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Abstract

The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory

activity of tumor cells are only partially understood. Previous studies demonstrated that can-

nabinoids altered the organization of the actin cytoskeleton in various cell types. As actin is

one of the main contributors to cell motility and is postulated to be linked to tumor invasion,

we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid

receptor dependent manner? 2) Are these alterations associated with reorganizations in the

actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms? Three different

glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and

antagonists. Afterwards, we measured changes in cell motility using live cell imaging and

alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphory-

lated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and

phosphorylated FAK (pFAK) over time were measured. Cannabinoids induced changes in

cell motility, morphology and actin organization in a receptor and cell line dependent man-

ner. No significant changes were observed in the analyzed signaling molecules. Cannabi-

noids can principally induce changes in the actin cytoskeleton and motility of glioblastoma

cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology.

Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK

pathways.

Introduction

Malignant tumors still belong to the most common causes of death worldwide with an increas-

ing tendency [1,2]. One of the most lethal tumor types is the glioblastoma multiforme (GBM)

that is highly resistant to the standard therapy [3–8]. This resistance against standard therapy

arises in part by the diffuse infiltration pattern into the surrounding brain, making a complete

resection nearly impossible [9–12]. The invasion of tumor cells into adjacent tissue is generally

controlled by a multitude of processes demanding structural adaption of single tumor cells.

This includes an initial reduction in cell adhesion, a degradation of the surrounding extracellu-

lar matrix, and a subsequent (directed) movement away from the main tumor. In case of glio-

blastoma, single cells detach from the main tumor mass and produce finger-like protrusions,

forming new attachments at the cell front while releasing the rear [13]. The biological process
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regulating cell motility is mainly governed by the cytoskeleton, including dynamic remodeling

of the actin and microtubule network [14–16].

One potential modulator of cell motility might be the cannabinoid system. In different cell

types the modulation of the activity of cannabinoid receptors (CB) CB1 and CB2 resulted in

changes of cell motility as well [17–21]. In our previous study we examined amongst others the

effects of the two specific CB1 and CB2 agonists namely ACEA and JWH133 on motility and

invasion properties of glioblastoma cell lines and observed cell line dependent effects [21].

Studies in other systems showed e.g. a CB2 dependent inhibition of migration in bladder can-

cer cell lines [17], while another work reported about a CB1 dependent inhibition of breast

cancer cell migration [18]. Both studies found an association with focal adhesion kinases

(FAK) signaling [17,18]. In another investigation the observed CB1 dependent inhibition of

motility in prostate carcinoma cells was caused by an inhibition of the small GTPase RhoA,

with an accompanying increase in Cdc42 and Rac1 activity [19]. Beyond these CB specific

effects, one group reported a cannabinoid receptor independent effect of the CB1/CB2 antago-

nist cannabidiol that led to an inhibition of glioma cell migration [22]. Additionally, Δ9-tetra-

hydrocannabinol (THC) was found to inhibit the epithelial growth factor-induced cell

migration of lung cancer cells via inhibition of ERK1/2 and AKT [23].

Current research indicates the presence of the two well characterized cannabinoid receptors

CB1 and CB2 in human glioma and glioblastoma [24,25]. Cannabinoids have previously

shown to exert anti-tumoral effects in vitro in a multitude of tumor types, leading to apoptosis,

cell cycle arrest and a reorganization of cytoskeletal components [26–36]. These anti-tumoral

effects were frequently associated with a reduced phosphorylation of p44/42 MAPK and

changes in FAK phosphorylation, both being involved in control of cell motility and in case of

FAK also with cell-matrix adhesion [18,23,37–41].

Thus, in this study we examined the effects of specifically modulating both cannabinoid

receptors CB1 and CB2 on cell motility, cell morphology, actin cytoskeleton, p44/42 MAPK

and FAK phosphorylation in glioblastoma cells.

Materials and methods

Cell culture

U87 and LN229 cells were purchased from the American Type Culture Collection (Manassas,

VA, USA; U87: ATCC HTB-14; LN229: ATCC CRL-2611) and U138 cells were obtained from

Cell Lines Service (Cell Lines Service, 300363). All cell lines were cultured as described previ-

ously [21]. 24 hours prior to the start of any experiment the culture medium was changed.

Cannabinoid receptor agonists (both Tocris, Bristol, UK; CB1 agonist ACEA; dissolved in eth-

anol; 1319 or CB2 agonist JWH-133 dissolved in DMSO; 1343) were added with a concentra-

tion of 10 μM and cannabinoid receptor inverse agonists (both Tocris; CB1 antagonist/inverse

agonist AM281; dissolved in DMSO; 1115 or CB2 antagonist/inverse agonist AM630 dissolved

in DMSO; 1120) were used at a concentration of 1 μM. If the cells were treated with both ago-

nists and inverse agonists, the inverse agonist was applied 15 min before the agonist.

Time lapse microscopy

For time lapse microscopy 1,000 cells were seeded in a 12-well plate 24 hours prior to the start

of experiments. Images were taken with a microscope (Leica DMi8, Leica, Wetzlar, Germany)

equipped with temperature (37˚C) and CO2 regulation (5% (v/v)). The experiments were con-

ducted as described previously [21]. Briefly, using the sobel operator and subsequent morpho-

logical operations were used to detect the cells outline. Thereby we determine the parameters

contact area, directionality, mean speed, optical homogeneity, apparent intensity [42] and the
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circularity or index of ramification [43]. Analysis was performed using the same self-written

MATLAB scripts (The Mathworks, Nattick, MA, USA) as described previously [21].

The directionality is defined as the ratio of the total distance traveled by the cell divided by

the net distance from the starting point. Consequently, a value of one describes a straight line,

while higher values indicate a less direct path. The circularity or index of ramification is a mor-

phological measure describing the difference between the geometric pattern of the cell and a

circle. It is calculated as the ratio between the area of a circle with a circumference that is equal

to the outline of the cell and the area of the cell. For a cell with an area A and a circumference

U the circularity c is defined as: c = 4�π�A/U2. The optical homogeneity was defined as the var-

iance of the brightness of each pixel inside the cell and thus high values correspond to hetero-

geneous cells while low values correspond to uniform cells [42]. Similarly, the apparent

intensity/brightness was defined as the mean value of the brightness of each pixel inside a cell

divided by the mean brightness of pixels outside the cell [42]. As phase contrast microscopy

was used the apparent brightness is correlated to the optical density of the cell.

Immunofluorescence and immunhistochemical staining

24 hours after cannabinoid treatment 50,000 cells were placed on glass cover slips coated with

poly-L-lysin (Carl Roth, Karlsruhe Germany) and incubated for another 24 h till the fixation

with 4% paraformaldehyde for 10 min. For actin labelling we used a phalloidin-488 staining.

Cells were washed twice for 10 min in 0.1% PBS/Triton solution, then with PBS and blocked

with 1% bovine serum albumin. An incubation step with phalloidin-488 (2.5 μl/100 μl BSA

solution, Thermo Fisher Scientific, Waltham, MA, USA, A12379) was performed for 20 min.

For the visualisation of the nucleus 4’,6-Diamin-2-phenylindol (DAPI, 1:10000, Sigma Aldrich,

Saint Louis, MI, USA, D9542) was used. The stained cells were washed with both PBS and dis-

tilled water and covered with DAKO mounting medium (DAKO, Santa Clara, CA, USA).

Images of phalloidin-stained cells were acquired with a 63× objective using a confocal laser

scanning microscope. The following excitation wavelengths were used: 405 nm for DAPI and

488 nm for phalloidin. Emission was detected in the range of Δλ = 400–480 nm (DAPI) and

Δλ = 500–650 nm (phalloidin).

For evaluation of cytoskeletal alterations we used an approach described elsewhere that is

based on the image coherency [44]. This approach assumes that the overall structure can be

understood as the sum over all local structures of actin fibers inside the cell. Thereby, the struc-

ture density can be obtained as the structuredness normalized to the cell area. The images

were analyzed using a self-written MATLAB (The MathWorks, Natick, USA) script.

Western blotting

The western blot analysis was performed as described before [21]. The cells were collected 0

min, 5 min, 10 min, 30 min, 2 h, 12 h, 24 h and 72 h after cannabinoid treatment in 75 μl sam-

ple buffer. 10 μg of the sample were loaded on the electrophoresis gel. The analyses were per-

formed as described earlier [21,45]. The list of used antibodies is attached in Table 1. The

imaging and evaluation of blots was done using the Fusion FX7 (PeqLab).

Statistics

Statistics was performed using the two-sided Mann-Whitney-Wilcoxon test or Kruskal-Wallis

test. Significance was chosen for p<0.05.
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Results

Cannabinoids influence motile properties of single glioblastoma cells

The three used cell lines differed in their basal motile properties as well as in their sizes. U87

(v = 0.69 μm/min) cells appeared to be fastest and U138 (v = 0.34 μm/min) cells were only

slightly slower than LN229 (v = 0.39 μm/min; Fig 1A). Regarding the movement pattern,

LN229 moved in the least straight manner (d = 11.6), followed by U87 (d = 7.8) and U138 cells

(d = 3.5; Fig 1B). In terms of size, U138 cells had the by far largest contact area to the substrate

(A = 16766 px), being roughly 1.7 and 2.3 times larger than LN229 (A = 10015 px) or U87

(A = 7335 px) cells, respectively (Fig 1C).

When measuring the mean speed we observed a decrease in cell speed after application of

the CB1 inverse agonist AM281 for U87 cells only, while it had no effect on cell speed of both

U138 and LN229 cells. A co-application of AM281 together with the CB1 agonist ACEA led to

a decrease in cell speed of LN229 and U138 cells, but did not alter the motility of U87 cells rela-

tive to the control. Treatment of LN229 and U87 cells with the CB2 inverse agonist AM630 led

to an decrease in cell motility but had no effect on U138 cell speed. AM630 together with the

CB2 agonist JWH133 did not alter cell speed relative to the control conditions in LN229 and

U87 cells but led to an increase in U138 cells (Fig 1A).

While the cannabinoid treatments had no effect on the movement pattern of LN229 cells, we

observed a decrease in directionality (straighter cell path) after the application of the CB2 inverse

agonist, as well as for the co-application with the CB2 agonist in U87 cells. In contrast, all cannabi-

noid treatments led to an increase in directionality (less straight movement) in U138 cells (Fig 1B).

The measurements of the contact area of LN229 cells resulted in a decreased contact area,

when compared to the control, for the combination of the CB1 inverse agonist and the CB1 ago-

nist only. In contrast, the contact area of U87 cells increased when treated with the CB1 inverse

agonist, the CB2 inverse agonist and the combination of the CB2 inverse agonist and the CB2

agonist. For U138 cells a significant difference was observed between the treatment with the

inverse CB1 agonist and the combination of CB1 agonist and inverse agonist (Fig 1C).

The sample size for each cell type and treatment was at least 40. The exact measurement val-

ues and sample sizes are shown in supplemental S1–S3 Tables.

Cannabinoids influence the morphology of single glioblastoma cells

Despite motile properties of single cells we evaluated morphological properties, including the

circularity, homogeneity and brightness of each cell. Thereby, distinct differences have been

spotted between the cell lines: LN229 cells appeared to be most circular (c = 0.536), while

U138 (c = 0.328) cells deviated strongly from a circular shape. Regarding the brightness of

Table 1. Used antibodies and their dilution.

Antibody Dilution Company Catalog

number

Antibody ID Clonality Target Antigen

phospho-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204)

1:4000 Cell Signaling

(Cambridge, UK)

9101 AB_331646 Polyclonal P44/42 MAPK, phospho

Thr202/Tyr204

t-p44/42 MAPK (Erk1/2) 1:4000 Cell Signaling 9102 AB_330744 Polyclonal P44/42 MAPK

pFAK (Tyr925) 1:1000 Cell Signaling 3284S AB_2253227 Polyclonal FAK, phospho (Tyr925)

FAK 1:1000 Cell Signaling 3285S AB_10694068 Polyclonal FAK

GAPDH 1:1000 Cell Signaling 2118L AB_561053 Monoclonal GAPDH

goat anti-rabbit IgG, HRP conjugated 1:20000 Vector laboratories (Burlingame,

CA, USA)

PI-1000 AB_2336198 unknown Rabbit IgG

https://doi.org/10.1371/journal.pone.0212037.t001

Cell motility and cannabinoids

PLOS ONE | https://doi.org/10.1371/journal.pone.0212037 February 12, 2019 4 / 18

https://doi.org/10.1371/journal.pone.0212037.t001
https://doi.org/10.1371/journal.pone.0212037


each cell, U87 were brightest (I = 2.04) and U138 (I = 1.24) cells were only slightly brighter

than the background. Similarly, U87 (h = 39.3) cells were the least homogeneous, while U138

(h = 18.9) cells were most homogeneous on average (Fig 2).

Calculating the circularity of LN229 and U138 cells after cannabinoid treatments, signifi-

cant effects were only found after the co-application of the CB1/CB2 inverse agonist and ago-

nist together, resulting in a more circular cell shape. For U87 cells only the CB1 inverse agonist

AM281 resulted in less circular shapes (Fig 2A).

The analysis of the brightness depicted that the co-administration of AM281 and ACEA led

to an increased brightness in both LN229 and U138 cells when compared to the control and

the inverse agonist alone. In contrast, both the CB2 inverse agonist AM630 and AM630

together with the CB2 agonist JWH 133 resulted in less bright U87 cells (Fig 2B).

The study of the homogeneity of the cells after cannabinoid treatment showed a significant

difference for LN229 cells between AM281 and AM281+ACEA only. For U87 cells a reduced

heterogeneity was observed after AM630 and AM630+JWH 133 treatment. U138 cells got

more heterogeneous, when treated with AM281+ACEA compared to the control measure-

ment and the treatment with the CB1 inverse agonist alone (Fig 2C).

The sample size for each cell type and treatment was at least 40. The exact measurement val-

ues and sample sizes are shown in supplemental S4–S6 Tables.

Fig 1. Impact of cannabinoids on motility related properties of single cells. A) shows the mean speed and standard error of the mean (sem) of single LN229, U87 and

U138 cells, when treated with cannabinoid receptor inverse agonists. B) and C) depict the directionality and contact area of the same cell lines and treatments together

with the sem. For all parameters cell line specific changes that have no apparent receptor specificity can be observed. Statistics was performed using a Kruskal-Wallis test

and significance was chosen for p<0.05. The asterisk denotes significant results regarding the respective measurement indicated with the bar.

https://doi.org/10.1371/journal.pone.0212037.g001
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Correlation of single cell parameters

To evaluate whether certain parameters are independent of each other or allow a prediction on

the evaluation of the respective other ones Pearson correlation coefficients were calculated

between all single cell parameters. We thereby disregarded all correlations that were found for

the three cell populations pooled together but not for each individual cell line. With this analy-

sis a strong correlation was found between the morphological parameters brightness and

homogeneity (r = 0.848 [0.831;0.863]) (Fig 3A) and consequently between the morphological

parameters brightness/homogeneity and the contact area with r = -0.576 [-0.612;-0.536] or r =

-0.456 [-0.500;-0.410] (Fig 3B and 3C), respectively. Additionally, the circularity was correlated

with the contact area and brightness with r = -0.480 [-0.522;-0.435] and r = 0.516 [0.473;0.556]

(Fig 3D and 3E). Notably, no significant correlation between circularity and cell speed was

found: r = -0.122 [-0.177; 0.066] (Fig 3F). Notably, the cannabinoid treatment did not impact

the observed correlations.

Influence of cannabinoids on the actin structure of single glioblastoma cells

The analysis of the actin staining revealed the expected structure and dense actin network of

the glioblastoma cells (Fig 4A). We observed a clearly visible peripheral actin structure and

Fig 2. Impact of cannabinoids on morphological parameters of single cells. A) shows the mean circularity and sem of single LN229, U87 and U138 cells, when treated

with cannabinoid receptor inverse agonists. B) and C) depict the apparent brightness and homogeneity of the same cell lines and treatments together with the sem. For

all parameters cell line specific changes that have no apparent receptor specificity can be observed. Statistics was performed using a Kruskal-Wallis test and significance

was chosen for p<0.05. The asterisk denotes significant results regarding the respective measurement indicated with the bar.

https://doi.org/10.1371/journal.pone.0212037.g002
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dense arrays of mostly parallel stress fibers. Protrusive actin appeared as dense clusters at cell

edges, while punctuate actin appeared as bright dots inside the cytoplasm. For U87 cells nei-

ther CB agonists, antagonists nor the combination caused a significant change in actin struc-

ture density (Fig 4B). For LN229 cells we could observe a decreased density of actin structures

after treatment with CB agonists or antagonists that were abolished when the agonists and

antagonists were administered together (Fig 4C). In contrast, the CB1 agonist ACEA led to an

increase in structure density in U138 cells, while the remaining treatments had no significant

effect (Fig 4D). The exact measurement values are shown in supplemental S7 Table.

Influence of cannabinoids on FAK and p44/42 MAPK expression of

glioblastoma cells

To evaluate possible molecular targets of cannabinoids in glioblastoma, the two signaling cas-

cades FAK and p44/42 MAPK were analyzed. The protein amount and phosphorylation state

were investigated at 0 min, 5 min, 10 min, 30 min, 2 h, 12 h, 24 h and 72 h after cannabinoid

Fig 3. Correlation of single cell parameters. A) shows the correlation between apparent brightness and homogeneity of the three cell

lines, with an correlation coefficient of r = 0.848 [0.831;0.863]. B), C), D), E) and F) illustrate the correlation between the single cell

parameters brightness and contact area, homogeneity and contact area, circularity and contact area, brightness and circularity as well as

cell speed and circularity, with correlations coefficients of r = -0.576 [-0.612;-0.536], r = -0.456 [-0.500;-0.410], r = -0.480 [-0.522;-0.435],

r = 0.516 [0.473;0.556] and with r = -0.122 [-0.177; 0.066], respectively. Red dots correspond to LN229 cells, blue ones to U138 cells and

green dots to U87 cells. The black line corresponds to the respective linear fit.

https://doi.org/10.1371/journal.pone.0212037.g003
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treatment. Thereby, no significant changes were detected. An example for p44/42 MAPK

expression in U138 cells is shown in Fig 5. The exact measurement values and remaining plots

are shown in supplemental S8–S10 Tables and supplemental S1–S5 Figs.

Discussion

Impact of cannabinoids on cell motility

Previous studies have shown that cannabinoids can alter cell motility in a receptor and cell line

dependent way [17–21]. In bladder cancer cells activation of CB2 led to a reduced cell motility

that was associated with a reduction in activity of the AKT pathway. The reduced motility was

only partially reversible by the application of a CB2 antagonist [17]. In mammary and prostate

carcinoma CB1 activation led to a reduced motility via the phosphorylation of FAK [18] or a

reduced RhoA phosphorylation [19]. Additionally, a loss of actin filaments and a reduced cell

size was reported after CB1 activation in prostate carcinoma cells [19]. Our results in glioblas-

toma cell lines differ from those obtained in other tumor entities and did not involve signaling

cascades associated with FAK and p44/42 MAPK, as suggested by the literature [17–19,39].

Previous studies conducted with human and rodent glioma cells found THC, Win 55–212,2,

cannabidiol and HU-210 to interact with ERK1/2 signaling [46–48,39]. Nevertheless, all these

substances are neither specific for CB1 nor CB2, but target further receptors such as GPR55,

TRPV1, etc. as well. Both receptors were already found to be present in the used glioblastoma

cell lines [49–52]. Additionally, gliomblastoma is a highly heterogeneous tumor entity with dif-

ferent cell populations and cellular responses to various stimuli. Taken together, it seems possi-

ble that cannabinoid treatments result in different coupling of CB receptors and signaling

cascades (reviewed in [53]). In line with this argument another aspect should be considered as

the formation of cannabinoid receptor heterodimers changes coupling and signaling of these

dimers upon stimulation [54–56]. Consequently, even if ERK1/2 activation is frequently modi-

fied by cannabinoids it does not seem to be a necessity in tumor cells.

Furthermore, we observed changes in the actin structure were sometimes absent, even

though motility and/or cell morphology was altered, speaking against the mechanism pro-

posed by Nithipathikom et al [19]. A reason for this discrepancy might be the systems used in

previous studies, being cell lines of different origins (e.g. mammary carcinoma, prostate carci-

noma) as well as the scratch wound assay that was used in most of the motility studies involv-

ing cannabinoids [17–20,22]. A further issue might be off-targets of the used cannabinoids.

For example the partial agonist cannabidiol has been reported to inhibit the migration of glio-

blastoma cells in a cannabinoid receptor independent manner [22]. Furthermore, previous

studies with cannabinoids hint to the receptors TRPV1 and GPR55 as further possible targets

[57–60]. The idea of further non-CB targets of the used substances is additionally supported

by the obtained data taken together with previously reported results of our group for the CB

agonists JWH133 and ACEA [21]. Here the combined administration of CB agonist and

Fig 4. Actin structure measurements. A) depicts the phalloidin (green) and DAPI (blue) staining of LN229 control

cells on the left and the respective structure image of the actin cytoskeleton as a heat map on the right. A

correspondence of highly structured regions in the actin staining with the respective structure image is visible.

Furthermore, unstructured, homogeneous regions do not contribute to the structure image, as for example in the

center of the image. The scaling corresponds to 20 μm. B) shows the quantification of the density of actin structures for

U87 cells treated with cannabinoid receptor agonists and inverse agonists as mean value with the sem. C) and D)

illustrates the density of actin structures in LN229 and U138 cells after cannabinoid treatment. Various effects that

show no apparent receptor specificity were observed. Statistics was performed using a Kruskal-Wallis test and

significance was chosen for p<0.05. The asterisk denotes significant results regarding the respective measurement

indicated with the bar.

https://doi.org/10.1371/journal.pone.0212037.g004
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antagonist was sometimes capable to cause effects relative to the control, even though the sin-

gle substances did not cause significant effects (e.g. cell speed of U138 + CB2 (ant-)agonist).

Furthermore, the respective antagonist was sometimes incapable of reversing the agonists

effect (e.g. cell speed of LN229 + CB1 (ant-)agonist). Thus, additional off-targets of the used

substances are likely. The off-targets may also explain the effect of JWH133 and AM630 being

both capable to reduce the structure density in LN229 cells, but when administered together

had no effect. A negative cross-talk of the downstream-signaling caused by both substances

might thus be a possible explanation

Nevertheless, it remains open why the used cell lines reacted in a highly heterogeneous way

to the cannabinoid treatments. An aspect that might be helpful to understand this phenome-

non is the mutation status of the used cell lines. While U87 and U138 cells express wild type

p53 protein, LN229 has a mutated form and PTEN is mutated in U87, not present at all in

U138 and found in its wild type form in LN229 [61]. Additionally, only U87 and LN229 cells

are capable to generate tumors in in vivo models [61]. These facts show the heterogeneity of

the used cell lines that is also reflected by the different basal levels of the measurement parame-

ters. PTEN, in its wild type form, is capable of regulating cell migration and motility [62]. Even

though the exact mechanisms are not yet fully understood FAK and Rac1 were supposed as

potential targets [62]. Similarly, mutant p53 influences a multitude of signaling cascades,

mostly related to proliferation and cell cycle [63], but it also was described to enhance receptor

tyrosine kinase (RTK) signaling too, including integrin recycling, epidermal growth factor

receptor signaling and thus altering motility [64–67]. Consequently, if basal levels of activity or

whole signaling cascades are altered it is likely that the stimulation of cannabinoid receptors

might lead to fundamentally different results on the cellular level. This is supported by the

known inhibitory effect of PTEN on RAC1 via Phosphatidylinositol (3,4,5)-trisphosphate

(PtdIns(3,4,5)P3) and on FAK [62,68], both being potential targets of cannabinoids as well

[17,18,69,70]. FAK can be directly targeted by cannabinoids, while PtdIns(3,4,5)P3 can be

modulated via the activation of phosphatidylinositol-3-kinases (PI3K) [17,18,69,70]. Thus the

loss of the PTEN induced inhibition of these cascades may lead to higher basal level of signal-

ing, rendering a further cannabinoid induced activation less effective. Similarly, it was demon-

strated that a cannabinoid stimulation may result in an inactivation of p53 [71],its activation

[72] or having no effect on p53 [73]. All aforementioned studies were performed in different

cell types and none in glioblastoma. Nevertheless, it demonstrates that cannabinoids may

potentially be capable to modulate the p53 activity being another possible explanation for the

diverse effects observed here.

As previously noted, we observed changes in motility, without modifications of the actin

organization (U87 + AM281/AM630) and changes in actin organization without alterations in

cell motility (LN229 + AM281/AM281+ACEA; U138 + AM281+ACEA/AM630+JWH133).

This might be due to the fact that the lamellipodium consists mostly of dendritic actin that

cannot be resolved using conventional microscopy techniques and thus changes in this net-

work may alter motility without being optically resolved. Similarly, the composition or gener-

ated tension of the actin cortex may have changed and thus impairing or favoring cell motility

or actin turnover times might be altered. Additionally, a previous study has demonstrated that

U87 and C6 glioblastoma cells possess a migration mode that is independent of polymerized

Fig 5. P44/42 MAPK phosphorylation of U138 cells after cannabinoid treatment. A) depicts the phosphorylation of

p44/42 MAPK of U138 cells after CB1 agonist and inverse agonist treatment. B) shows the phosphorylation of p44/42

MAPK of U138 cells after CB2 agonist and inverse agonist treatment. All values depict the mean of the measurements

together with the sem. No significant changes can be observed for all chosen time points and treatments. All

measurements were normalized to the control of the respective time point.

https://doi.org/10.1371/journal.pone.0212037.g005
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actin and has special requirements for Rho GTPases [74]. Consequently, the cannabinoid

effects on motility in U87 cells might be mediated by alterations in the microtubule structure

as well.

Under the light of the data obtained in previous studies and the data presented here it

seems necessary to first elucidate whether the tumor intended for treatment is indeed sensitive

to cannabinoid treatment. For some tumor entities the effect of cannabinoid stimulation was

not necessarily positive [21,75], even though the majority of studies found an anti-tumoral

effect in glioma [23,26,76–78]. The effect of cannabinoids was associated with the cannabinoid

receptor-density, correlating lower receptor amounts with an anti-tumoral effect in astrocy-

toma, but this effect could not be reproduced in prostate carcinoma [79,80]. Consequently, if

cannabinoids are considered to be used as a potential additional therapeutic agent its efficacy

has to be evaluated for each patient separately in resected tissue.

Association of cell motility and morphology

Another aspect of this work was to study the impact of cannabinoids on cell morphology and

the relation between morphology and motility. Regarding the changes in cellular morphology

and the heterogeneity of the effects, the same arguments as described for the motility can be

made. Correlating the measurement parameters of live cell imaging with each other we

obtained several correlations, including a correlation between cell brightness and its contact

area. In a certain sense this can be regarded as a natural correlation. If we imagine a cell with a

contact area A1 and an apparent brightness I1 and increase its contact area to A2> A1 the

same cell will have a lower apparent brightness I2< I1 because it will have the same chemical

composition and on average a lower height. The lower height will lead to a reduced phase shift

of the transmitted light used for visualizing the cell and thus the larger cells will appear darker

in phase contrast microscopy. As cell lines were used, which have a high self-similarity

amongst cells of the same cell line, the given argument is highly likely. In a similar fashion the

correlation between the brightness and the homogeneity of a cell can be explained. If a cell

spreads out and thus decreases its apparent brightness the structure becomes less heteroge-

neous, even if distinct structures do not change because they have an overall lower impact due

to the increased cell size. Consequently, the cell size mainly dominates the “appearance” of the

cell.

A further important aspect of the live cell measurements was to investigate the relation

between morphology and motility in glioblastoma. Studies of different research groups that

measured both motility and morphology often did not measure both properties simulta-

neously in one experiment [81–84]. Thus, an association between cell shape and speed cannot

clearly be made. Previous work indicated that glioblastoma cells being more polarized leads to

an increase in cell motility [81–83]. Another study found the inverse correlation in glioblas-

toma [84]. In contrast, in our experiments we found cell speed and shape to be independent

parameters. Only in U138 a moderate correlation (r = -0.44) was present indicating that an

association of cell shape and speed may occur but is not a general feature in glioblastoma.

Conclusion

In this study we could demonstrate that cannabinoids can influence cell motility, morphology

and actin organization of glioblastoma cells in a cell line dependent manner but they were not

mediated via signaling cascades involving p44/42 MAPK and FAK. Additionally, we have

shown that morphological features, like the cell shape, are not necessarily associated with

motility in glioblastoma cells.
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