which is encoded by the IEtu1
promoter, would be an early interferon antagonist. bICP27
via unknown mechanisms interferes with IFN-β promoter
activation. Three late proteins (gG, UL49.5, and VP8) would
further antagonize immune-recognition. In summary, the
presence of viral proteins in the virion and expression of viral
proteins throughout productive infection allows for high levels
of virus production during acute infection and reactivation from
latency in cattle.
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