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Abstract: The preparation of redox-active, ultrathin polymer films as the electrode materials repre-
sents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid–liquid
interfacial polymerization approach to a coordination polymer films with ultrathin thickness from
tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit
flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon
wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances
of 1.25 mF cm−2 at 50 mV s−1 and volumetric energy density of 5.8 mWh cm−3, which are superior
to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-
fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (−71.3◦

at 120 Hz) and a short resistance–capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl.
This study provides a simple interfacial approach to redox-active polymer films for microsized energy
storage devices.

Keywords: bis(terpyridine)-Fe complex; coordination polymer film; interfacial polymerization; redox
activity; micro-supercapacitor

1. Introduction

In the past decade, electrochemical energy storage devices have drawn much attention
under the fast development of nanotechnology and the demand for clean and renewable
energy [1]. The miniaturization of electrochemical electronics, such as batteries and super-
capacitors, would become an important part of prospective electronic devices with mobile,
wearable or implantable properties [2,3]. Among them, on-chip micro-supercapacitors
(MSCs) have not only fast charge–discharge rate, high power density and cycling stability
but also exhibit alternating current (AC) line-filtering ability [4–6]. For the fabrication
of on-chip MSCs, the free-standing material films that scale up to centimeters are highly
desirable [7–9]. To meet this requirement, the liquid–air or liquid–liquid interfacial poly-
merization approach has been widely used to prepare 2D polymer films, including covalent
organic frameworks (COFs) [10,11], metal-organic frameworks (MOFs) [12], conjugated
polymers [13,14] and conductive polymers [8,15]. However, the synthesis of these materials
often suffers from the time-consuming process and harsh reaction condition by using strong
acidic or oxidizing agents, such as catalysts. Thus, development of new method toward
polymer films is essential to enable their application in on-chip MSCs.
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Coordination polymers usually are constructed by complexion reaction of ligand-
containing building blocks with various metal atoms without catalysts [16]. Currently,
various conjugated monomer and metal atoms have been incorporated into the skeleton
of coordination polymers, showing a great deal of advantages, like controllable opti-
cal/electric properties, good processability and thermal stability [17,18]. For example,
terpyridine-metal (Tpy-Mn+) complex shows the excellent redox properties; thus, these
Tpy-Mn+-based coordination polymers could be applied in wide optoelectronic appli-
cations [19–25]. Higuchi et al. reported the preparation of asymmetric supercapacitors
by spray-coating two coordination polymers onto an indium tin oxide glass substrate,
which showed high areal capacitances of 1.5–2.0 mF cm−2 and volumetric energy density
of 10−18 mWh cm−3 [26]. More importantly, making the coordination polymer films
into a large size prepares them efficiently by using the interfacial polymerization method,
rendering them desirable for potential applications in Li-ion batteries [27], photoelectric
anodes [28], electrochromism [29,30] and photofunctional sensors [31]. Compared with
layer-by-layer growth of coordination polymer on the Au interdigital electrodes, these
free-standing coordination polymer films would be transferred easily to variable substrates
(e.g., Si wafers, glass) for the construction of on-chip MSCs. Fabrication of coordination
polymer film-based on-chip MSCs remains a challenge.

Herein, we demonstrate a facile liquid–liquid interfacial polymerization of tri
(terpyridine)-based building blocks and iron atoms to produce a coordination polymer film.
The fabricated polymer film, with ultrathin thickness of ~300 nm, could be transferred
directly to a glass for producing on-chip MSCs through the conventional approach. Due to
their redox properties, the as-prepared on-chip MSCs exhibit a high specific areal capac-
itance (1.25 mF cm−2) and volumetric energy density (5.8 mWh cm−3) at 50 mV s−1. In
addition, this MSC also shows a favorable AC line-filtering performance (−71.3◦ at 120 Hz)
and a short relaxation time of 0.06 ms. This kind of coordination polymer film offers a new
prospect toward fabrication of miniaturized electrochemical energy storage devices.

2. Materials and Methods
2.1. Materials

4-Formylphenylboronic acid, 2-acetylpyridine, potassium hydroxide, ammonium
hydroxide, tetrakis(triphenylphosphine)palladium [Pd(PPh3)4], tribromobenzene, Iron(II)
tetrafluoroborate hexahydrate, silica gel (300–400 mesh) and all of the organic reagents
(ethanol, chloroform, tetrahydrofuran, dichloromethane, acetonitrile) were purchased
from Titan (Shanghai, China). Commercial reagents and dry solvents were used without
further purification.

2.2. Instruments
1H and 13C nuclear magnetic resonance (NMR) spectroscopy was measured on a

Bruker 500 (500 MHz for proton, 125 MHz for carbon) spectrometer (Bruker, Karlsruhe,
Germany) with tetramethylsilane as the internal reference, using CDCl3 and CD3OD as sol-
vents; Matrix-Assisted Laser Desorption/Ionization Time of Flight mass pectrometry was
performed on autoflex speed TOF/TOF (Bruker, Karlsruhe, Germany); FT–IR Spectrometer
(FTIR) was performed on a Spectrum 100 instrument (Perkin Elmer, Boston, MA, USA);
X-ray photoemission spectroscopy (XPS) was performed on an AXIS UltraDLD instrument
(Shimadzu, Kyoto, Japan) using Al Kα radiation as the X-ray source with sweeps of 2, 8, 5,
10, 14 for survey spectrum, N 1s, F 1s, B 1s and Fe 2p, respectively. The deconvolution of
XPS spectra was done as following: 1) Shift C 1s of adventitious carbon to 284.7 eV; 2) Con-
strain peak area ratios; 3) Constrain full width at half maxima (FWHM) to be equal to each
other for all deconvoluted peaks from photoemission spectra of the same element. Carbon
(C) 1s peak (284.7 eV) was used as reference for calibration; Optical microscopy (OM)
was acquired using Leica biological microscope DM400; scanning electron microscopy
(SEM) was obtained on a Zeiss Ultra Plus (Jena, Germany) field Emission Scanning electron
microscope at an electric voltage of 5 kV; atomic force microscopy (AFM) was performed
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on a Multimode Nanoscope IIIa atomic force microscope; ultraviolet-visible spectropho-
tometer (UV–Vis) was recorded on a Lamda 950 (PerkinElmer Co., Waltham, MA, USA);
thermogravimetric analyses (TGA) was performed in nitrogen atmosphere from ambient
temperature to 800 ◦C at the rate of 20 ◦C min−1 on a Discovery TGA550 instrument
(TGA, TA, New Castle, DE, USA); The N2 adsorption/desorption sorption isotherm was
measured on the Auto-sorb-iQA3200-4 sorption analyzer (Quantatech Co., Connor, NY,
USA). Melt point (m.p.) was performed on a SGW X-4B melting point apparatus from
ambient temperature to 300 ◦C at the rate of 10 ◦C min−1.

2.3. Synthesis Procedures

Synthesis of 4′-(2,2′:6′,2”-terpyridine)phenylboracic acid. NaOH powder (9.60 g,
240 mmol) was added to the ethanol (200 mL) solution of 4-formylphenylboric acid (6.0 g,
40 mmol) and 2-acetylpyridine (10.6 g, 88 mmol). After stirring at 25 ◦C for 10 h, NH4OH
aqueous solution (150 mL, 28–30%) was added. After refluxed for 20 h, the solution
was cooled to room temperature. After filtered and washed, the solid was purified by
washing with CHCl3 as a white product in yield of 61% (8.7 g, 98.88% HPLC purity). m.p.:
> 300 ◦C; 1H NMR (CD3OD, 500 MHz, ppm): δ 8.68–8.71 (d, 2H), 8.67 (s, 2H), 8.64–8.66
(d, 2H), 7.99–8.02 (dt, 2H), 7.72–7.78 (d, 4H), 7.47–7.49 (dd, 2H); 13C NMR (CD3OD, 125 MHz,
ppm): δ 157.54, 156.91, 153.18, 150.01, 138.74, 135.47, 135.16, 125.98, 125.28, 123.00, 119.53;
MALD–TOF MS (m/z): Calculated. for [C21H16BN3O2+H]+: 354.13. Found: 354.03.

Synthesis of 1,3,5-tri(4-(2,2′:6′,2”-terpyridine)phenyl)benzene. To a solution of tribro-
mobenzene (189.6 mg, 602 µmol) and 4′-(2,2′:6′,2”-terpyridine)phenylboracic acid (960 mg,
2.71 mmol) in THF (60 mL), aqueous NaOH (30 mL, 1 M) was added. The solution was
freeze-pump-thawed three times and backfilled with argon; then Pd(PPh3)4 (60 mg) was
added. The mixture was refluxed for 2 days under argon. After cooling to 25 ◦C, the
reaction solution was then filtered through a Brinell funnel, washed with THF, water and
Et2O, respectively, to give a white powder (TpPB) with yield of 70% (420 mg, 99.99% HPLC
purity). m.p.: > 300 ◦C; 1H NMR (CDCl3, 500 MHz, ppm): δ 8.84 (s, 6H), 8.76 (m, 6H), 8.70
(d, 6H), 8.09 (d, 6H), 7.97 (s, 3H), 7.93 (d, 6H), 7.90 (m, 6H), 7.37 (m, 6H); MALDI–TOF MS
(m/z): Calculated. for [C69H45N9+H]+: 1000.38. Found: 1000.99.

Synthesis of TpPB-Fe. Liquid–liquid interface polymerization approach was used
to synthesis of Tpy-Fe2+-based coordination polymer film. Strain 0.1 mM (20 mL) TpPB
solution with CH2Cl2 solution before use. The TpPB solution was placed in a 40 mm
diameter vial, then 10 mL of pure water was added to cover the TpPB solution in order to
form the liquid–liquid interface. Fe(BF4)2•6H2O aqueous solution (50 mM, 10 mL) was
then added slowly. After 24 h, TpPB-Fe was formed at the interface. The aqueous layer and
organic layer were replaced with pure water and organic ethanol and CH2Cl2 to remove
free monomers. Finally, TpPB-Fe film was transferred to silica wafer.

2.4. Fabrication of the MSC Device

For preparation of the MSC devices, fresh TpPB-Fe film was transferred onto a clean
glass (glass//TpPB-Fe). Then, the Au layer was deposited on the surface of the film
by using the Magnetron Sputtering System JCP350 (Beijing Techno Science Co., Ltd.,
Beijing, China) (glass//TpPB-Fe//Au). The interdigitated electrode was prepared through
laser scribing (Laser Marking Machine, 50 W, Nanjing, China) (glass//TpPB-Fe//Au
finger). Finally, the electrolyte was dropped on the surface of the electrode for overnight
(glass//TpPB-Fe//Au finger@electrolyte). The electrolytes of PVA/LiCl, PVA/H2SO4 and
1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) were used according to the
method described in our previous work [8].

2.5. Electrochemical Measurements

The electrochemical measurements were investigated using a CHI 660E electro-
chemical workstation. The electrochemical properties of TpPB-Fe were studied by two-
electrode in-plane MSCs. The cyclic voltammogram (CV) was examined at the scan rate
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of 5–10,000 mV s−1. Electrochemical impedance spectroscopy (EIS) was employed in the
frequency range from 0.01 Hz to 100 kHz at room temperature. The specific capacitance
values of the TpPB-Fe-MSCs were calculated according to the following Equation (1):

Cdevice =
1

2× v× (Vi −Vt)
×

∫ Vi

Vt
I(V)dV (1)

where Cdevice is denoted as the capacitance from TpPB-Fe film electrode; ν is the scan
rate (V s−1); Vi and Vt are the integration potential window of CV curves and I(V) is the
voltammetry discharge current.

∫ Vi
Vt

I(V)dV is the integrated area from CV curves. The
total surface area of the device (cm2) was 0.54 cm2. The configuration used contained active
electrode and cross finger electrode gap in this work.

The areal specific capacitance (CA, mF cm−2) and volumetric specific capacitance (CV,
F cm−3) were calculated from the cyclic voltammograms (CV) curves by Equations (2) and (3):

CA =
Cdevice

A
(2)

CV =
Cdevice

V
(3)

where A and V are the total area and volume of the device, respectively. The electro-
chemical performance of the whole device shown in the Ragone plot was based on the
volumetric stack capacitance from the galvanostatic charge/discharge (GCD) data. The
specific volumetric energy densities (EV, Wh cm−3) and power densities (PV, W cm−3)
were calculated from Equations of (4) and (5):

EV =
1
2
× CV ×

(∆V)2

3600
(4)

PV =
EV
∆t
× 3600 (5)

where ∆V is the discharge voltage range and ∆t is discharge time (s). To investigate the AC
line-filtering performance of the TpPB-Fe-MSCs on-chip micro-supercapacitors, the EIS
measurement was performed. The specific capacitance of the micro-supercapacitors can be
described by using C′(f ) and C”(f ) according to the Equation of (6) and (7):

C′( f ) =
−Z′′ ( f )

2 ∏ f S |Z( f ) |2
(6)

C′′ ( f ) =
−Z′( f )

2 ∏ f S |Z( f ) |2
(7)

Cyclic voltammograms (CVs) were performed in a three-electrode cell at a scan rate
of 50 mV s−1 in an anhydrous, nitrogen-saturated solution of 0.1 M tetrabutylammonium
hexafluorophosphate (Bu4NPF6) acetonitrile solution, using platinum as work electrodes
and Ag/Ag+ as a reference electrode. The onset oxidation potential (E1/2 ox) of ferrocene
was −0.02 eV versus Ag/Ag+. The conduction band energy level was determined from the
oxidation onset of CV data. The absolute energy level of redox potential of Fc/Fc+ against
vacuum is −4.40 eV. The electrochemically determined bandgap (Ebg, CV) is the difference
between the starting potential of the copolymer during oxidation and reduction.

3. Results
3.1. Synthesis and Morphology

Starting from commercial 4-formylphenylboronic acid, the 4′-(2,2′:6′,2”-terpyridine)
phenylboracic acid was prepared by condensation reaction with 2-acetylpyridine, accord-
ing to previous work [32]. After the Suzuki reaction with 1,3,5-triborombenzene, the target
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monomer of 1,3,5-tri(4-(2,2′:6′,2”-terpyridine)phenyl) benzene (TpPB) was obtained suc-
cessfully. The detailed information could be found in Supporting Information (Scheme S1,
Figure S1–S4). The fabrication of coordination polymer film (TpPB-Fe) with the topological
structure (without counter anions) is shown in Figure 1. Owing to the high coordination
terpyridine with transition-metal atoms, the liquid–liquid interfacial polymerization to-
ward TpPB-Fe films in the circumstance of a dichloromethane (CH2Cl2) solution of TpPB
as the lower layer and an Iron(II) tetrafluoroborate hexahydrate (Fe(BF4)2•6H2O) aqueous
solution as the upper layer. A resultant purple, free-standing film was almost covering the
whole liquid interface (Figure 2a), which could be transferred onto various substrates, like
Si wafer. The topographic characteristics of the TpPB-Fe film were investigated by scanning
electron microscopy (SEM), optical microscopy (OM) and atomic force microscopy (AFM).
In Figure 2b, OM image shows the obtained coordination polymer film with a macroscopic
lateral dimension (>1 cm2). The partial wrinkles and crack indicate the flexible nature of
TpPB-Fe film, which were folded when it transferred onto the silica wafer. The SEM image
demonstrates that this film has the uniform surface with the differential edged regions
(Figure 2c). The energy-dispersive X-ray spectroscopy mapping (EDX-mapping) results
confirm that Fe, N and C are homogenously distributed in TpPB-Fe (Figure 2d). AFM
result reveals that the average thickness of TpPB-Fe film is ~300 nm (Figure S5). These
results demonstrate that bottom-up coordination reaction of terpyridine groups with Fe(II)
ions gives them the ultrathin and free-standing coordination polymer film.
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3.2. Structural Characterization

The chemical structure of the TpPB-Fe film was evaluated by Fourier-transform
infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In Figure 3a, the
stretching vibration of pyridine skeleton in TpPB is located at 1586 cm−1, while an obvious
shift of broad peak to higher energy is observed at 1601 cm−1 in TpPB-Fe, attributing to the
formation of the low electronic deficient of C=N···Fe structure [30]. In addition, the new
peak at 1086 cm−1 is assigned to the stretching vibration of BF4

−. The XPS survey spectrum
of TpPB-Fe shows the existence of C, N, Fe, B and F elements (Figure S6a). The Fe 2p
core level spectrum for TpPB-Fe is deconvoluted into two peaks at 721.5 eV and 708.5 eV,
assigning to the Fe 2p1/2 and 2p3/2 binding energies for Fe2+ (Figure 3b). However, the
Fe3+ 2p signals at 724.0 eV and 710.5 eV were also found in TpPB-Fe, suggesting the
partial Fe(III) ion from the oxidation of Fe(II) ion. The N 1s spectrum of TpPB-Fe could
be assigned to N···Fe (399.7 eV) and pyridine N (398.5 eV) (Figure 3c), confirming the
successful the coordination reaction between terpyridines and Fe atoms. Furthermore, the
B 1s and F 1s spectra of TpPB-Fe exhibited at 685.3 and 193.6 eV (Figure S6b,c), which
could be attributed to BF4

− counter anions. The atomic ratio of Fe:N:B:F is calculated to
be 1:6.35:1.78:7.12, which is near to the theoretical values (Fe:N:B:F =1:6:2:8). The thermal
stability of TpPB-Fe was studied by thermo gravimetric analysis (TGA) measurement. The
decomposition temperature with 5% weight loss is over 200 ◦C, suggesting the excellent
thermal stability of Tpy-Fe2+ complex and aromatic building block (Figure 3d). Moreover,
the porous structure of TpPB-Fe films was investigated by nitrogen adsorption–desorption
analysis. In Figure 3e, the isotherm of TpPB-Fe exhibits type IV nitrogen sorption with a
hysteresis loop, demonstrating the mesoporous nature of this coordination polymer film
(Figure 3f). The specific surface area from Brunauer–Emmett–Teller (BET) calculations is
25.3 m2 g−1, which is larger than reported coordination polymers film (9.94 m2 g−1) [27].
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3.3. Electronic Properties

The electronic properties of TpPB-Fe were investigated by using photophysical pro-
cesses. The UV–Vis spectrum of TpPB reveals that a strong absorption band appears at
around 310 nm, which is assigned to the π−π* transitions of aromatic unit of TpPB [31].
After coordinating with Fe atoms, a slight redshift of π−π* transitions to 317 nm is found,
attributing to π−π stacking of the building block. Furthermore, the TpPB-Fe also shows a
new absorption peak at 581 nm in the visible region, which is the typical metal-to-ligand
charge transfer of terpyridine−metal complex (Figure 4a) [26,30]. Generally, the value at
the intersection of the two dashed red lines is the optical bandgap (Ebg, optical) [32,33]. In the
resulting Tauc plot of TpPB-Fe, Ebg, optical is 1.66 eV (Figure 4b). To investigate the electronic
structures of the as-prepared polymer, the cyclic voltammetry (CV) in acetonitrile with the
electrolyte of Bu4NPF6 was carried out. In Figure 4c, TpPB-Fe clearly shows the presence
of excellent reversible oxidation redox behavior in the 0.8−1.2 V region, indicating the
Fe2+-to -Fe3+ transition of coordination polymer [26], while the reduction process demon-
strates the extended π-conjugated skeleton of the terpyridine-based building block for the
delocalization of electron over the whole backbone [34]. Based on the onset value of the
first oxidation potential, the conduction band (Ecb) energy level of TpPB-Fe is derived to be
−3.56 eV (Figure 4d). Accordingly, the valence band (Evb) energy level is calculated to be
−5.22 eV from the equation Ebg, optical = Ecb − Evb. In addition, the Ebg, optical of TpPB-Fe
also is similar to with that of Ebg, CV (1.72 eV), resulted from the onset value of reduction
potential (Table S1). These results demonstrate the semiconducting nature of TpPB-Fe [8].
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3.4. Micro-Supercapacitor Applications

Given its rich porous structure, redox properties of Tpy-Fe2+ complex, semiconducting
characteristic of polymer skeleton and free-standing film feature, TpPB-Fe would be a
promising candidate for energy storage in on-chip MSCs. As shown in Figure 5a, the as-
prepared TpPB-Fe film is transferred directly to a Si wafer, first. After deposition of Au, an
electrode was prepared by laser etching, and interdigitated electrodes are drop-casted with
various organic electrolytes to produce on-chip MSCs (TpPB-Fe-MSC). The information of
electrode area calculation for TpPB-Fe-MSC is given in Figure 5b and Figure S7. The elec-
trochemical performance of the TpPB-Fe-MSC was carried out by using cyclic voltammetry
(CV) with scan rates ranging from 5 mV s−1 to 10 V s−1 (Figure 5c and Figure S8–S10). At
low scan rates (5 to 500 mV s−1), these CV curves show the pair of redox peaks, which
are mainly derived from the redox properties of Tpy-Fe2+ complex. With the increas-
ing scan rate, CV curves gradually become the electric double-layer capacitive (EDLC)
behavior, indicating the ultrafast charge–discharge ability of the TpPB-Fe-MSC [35,36]. Cal-
culated from the CV results, the areal capacitances (CA) of TpPB-Fe-MSC with electrolytes
PVA/LiCl, [EMIM][BF4] and PVA/H2SO4, as the function of scan rate, are illustrated in
Figure 5d. At the 5 mV s−1, the CA could reach 1.25, 0.29 and 0.55 mF cm−2, respectively,
for electrolytes of PVA/LiCl, PVA/H2SO4 and [EMIM][BF4]. The highest capacitance
performance of TpPB-Fe-MSC in PVA/LiCl is better than many reported MSCs, including
grapheme-based MSCs (0.14 mF cm−2 at 5 mV s−1) [37], mPPy@GO MSCs (75.5 µF cm−2 at
10 mV s−1) [35], azulene-based coordination polymer MSCs (102 µF cm−2 at 50 mV s−1) [6],
TTF-TCNQ/graphene MSCs (0.62 mF cm−2 at 10 mV s−1) [38], etc. Furthermore, the
areal capacitance of TpPB-Fe-MSC with PVA/LiCl (0.82 mF cm−2 at 10 mV s−1) is about
2.5 and 5.5 times greater than that with [EMIM][BF4] (0.32 mF cm−2) and PVA/H2SO4
(0.15 mF cm−2), respectively, which might be the synergetic effect between material sta-
bility, electrolytic viscosity and ionic mobility. Furthermore, the volumetric capacitances
(CV) for TpPB-Fe-MSC with PVA/LiCl, [EMIM][BF4] and PVA/H2SO4, at 5 mV s−1, are
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41.7, 18.2 and 9.7 F cm−3, respectively. These performances are superior to most previously
reported semiconductive, polymer-based MSCs (Table S2).
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interdigital pattern, iv) drop-casting of gel electrolyte on interdigitated electrode; (b) The size information of cross finger
electrode; (c) CV curves of TpPB-Fe-MSC with PVA/LiCl gel electrolyte at scan rates of 5, 50, 500, 5000 mV s−1; (d) areal
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Electrochemical impedance spectroscopy (EIS) was used for inquiring into the ion
transportation ability and frequency response of TpPB-Fe-MSCs in various electrolytes [39].
In Figure 6a, the Nyquist plots of TpPB-Fe-MSC with PVA/LiCl and [EMIM][BF4] ex-
hibit the almost straight line and the intersections at the Z’ axis. Such the pronounced
capacitance behavior indicates the fast ion mobility in the TpPB-Fe-MSC [7,8]. For the
electrolyte of PVA/H2SO4, the acidic electrolyte could have the reaction with the structure
of coordination polymers, leading to its low ion mobility [40]. In the region of high fre-
quency, the minimum equivalent series resistance (ESR) with PVA/LiCl, [EMIM][BF4] and
PVA/H2SO4 is 13.8, 35.1 and 27.3 Ω, respectively, which results from different ionic radius
and viscosity of electrolytes for the ion transportation ability between active materials
and electrolytes. In Figure 6b, the phase angle of TpPB-Fe-MSC, based on PVA/LiCl,
reaches −75◦ at frequencies of 500 Hz, illustrating that TpPB-Fe-MSC has 83% of the ideal
capacitor [41]. Additionally, the characteristic frequencies (f 0) at the phase angle of 45◦, at-
tributing to the equal of the resistive and capacitive impedance values [42], are 5007, 16,326
and 58,770 Hz in electrolytes of PVA/H2SO4, PVA/LiCl and [EMIM][BF4], respectively.
Corresponding, the relaxation time constant t0 (t0 = 1/f 0) of these devices is 0.2, 0.06 and
0.02 ms for PVA/H2SO4, PVA/LiCl and [EMIM][BF4], respectively, which are much lower
than activated carbon-based MSCs (~200 ms) [43], graphene–CNT MSCs (~0.74 ms) [42],
B/N-enriched semiconductive polymer MSCs (0.52 ms) [7], azulene-based coordination
polymer MSCs (0.27 ms) [6], benzene-bridged polypyrrole MSCs (0.22 ms) [8], etc. In
addition, the TpPB-Fe-MSC displays an impedance phase angle of −71.3◦ at a frequency of
120 Hz. These results demonstrate the high AC line-filtering performance of TpPB-Fe-MSC,
which exhibits its potential for flexible electric devices.
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Ragone plots calculated from the CV results indicate the overall electrochemical
performance of TpPB-Fe-MSCs. As shown in Figure 6b, TpPB-Fe-MSC in PVA/LiCl exhibits
the largest energy density of 5.8 mWh cm−3 at 0.1 W cm−3 and largest power density of
9.8 W cm−3 at 0.3 mWh cm−3. This outstanding performance of TpPB-Fe-MSC is also
compared with those of the reported MSCs, including a commercial lithium battery [44],
CNT–graphene carpets [45], carbon onion-like [44], PANI nanowires [46], d-Ti3C2Tx [4]
and electrolytic capacitors [2]. Cycle stability is also crucial importance for on-chip MSCs.
The long-term cycling test of TpPB-Fe-MSC, based on PVA/LiCl, was carried out for
2500 cycles at a current density of 500 mV s−1. After 2500 cycles, the shape of CV changes
a little. The retention of capacitance is 92.2%, indicating the high stability performance
of TpPB-Fe-MSC (Figure 6c). These results indicate that the as-prepared Tpy-Fe2+-based
coordination polymer film as electrode material have potential for high-performance MSCs.

4. Conclusions

In summary, we developed a novel tri(terpyridine)-based coordination polymer film
containing a large area size, an ultrathin thickness and a uniform surface by liquid–liquid
interfacial polymerization approach with 1,3,5-tri(4-(2,2′:6′,2”-terpyridine)phenyl) benzene
and Fe2+ ionic resource. Such a 2D coordination polymer film possessed many physical prop-
erties, containing flexible properties, good redox activity and narrow bandgap. After used
for MSCs, the as-prepared TpPB-Fe film, based on the PVA/LiCl electrolytes, delivered an
ultrahigh areal capacitance (1.25 mF cm−2), volumetric energy density (5.8 mWh cm−3) and
promising AC line-filtering properties (−71.3◦ at 120 Hz) with short time constant (0.06 ms).
This study provides a simple method for achieving a flexible polymer film with low bandgap
and redox activity for fabrication of both energy storage and optoelectronic applications.
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