
RESEARCH ARTICLE

Herbivore Diet Breadth and Host Plant
Defense Mediate the Tri-Trophic Effects of
Plant Toxins on Multiple Coccinellid Predators
Angelos Katsanis*, Sergio Rasmann¤, Kailen A. Mooney

Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine,
California, United States of America

¤ Current address: Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel,
Switzerland
* katsanis@uci.edu

Abstract
Host plant defenses are known to cascade up food chains to influence herbivores and their

natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic

dynamics is largely unknown. We assessed the influence of plant defense on aphid and

coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of

Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persi-
cae) aphid, and five species of aphidophagous coccinellids. The performance of the spe-

cialist and generalist aphids was similar and unaffected by variation in plant defense.

Aphid glucosinolate concentration and resistance to predators differed by aphid species

and host plant defense, and these effects acted independently. With respect to aphid spe-

cies, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentra-

tion and coccinellid predators ate three-fold more aphids. With respect to host plant

variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration

by 21%, but had relatively weak effects on predation by coccinellids and these effects var-

ied among coccinellid species. In turn, coccinellid performance was influenced by the inter-

active effects of plant defense and aphid species, as the cascading, indirect effect of plant

defense was greater when feeding upon the specialist than generalist aphid. When feeding

upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass

gain by 78% and accelerated development by 14%. In contrast, when feeding upon gener-

alist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only

11% and had no detectable effect on development time. These interactive effects of plant

defense and aphid diet breadth on predator performance also varied among coccinellid

species; the indirect negative effects of plant defenses on predator performance was con-

sistent among the five predators when transmitted via the dietary specialist aphid, but

these effects varied substantially among predators—in both the magnitude and direction—

when transmitted via the dietary generalist aphid. Accordingly, the cascading effect of

plant defense on predators was stronger in magnitude and more consistent among preda-

tor taxa when transmitted by the specialist than generalist herbivore. Overall, these
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findings support a central role of herbivore diet breadth in mediating both the strength and

contingency of tri-trophic interactions.

Introduction
Tri-trophic interactions have long been recognized as the key drivers of fundamental ecological
and evolutionary processes [1–4]. At each trophic level, these interactions involve a multitude
of different species or genotypes, and variation in the outcome of tri-trophic interactions is
driven by diversity in the functional traits of the participating species [5, 6]. Accordingly,
understanding how functional traits mediate the interactions among plants, herbivores and
predators provides the mechanistic foundation for predicting the outcomes of cascading tri-
trophic interactions in food chains [6, 7].

Plants display a combination of chemical and morphological defensive traits that reduce
herbivory through both direct effects on herbivores, and indirectly, by mediating the top-down
effects of natural enemies [8]. Such defensive traits are variable both within and among species
[9] as a result of variable selection by herbivores [10], plant resource availability [11], and vari-
able selection pressure of the predators [12]. Traits providing direct defense, by deterring or
killing herbivores, include mechanical defenses and chemicals that act as poisons or digestibil-
ity reducers [8]. Traits providing indirect defenses serve to recruit natural enemies (predators
or parasitoids) that consume or deter the herbivores [13, 14] through the production of
rewards [15, 16] and cues that facilitate natural enemy location of herbivore prey [14, 17, 18].
Finally, direct and indirect defenses may act synergistically as, for example, when sub-lethal
direct defenses slow herbivore development and thus increase susceptibility to natural enemies
[19–23].

Herbivores in turn have their own offensive and defensive traits (including behaviors) that
determine their ability to feed on plants and avoid natural enemies, respectively. Traits under-
lying herbivore offense include the tolerance, detoxification, deactivation or avoidance of plant
defenses [24]. For example, herbivores may reduce plant chemical toxicity with detoxification
enzymes [25] and deactivate (and thus avoid) mechanical defenses [26, 27]. Traits underlying
herbivore defense against natural enemies include deterrent chemicals [28], behavioral, and
morphological defenses [29]. However, herbivores may also use plants in their own defense
against natural enemies, for example, when they manipulate or otherwise use plants for shelter
[30] or sequester plant toxins to render themselves unpalatable [31, 32].

Herbivore diet breadth—the taxonomic or phenotypic diversity of plants consumed—is a
key functional trait underlying much of the variation in herbivore offenses against plants and
defenses against natural enemies [6, 33]. With respect to offense against plants, dietary special-
ist (mono- or oligophagous) herbivores often have physiological and behavioral adaptations
that render them less sensitive to the plants’ direct defenses as compared to dietary generalists
(polyphagous) herbivores that feed on a greater diversity of plants [34–36]. With respect to
defense against natural enemies, many dietary specialists can sequester higher concentrations
of plant toxins [33, 37] and may avoid natural enemies through superior unpalatability as com-
pared to dietary generalists [6, 32].

Based upon the points outlined above, the tri-trophic interactions hypothesis [38] predicts
that herbivore diet breadth plays a central role in mediating the bottom-up, cascading effects of
plant defenses on both herbivores and natural enemies. With respect to plant-herbivore inter-
actions, the performance of dietary generalist herbivores is predicted to be more sensitive to
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variation in plant defense than dietary specialists [37, 38]. Similarly, the tri-trophic interactions
hypothesis predicts that variation in herbivore diet breadth should mediate the effects of plant
defense on herbivore-natural enemy interactions [38]. For herbivores capable of sequestering
plant toxins, the superior ability of dietary specialist herbivores to sequester [33, 37] means
that variation in plant toxins should mediate predator effects more for dietary specialists than
generalists. In support of this prediction, Francis et al. [39] and Jessie et al. [40] found that a
specialist aphid was more toxic than a generalist aphid to coccinellid predators, and that such
effects were stronger when aphids were reared on high- than low-glucosinolate plants.

In this study we tested the prediction that herbivore diet breadth mediates the effects of
plant defenses on both plant-herbivore and herbivore-natural enemy interactions [38]. We
studied two Brassica napus Linnaeus varieties of differing glucosinolate (the major secondary
metabolite in Brassicaceae; [41, 42]) concentration, a dietary generalist (Myzus persicae Sultzer)
and specialist (Brevicoryne brassicae Linnaeus) aphid species, and five species of coccinellid
predators to address the following questions: How does herbivore diet breadth mediate the
effects of plant defense on (1) aphid performance (i.e. plant resistance), (2) aphid resistance to
coccinellids (i.e. the consumption rate of coccinellids = inverse of voracity) and (3) coccinellid
performance (i.e. mass gain and developmental duration)? Furthermore, to assess the consis-
tency of these dynamics, we compared our findings amongst five predators.

Materials and Methods

Plant and insect colonies
We took plants of differing toxicity and herbivores of differing diet breadths, and assessed the
consequences of their interactions upon the performance of two aphid species and multiple
species of predatory coccinellids. We selected two cultivars of canola, Brassica napus var.
Amanda, a low glucosinolate cultivar, and B. napus var. Dwarf Essex, a high glucosinolate culti-
var. These varieties were selected based on reported variation in glucosinolate concentration
([43]; JB Davis pers. comm.), and under the assumption that they should be similar with
respect to other traits. Seeds of the two varieties were sown in 5 cm diameter pots containing
an even mixture of sand, redwood bark, peat moss and perlite. After 1 week, the seedlings were
transferred to the 10 cm diameter pots and grown under 23±1°C, 55% R.h., and 16 hrs daylight
till the experimental manipulations.

The dietary generalist aphidMyzus persicae and the dietary specialist aphid Brevicoryne
brassicae were chosen due to differing diet breadths and abilities to feed on the two Brassica-
ceae varieties. Both aphid species generally exhibit good performance and rapid population
growth on both plant varieties tested in our study.Myzus persicae is highly polyphagous, capa-
ble of feeding on plants of at least 30 different plant families [44]. On the other hand, B. brassi-
cae is oligophagous, limited to feeding on brassicaceous plants. Colonies of each aphid species
were initiated from single individuals collected from Brassica oleracea L. plants in Orange
County, California, USA. The two aphid species were inoculated on one-month-old plants and
kept under the same light and temperature conditions as the plants.

Five coccinellid species were used in this study: Anatis rathvoni L., Coccinella septempunc-
tata L., Cycloneda sanguinea L., Harmonia axyridis Pallas, and Hippodamia convergens L. All
individuals used in experiments were F1 or F2 offspring from coccinellid adults collected from
field sites, with permits from the University of California Natural Reserve System (UCNRS), in
California, USA and specifically in Orange County (C. septempuncta, C. sanguinea,H. axyridis,
H. convergens) and Mariposa County (A. rathvoni). With the exception of A. rathvoni, all coc-
cinellid species tested live in a wide range of natural and agricultural habitats whereM. persicae
B. brassicae, can be found (S1 Table) [45, 46]. Finally, we also included Anatis rathvoni, majorly
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found in conifer forests, in order to increase the phylogenetic and ecological range of the stud-
ied species.

Beetles were reared following Katsanis et al. [47]. Specifically, coccinellid adults were housed
in a 25°C glasshouse in 28 x 28 x 28 cm insect rearing cages (BugDorm, Taiwan) lined with fil-
ter paper. The cages contained low glucosinolate plants (B. napus var. Amanda) infested with
high densities of the generalist aphid,M. persicae, a species palatable to most aphidophagous
coccinellids [48]. Cages, filter paper and infested plants were changed each week. Coccinellid
egg batches were carefully detached and placed in 9 cm Petri dishes lined with filter paper for
eclosion. Neonate larvae were then used for the behavioral experiments described below, with
the exception that a few were reserved for the continuation of the coccinellid culture.

Aphid and plant traits
Wemeasured several plant traits relating to growth and defense across the two plant varieties
in order to assess potential variation besides chemical defenses (i.e. glucosinolates). All traits
were measured on healthy, undamaged plants. After four weeks of growth, leaf toughness was
measured by placing three leaves per plant between two plastic sheets with a 3 mm hole in the
middle, and by measuring the force (measured in grams per surface area) needed to puncture a
hole in the leaf using a penetrometer (PESOLA AG, Baar, Switzerland) (n = 12 plants per plant
variety). Chlorophyll fluorescence, an indicator of photosynthetic activity, was measured with
a chlorophyll meter (Konica Minolta Sensing Europe BV) over the leafy tissue of the same
plants. Three measures were taken across three leaves per plants, and averaged. Specific leaf
area (SLA) was determined by dividing the area of a 10 mm diameter leaf disc by the dry weight
of the disc. Water content was measured by calculating the difference in weight between fresh
and dry plant tissue. Finally, above ground plant biomass (i.e. growth rate) was measured by
weighing dry leaf material. Leaves were dried at 60°C for 72 hrs. To measure leaf carbon (C),
nitrogen (N) content and C:N ratios, dried leaves were ground to a fine powder using a Wig-L-
bug grinding mill (International Crystal Laboratories, Garfield, NJ). Approximately 1 mg of
this homogenized powder was then packed into 5 x 9 mm tins. Elemental analysis (NA 1500,
Fisons Instruments, Ipswich, UK) was then performed at the UC Irvine Stable Isotope Ratio
and Mass Spectrometry Facility (n = 6 plants per variety). For each trait, we tested for the effect
of plant variety using t-tests in JMP v.10 (SAS Institute Inc., Cary, NC, USA).

Glucosinolate concentrations were assessed on both undamaged plants, plants damaged by
each aphid species, and in the aphids themselves originating from the aphid performance
experiment (see below). Leaves and 24 hr-starved aphids were dried at 50°C for 72 hours,
weighed and ground to fine powder using a MM400 Retsch grinder (Retsch GmbH, Haan, Ger-
many) in 2-mL Eppendorf tubes at 27 Hz for 2 min and 20 seconds, respectively. 20 nanograms
of sinalbin was added to each sample as internal standard (CAS-No 20196-67-2, AppliChem
GmbH, Darmstadt, Germany), and glucosinolates were extracted with boiling 70% methanolic
solution, desulphatased with Sulfatase fromHelix pomatia (CAS-No 9016-17-5, Sigma-Aldrich
Co., St. Louis, IL, USA) on a DEAE-Sephadex A 25 column (CAS-No. 12609-80-2, Sigma) and
separated on a C18 reversed phase LC column (Thermo Fisher Scientific Inc., Sunnyvale, CA,
USA) on YL-9150 LC-PDA (YL Instruments Co. Ltd, Korea) with an acetonitrile water gradi-
ent as follows: 100–65% water and 0–35% acetonitrile over a period of 25 minutes followed by
a final equilibration time of 5 minutes. Glucosinolates were identified using pure standards for
most of the compounds and at 226 nm maximal absorbance spectra where the glucosinolates
are characteristically peaking. Glucosinolate concentrations were calculated by dividing their
areas with the area of the internal standard (sinalbin) and reported as micrograms per milli-
gram dry tissue weight.
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We tested for the effects of host plant variety (var. Amanda vs. var. Dwarf Essex), herbivory
treatment (control,M. persicae, B. brassicae), and their interaction on plant glucosinolate con-
centrations with ANOVA. In addition, the main effect of glucosinolate compound identity
(seven compounds, see below) was included in the model to account for variation in glucosino-
late concentration among compounds. Tukey post-hoc tests were used to compare individual
treatment levels or treatment combinations. Similarly, we conducted a parallel analysis testing
for the effects of host plant variety, herbivore species and their interaction on aphid glucosino-
late concentration, again including the main effect of glucosinolate compound identity (18
compounds, see below). In both analyses, glucosinolate data were log-transformed to meet
assumptions of normality and analyses were again conducted using JMP v.10 (SAS Institute
Inc., Cary, NC, USA).

Aphid performance experiment
To measure the effect of host plant chemistry on aphid performance, 10 one-month old host
plants from each plant variety were inoculated with one apterous adult from one of the two
aphid species (i.e. 10 replicates for the generalist and 10 replicates for the specialist on each
plant cultivar). After approximately 24 hours, the adult aphid and all but one neonate were
then removed. These single neonate aphids of known age were then monitored each 24 hours
to determine age at first reproduction and, subsequently for 5 days to determine rates of repro-
duction (number of nymphs produced). We assessed the effect of host plant variety, aphid spe-
cies, and their interaction on age at first reproduction and fecundity with two-way ANOVAs
using JMP v.10 (SAS Institute Inc., Cary, NC, USA). Data were log-transformed to meet
assumptions of normally distributed residuals.

Aphid resistance and coccinellid performance experiment
We here defined aphid resistance as the inverse of coccinellid predator voracity (i.e. the amount
of aphids consumed by the coccinellid larvae) in order to assess treatment effects from the
aphid’s perspective. In addition, the term ‘aphid resistance’ is as a direct analogy to the ‘plant
resistance’ term sensu Karban and Baldwin [49], which reflects the amount of herbivore mor-
tality due to predator feeding, in this case the coccinellid larvae.

Specifically, 10 newly hatched coccinellid larvae were individually put in 5 cm diameter
Petri dishes. As aphid resistance is the integration of behavioral, morphological and chemical
traits, by offering aphids to coccinellid larvae in a closed Petri dish arena, we aimed at minimiz-
ing the behavioral (escape) strategy, while accentuating the physico-chemical barriers to preda-
tor attack. For each larva, coccinellids were given live adult aphids, at a similar size, that had
been feeding and developing for two weeks on four-week-old low- or high-glucosinolate plants
at relatively low densities in order to avoid overcrowding and potential variation in aphid size
due to competitive effects. Aphids were provided without any plant tissue to coccinellids at an
abundance (“stocking level”) that was specific to each instar, and sufficient to exceed the daily
rate of aphid consumption of the larvae: instar L1 = 5 aphids, L2 = 15, L3 = 30, L4 = 60. Each
day the unconsumed aphids were counted, removed and replaced with fresh aphids at the
appropriate stocking level. For each replicate, the experimental trial was ended one day after
the coccinellid larvae had reached the 4th instar. The fitness of a young adult coccinellid is
tightly linked to the fitness of the 4th larval instar [47], we thus considered unnecessary to con-
tinue the experiments into the adult stage.

Secondly, we measured coccinellid performance using two independent measures: 1) cocci-
nellid larval mass gain and 2) larval developmental duration. Larval mass gain was calculated
as the difference between the larval mass (in mg) at the beginning and end of each experimental
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trial. Developmental duration was calculated as the number of days required for a newly
hatched coccinellid larva to reach the 4th instar. Once at the 4th instar, larvae were given food
for two additional days before the end of the experiment.

We assessed variation in aphid resistance, mass gain, and development duration using sepa-
rate factorial three-way ANOVAs, with the main and interactive effects of plant variety, aphid
species, and coccinellid species using JMP v.10 (SAS Institute Inc., Cary, NC, USA).

Results

Plant and aphid traits
As compared to the B. napus var. Dwarf Essex, var. Amanda had 18% greater biomass (S1A
Fig, t22 = 2.96, p< 0.001) and leaves that were 38% tougher (S1B Fig, t22 = 4.86, p< 0.0001),
19% thicker (S1D Fig, t10 = -2.88, p = 0.009), but not different in C:N ratio (S1D Fig, t10 = 1.64,
p = 0.133).

We observed seven major glucosinolate compounds across the two varieties of B. napus
(GLS 1, 3, 8, 9, 15, 16 and 17 as shown in Table 1). We found significant effects of plant variety,
herbivory treatment, and a marginally significant variety-by-herbivory interaction (Table 2) on
total glucosinolate abundance. On control (undamaged) plants, var. Dwarf Essex contained
30% higher total glucosinolate concentration than var. Amanda (Fig 1A). For var. Dwarf Essex,
total glucosinolate concentration increased 5% by B. brassicae but decreased 14% byM. persi-
cae. As a result, herbivore-induced Dwarf Essex had 24% higher total glucosinolate concentra-
tions when fed upon by B. brassicae thanM. persicae. For var. Amanda, total glucosinolate
concentration increased to a similar extent by both B. brassicae andM. persicae (24% and 27%
respectively) and, as a result, herbivore-damaged plants had similar glucosinolate concentra-
tions regardless of aphid species.

We found a total of 18 major glucosinolate compounds in the two aphid species (Table 1).
We found significant effects of aphid species, plant variety, but no aphid species-by-plant vari-
ety interaction on total glucosinolate abundance (Table 2). Brevicoryne brassicae contained
14% more glucosinolates thanM. persicae, while aphids had 21% higher levels of glucosinolates
when feeding on var. Dwarf Essex than var. Amanda (Fig 1B).

Aphid performance
There was no significant effect of aphid species on age at first reproduction (F1, 26 = 0.53,
p = 0.46; S2A Fig) or fecundity (F1, 26 = 0.01, p = 0.91; S2B Fig), and no effect of plant variety
on age at first reproduction (F1, 26 = 0.01, p = 0.91) or fecundity (F1, 26 = 0.31, p = 0.59). Finally,
the aphid�variety interaction was not significant for either age at first reproduction (F1, 26 =
0.21, p = 0.65) or fecundity (F1, 26 = 0.30, p = 0.59).

Aphid resistance and coccinellid performance
Coccinellid voracity—and thus aphid resistance (the inverse of voracity)—was strongly influ-
enced by both aphid species and plant variety, but there was no aphid species-by-plant variety
interaction (Table 3, Fig 2A). Averaged across both plant varieties, coccinellids fed approxi-
mately three-fold more onM. persicae than on B. brassicae. Averaged across both aphid spe-
cies, coccinellids fed 6% more on aphids coming from var. Amanda then var. Dwarf Essex.
These effects of aphid species and plant variety differed among coccinellid species (aphid
species-by-coccinellid species interaction, plant variety-by-coccinellid species interaction;
Table 3). Voracity was consistently higher onM. persicae than B. brassicae, with variation
among coccinellid species due to relatively small differences in the magnitude of this effect. In
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contrast, the indirect effects of host plant variety varied in both magnitude and direction of
effect depending upon aphid and coccinellid species. When feeding upon B. brassicae, three
coccinellid species (Cycloneda sanguinea, H. axyridis, H. convergens) had greater voracity for
aphids from the low- than high-glucosinolate host plants (consistent with the mean effect

Table 1. Total glucosinolate concentrations in plants and aphids.

GLS AM/Mp AM/Bb DE/Mp DE/Bb AM/C DE/C

plant aphid plant aphid plant aphid plant aphid plant

1 0.03 0.24 0.04 0.02 0.05 0.13 0.04 0.04 0.08 0.08

2 0 0.04 0 0.08 0 0.14 0 0.63 0 0

3 0.03 0.05 0.02 0.03 0.06 0.15 0.04 0.06 0.07 0.03

4 0 0.47 0 0.42 0 0.43 0 0.69 0 0

5 0 0.44 0 0.02 0 0.06 0 0.06 0 0

6 0 0.30 0 0.11 0 0.08 0 0.08 0 0

7 0 0.19 0 0.06 0 0.03 0 0.10 0 0

8 0.02 0.33 0.01 0.02 0.05 0.09 0.03 0.05 0.07 0.04

9 0.44 0.06 0.45 0.02 0.20 0.01 0.97 0.01 0.63 1.15

10 0 0.02 0 0.04 0 0.04 0 0.04 0 0

11 0 0.76 0 0.04 0 0.01 0 0.03 0 0

12 0 1.37 0 0.02 0 0.01 0 0.02 0 0

13 0 0.16 0 0.13 0 0.30 0 0.26 0 0

14 0 0.07 0 0.07 0 0.08 0 0.09 0 0

15 0.09 0.03 0.08 0.55 0.05 0.04 0.06 0.78 0 0.03

16 0 0.01 0 0.02 0 0 0 0.03 0 0

17 0.01 0.10 0.02 0.01 0.01 0.01 0.03 0.01 0 0.03

18 0.27 0.14 0.22 0.06 0.14 0.16 0.29 0.05 0 0.21

Total 0.89 4.78 0.84 1.72 0.54 1.77 1.46 3.03 0.85 1.57

Glucosinolates (GLS) concentrations in μg/mg of dry weight are shown for plant and aphid tissues for Brassica napus var. Amanda (AM) and var. Dwarf

Essex (DE) after the attack of, Myzus persicae (Mp) (AM/Mp, DE/Mp) and Brevicoryne brassicae (Bb)(AM/Bb, DE/Bb) and in plant tissue from undamaged,

control plants (AM/C, DE/C). Where ‘0’ is shown, glucosinolates were present in traces and thus not quantifiable. Numbered glucosinolates (in order of

retention time) are Glucoraphanin (1), Sinalbin (2), and Glucobrassicin (5), with all others being unknown compounds.

doi:10.1371/journal.pone.0155716.t001

Table 2. Results of statistical tests for the effect of plant variety and aphid herbivory on glucosinolate production and sequestration.

Dependent variable Factor d.f., error F ratio P value

Plant GLS Plant variety 1, 231 5.42 .02

Herbivory treatment 2, 231 1.32 .27

P*H 2, 231 2.56 .08

Compound identity 6, 231 79.97 <.001

Aphid GLS Plant variety 1, 480 11.59 .001

Herbivore species 2, 480 5.03 .02

P*H 2, 480 0.31 .58

Compound identity 17, 480 11.20 <.001

Two-way ANOVA summary table showing the main and interactive effects of plant variety (Brassica napus var. Amanda, B. napus var. Dwarf Essex),

herbivory treatment (Brevicoryne brassicae, Myzus persicae, control, for plant GLS, and B. brassica, M. persicae for aphid GLS), and the main effect of

glucosinolate compound identity.

doi:10.1371/journal.pone.0155716.t002
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across all species described above), while two species (A. rathvoni, C. septempunctata)
expressed the opposing pattern. In contrast, when feeding uponM. persicae, four coccinellid
species (C. septempunctata, C. sanguinea, H. axyridis, H. convergens) had greater voracity for
aphids from the low- than high-glucosinolate host plants, while one species (A. rathvoni)
expressed the opposing pattern.

Coccinellid larval weight gain was influenced by the interactive effects of aphid species and
plant variety (Table 3, Fig 2B). Averaged across both plant varieties, coccinellids gained
2.6-fold more mass onM. persicae than on B. brassicae. Averaged across both aphid species,
coccinellids gained 21% more mass on aphids coming from var. Amanda then var. Dwarf
Essex. However, the plant variety effect was greater when coccinellids fed upon B. brevicoryne
(78% more mass gain on var. Amanda then var. Dwarf Essex) than onM. persicae (11% more
mass gain on var. Amanda then var. Dwarf Essex). These interactive effects of aphid species
and plant variety in turn differed among coccinellid species (aphid species-by-plant variety-by-
coccinellid species interaction; Table 3). When feeding upon B. brassicae, all coccinellid species
had higher mass gain with aphids from the low- than high-glucosinolate host plants (consistent
with the mean effect across all species described above). In contrast, when feeding uponM. per-
sicae, only two coccinellid species (C. septempunctata, H. convergens) had higher mass gain
with aphids from the low- than high-glucosinolate host plants, while two species were weakly
affected (A. rathvoni,H. axyridis) and one species was unaffected (C. sanguinea) by host plant
variety.

Fig 1. Glucosinolates (GLS) levels in A) leaves of two Brassica napus varieties following aphid herbivory.
Means ± 1SE are shown for Brassica napus var. Dwarf Essex (DE) and var. Amanda (AM) after damage by Brevicoryne
brassicae andMyzus persicae and for healthy (control) plants. Panel B) shownmean glucosinolate content in aphids’
bodies after feeding on both B. napus varieties. Letters above bars means significant differences (TukeyHSD test,
p < 0.05).

doi:10.1371/journal.pone.0155716.g001
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Mirroring the weight gain results, coccinellid developmental duration was influenced by the
interactive effects of aphid species and plant variety (Table 3, Fig 2C). Averaged across both
plant varieties, coccinellid development was 38%more rapid onM. persicae than on B. brassicae.
Averaged across both aphid species, coccinellid development was 10% more rapid on aphids
coming from var. Amanda then var. Dwarf Essex. However, the effect of plant variety was strong
when coccinellids fed upon B. brassicae (14% more rapid development on var. Amanda then
var. Dwarf Essex) but statistically undetectable when feeding uponM. persicae (Fig 2C). This
interactive effect of aphid species and plant variety in turn differed among coccinellid species
(aphid species-by-coccinellid species interaction, plant variety-by-coccinellid species interac-
tion; Table 3). When feeding upon B. brassicae, all coccinellid species had more rapid develop-
ment on aphids from the low- than high-glucosinolate host plants (consistent with the mean
effect across all species described above). In contrast, when feeding uponM. persicae, three coc-
cinellid species (A. rathvoni, C. septempunctata, C. sanguinea,H. axyridis) had more rapid
development with aphids from the low- than high-glucosinolate host plants, while one species
was weakly affected (H. axyridis) and one species (H. convergens) showed the reverse pattern.

Discussion

Summary
Herbivore performance and resistance to predators depended strongly on aphid diet breadth,
with host plant variety being relatively unimportant. Aphid fecundity and age at first

Table 3. Results of statistical tests for the effect of plant variety and aphid herbivory on aphid resistance (inverse of coccinellid voracity) and coc-
cinellid performance (larval mass gain and developmental duration).

Response variable Factor d.f., error F ratio P value

Voracity (-1*aphid resistance) Coccinellid (C) 4,180 50.541 .000

Herbivore (H) 1,180 2293.306 .000

Plant (P) 1,180 12.142 .001

C*H 4,180 20.36 .000

C*P 4,180 7.34 .000

H*P 1,180 3.48 .640

C*H*P 4,180 0.613 .653

Weight C 4,180 104.426 .000

H 1,180 2254.218 .000

P 1,180 155.902 .000

C*H 4,180 29.639 .000

C*P 4,180 5.190 .001

H*P 1,180 14.818 .000

C*H*P 4,180 11.661 .000

Developmental duration C 4,180 4.395 .002

H 1,180 832.572 .000

P 1,180 39.968 .000

C*H 4,180 2.634 .036

C*P 4,180 1.997 .097

H*P 1,180 30.377 .000

C*H*P 4,180 0.618 .651

Three-way ANOVA table for the effects of five coccinellid species, two host plant genotypes, and the two aphid herbivore species, on the voracity (i.e. the

inverse of aphid resistance), weight gain and developmental duration of coccinellid larvae.

doi:10.1371/journal.pone.0155716.t003
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Fig 2. Effect of host plant chemical defense on aphid resistance and coccinellid performance. The
panels showmeans ± 1SE for A) voracity (number of aphids consumed during development to the 4th instar;
inverse of aphid resistance), B) the development time in days to the 4th instar, and C) weight gain from to the
4th instars separately for 5 coccinellid species and overall means across all 5 species. The following coccinellid
species were used: Anatis rathvoni (A. rat); Coccinella septempunctata (C. sep.), Cycloneda sanguinea (C.
san.),Harmonia axyridis (H. axy.) andHippodamia convergens (H. con.). Values are provided for Brevicoryne
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reproduction were unaffected by variation in host plant defenses (including glucosinolates)
or other functional traits (including plant growth or leaf toughness), and did not differ with
diet breadth (i.e. aphid species) (Table 1). However, there were independent and additive
(non-interactive) effects of aphid diet breadth and host plant variety on both aphid glucosi-
nolates and resistance to predators (Fig 2). Sequestration was 14% greater for the dietary spe-
cialist (B. brassicae) vs. the generalist (M. persicae) aphid (Fig 1B), and all five coccinellid
predators ate dramatically more generalist than specialist aphids, resulting in a three-fold dif-
ference across predator taxa. In contrast, sequestration was 21% greater for aphids feeding
upon the high- (var. Dwarf Essex) vs. low-glucosinolate (var. Amanda) glucosinolate host
plants (Fig 1B), but coccinellid predators ate only 6% more aphids from low- than high-glu-
cosinolate plants, and this effect varied in both magnitude and direction among coccinellid
species. Accordingly, from the herbivore’s perspective, diet breadth mediated predator resis-
tance but did not affect aphid performance in the absence of predators, while variation in
host plant defense mediated aphid sequestration of glucosinolates but was inconsequential
for both aphid performance and predator resistance.

In contrast to the effects on aphids, coccinellid performance was driven by the interactive
effects of plant defense and aphid diet breadth. The cascading, indirect effect of plant defense
on predator performance was greater when feeding upon the specialist than generalist aphid:
When feeding upon specialists, low- (vs. high-) glucosinolate plants increased coccinellid mass
gain 78% and accelerated development 14%. In contrast, when feeding upon generalists, low-
(vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detect-
able effect on development time. These interactive effects of plant defense and aphid diet
breadth on predator performance in turn varied among coccinellid species; the indirect nega-
tive effects of plant defenses on predator performance were consistent among the five predators
when transmitted via the dietary specialist aphid, but varied substantially among predators
when transmitted via the dietary generalist aphid. Accordingly, the cascading effect of plant
defense on predators was stronger in magnitude and more consistent among predator taxa
when transmitted by the specialist than generalist herbivore. These findings support a central
role of herbivore diet breadth in mediating both the strength and contingency of tri-trophic
interactions.

Herbivore performance and resistance in response to plant defense and
herbivore diet breadth
Although the two aphid species studied differ dramatically in diet breadth, we did not observe
the expected variation in performance or response to host plant defenses. The physiological
efficiency hypothesis states that dietary specialists are better adapted than generalists at physio-
logically utilizing their host plants as food [34], and should thus have superior performance
when feeding on their true host plant [35, 36], and that variation in host-plant defense should
have stronger effects on dietary generalist than on better-adapted dietary specialist herbivores
[37, 38]. In contrast to these predictions, we found that aphid performance (nymphs produced
over a five-day period) was indistinguishable between the two species, despite the fact that B.
brassicae feeds only on brassicaceous plants, whileM. persicae feeds on at least 30 different
plant families [44]. Furthermore, both aphids performed similarly on the two B. napus varie-
ties, even though var. Dwarf Essex had 30% higher glucosinolate concentrations constitutively

brassicae (black and dark gray bars) andMyzus persicae (light gray and open bars) feeding on either a low or
high glucosinolate variety of Brassica napus (var. Amanda (AM) and var. Dwarf Essex (DE)). Letters above bars
means significant differences (TukeyHSD test, p < 0.05).

doi:10.1371/journal.pone.0155716.g002
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(control plants) than var. Amanda (Fig 1A). Accordingly, factors such as nutritional content of
the plant, or other defensive metabolites such as non-protein amino acids, may be important
for aphid resistance in this system [50].

In contrast, our findings for how plant defense and herbivore diet breadth mediate resis-
tance to predators were more consistent with theoretical predictions. The enemy-free space
hypothesis states that dietary specialist herbivores are better adapted than generalists at using
their host plants for protection or defense from predators through their superior ability to
sequester plant secondary compounds for their own defense [31, 33, 51, 52]. As predicted, and
previously shown by Francis et al. [39], the dietary specialist aphid contained higher concentra-
tions of glucosinolates than the dietary generalist (Fig 1B). Furthermore, variation in host plant
defense also mediated variation in herbivore defense; both aphids contained somewhat higher
concentrations of glucosinolates when feeding on the high- than low-glucosinolate plant vari-
ety, with 21% higher glucosinolates levels in aphids (across both species) being approximately
proportional to the 30% difference in glucosinolates between the two host plants. The fact that
this increase was similar in magnitude for both aphids shows that dietary specialization did not
result in superior sequestration of plant defenses, in contrast with past studies [31, 33, 52, 53].
Furthermore, the equivalent shift in aphid and plant glucosinolate concentrations suggests that
herbivore sequestration is constrained by the amount of secondary metabolite concentrations
in the plants. Indeed, a linkage between plant secondary metabolites concentrations and insect
sequestration has previously been shown with cardenolides in milkweeds (Asclepias syriaca)
and monarch caterpillars (Danaus plexippus) [54] and with glucosinolates in aphids and brassi-
caceous plants [39], although sequestration is likely to be asymptotic when plant concentra-
tions are very high [55].

Consistent with the enemy-free space hypothesis, the dietary generalist herbivore was con-
sumed three-fold more than the dietary specialist [56]. Importantly, these strong differences in
aphid resistance occur in the context of no difference in aphid performance in the absence of
predators (Fig 1B). These findings thus suggest that the primary benefit of dietary specializa-
tion has more to do with predators than with plant-herbivore interactions [6, 57].

The dramatic differences in aphid resistance and palatability to predators were in turn nota-
ble given the relatively modest effects of diet breadth on aphid defense (i.e. glucosinolate con-
centration; Fig 1B). There are at least two potential and non-mutually exclusive mechanisms
that could contribute to our results. First, the slightly higher concentrations of glucosinolates in
the specialist aphid could stimulate relatively strong avoidance behaviors in predators [58]. To
our knowledge, it is unknown whether coccinellid predators sense the toxicity of their aphid
prey. However, there is evidence that some predators can detect herbivore-induced plant sec-
ondary metabolites [59, 60], and they may assess prey quality using volatile cues [39, 61]. Sec-
ond, specialist aphids, but not the generalists, are able to simultaneously sequester not only
glucosinolates, but also myrosinase enzymes [62]. Glucosinolate toxicity is only manifested
when combined with myrosinases, as it is the degradation products of their interaction that
produces biologically active compounds (i.e. isothiocyanates and nitriles; [63–65]). The ability
of dietary specialists to sequester these enzymes may thus enhance their toxicity to predators.
Accordingly, Francis [62] showed that the specialist B. brassicae, but not the generalistM. persi-
cae, carried the myrosinase enzyme in its tissues, possibly explaining the greater resistance of
B. brassicae to all five species of coccinellid larvae.

Although more modest in magnitude, we also observed effects of host plant defense on
aphid resistance. Consistent with theoretical predictions [38] and past studies [37], variation in
herbivore defense (Fig 1B) was in turn mirrored in resistance to predators, such that aphids
feeding on high glucosinolate plants were less palatable to predators than aphids feeding on
low glucosinolates plants (Fig 2A). This shows that a significant fraction of the variation in
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coccinellid developmental duration across a range of preys may be attributable to differences in
their rate of consumption, rather than exclusively to differences in their dietary suitability. This
is a factor that has not yet been considered in previous approaches that assessed dietary suit-
ability in this group (e.g. [66]).

Predator performance in response to plant defense and herbivore diet
breadth
The dual effects of host plant defense and aphid diet breadth on aphid resistance strongly
affected the performance of all five coccinellid species. Several decades of research has shown
that sequestration of plant secondary metabolites by insect herbivores can affect the develop-
ment, growth and fecundity of predators [2, 32, 67, 68]. Here we show that both increased
plant defense and a more specialized herbivore diet breadth reduce predator performance.
Although these two effects operated independently with respect to aphid resistance, their
effects were not independent from the point of view of predator performance; the negative
indirect effects of host plant defense were stronger when transmitted via the dietary specialist
than generalist aphid. These interactive effects were especially strong with respect to predator
development time, whereas there was no indirect effect of host plant defense transmitted via
the dietary generalist, but a development time with the dietary specialist was 17% longer when
the aphid had fed upon the high than low glucosinolate plant variety.

The cascading effects of host plant defense on predator performance were consistent when
transmitted via the dietary specialist aphid, but varied substantially among the five coccinellid
species—in both magnitude and direction—when feeding upon the dietary generalist aphid. As
described above, the high toxicity of the dietary specialist herbivore could be the result of the
combined sequestration of the glucosinolate compounds and the myrosinase enzymes. The
homogenous, negative response of coccinellids to host plant defense (i.e. 78% more mass gain
and 14% more rapid development on low-glucosinolate plants) thus suggests phylogenetically
conserved (and perhaps even constrained) mechanisms of glucosinolate detoxification in these
predators. In contrast, if the dietary generalist aphid does not sequester myrosinase enzymes,
resistance may be based upon traits other than glucosinolate sequestration, with the efficacy
of these traits in turn being contingent upon predator identity. This variation in predator
response appears to be unrelated to the habitat preference (S1 Table), but may be driven by
other unknown characteristics.

Conclusions
There is a growing recognition for the importance of a tri-trophic perspective in plant-herbi-
vore and herbivore-predator interactions, and of the insufficiency of studying pairwise interac-
tions in a community-level context [6, 18, 38, 57, 69]. Our findings in turn demonstrate the
central role played by herbivore diet breadth, as the cascading effect of plant defense on preda-
tors was stronger in magnitude and more consistent among predator taxa when transmitted by
the specialist than generalist herbivore.

Supporting Information
S1 Fig. Plant traits. Shown are the averages (+/- 1SE) of A) plant dry biomass, B) leaf tough-
ness measured as the force needed to pierce a 3 mm diameter hole punch in each leaf, C)
specific leaf area (SLA), and D) carbon to nitrogen ration (C/N) for Brassica napus variety
Amanda (AM), and B. napus variety Dwarf Essex (DE). Asterisks between bars means signifi-
cant difference across B. napus varieties (t-test, p< 0.05).
(TIF)
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S2 Fig. Effect of host plant chemical defense on aphid performance. The panels show
means ± 1SE for A) age at first reproduction and, B) number of offspring. Values are provided
for Brevicoryne brassicae (black and dark gray bars) andMyzus persicae (light gray and open
bars) feeding on either a low or high glucosinolate variety of Brassica napus (var. Amanda
(AM) and var. Dwarf Essex (DE)). Letters above bars means significant differences (TukeyHSD
test, p< 0.05).
(TIF)

S1 Table. Relative size index (pers. observation) and habitat for the five coccinellid species
tested. Species abbreviations are mentioned in Fig 2.
(DOCX)
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