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Abstract:  
An enormous amount of microarray data has been collected and accumulated in public repositories. Although some of the depositions include raw and 
processed data, significant parts of them include processed data only. If we need to combine multiple datasets for specific purposes, the data should be 
adjusted prior to use to remove bias between the datasets. We focused on a GeneChip platform and a pre-processing method, RMA, and examined simple 
quantile correction as the post-processing method for integration. Integration of the data pre-processed by RMA was evaluated using artificial spike-in 
datasets and real microarray datasets of atopic dermatitis and lung cancer. Studies using the spike-in datasets show that the quantile correction for data 
integration reduces the data quality at some extent but it should be acceptable level.  Studies using the real datasets show that the quantile correction 
significantly reduces the bias. These results show that the quantile correction is useful for integration of multiple datasets processed by RMA, and 
encourage effective use of public microarray data. 
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Background:  
Microarray is one of the most conventional methods of comprehensive 
expression profiling and various platforms are currently available. 
GeneChip is one of the most popular platforms and various pre-processing 
methods are currently proposed [1]. A huge amount of microarray data has 
been collected by various groups and stored in public repositories, such as 
ArrayExpress [2] and Gene Expression Omnibus (GEO) [3]. Along with 
the accumulation of the data, various challenges to integrate the different 
datasets have been achieved so far [4-9]. One of the major approaches is a 
so-called meta-analysis [4, 5]. Features in a specific sample are extracted 
from a dataset and such features extracted from different experiments are 
merged and used for further analyses. These methods mainly integrate 
results of a similar purpose, e.g. cancer classification, to improve the 
statistical power of discrimination. Another approach is a direct connection 
of the probe intensities. First, probe in different platforms are linked using 
cross-references, e.g. EntrezGene, and multiple datasets are integrated. 
Next, the integrated data are transformed by an appropriate processing 
method, e.g. gene shaving, and then the specific features are extracted.  
Currently, both strategies mainly focus on the differentially expressed 
genes in the groups of interest. Although these approaches consider the 
integration of different platforms, there are also difficulties for the same 
platform. One of the problems is the bias of signal distribution. The bias is 
not only due to the experimental procedures but also due to the intrinsic 
differences of samples. In many cases, but not all cases, the same platform 
data could be handled like a single dataset if the data are processed all 
together from raw data and the bias is properly removed. We wondered if 
we should handle the data sharing the same platform like the meta-analysis 
or not when the raw data are unavailable. Then, we focused on and studied 
the integration of pre-processed data in this paper. Although various pre-
processing methods have been proposed so far, MAS5.0 [10], RMA [11] 
are two of the most conventional methods for GeneChip and a lot of data 
processed by these methods have been deposited. Because each sample is 

processed by MAS5.0 in a one-by-one manner, independent datasets 
processed by MAS5.0 separately can be compared with each other. On the 
other hand, the independent datasets processed by RMA separately cannot 
be compared because RMA calculates the corrected values using other 
samples' values. In this report, we focused on the data processed by RMA 
and evaluated quantile correction as a post-processing method for data 
integration. 
 
Methodology: 
An Affymetrix Latin Square (LS) dataset [12] and a Drosophila cDNA 
spike-in experiment (DR) dataset [13] were used for the first evaluation. 
These are triplicate artificial spike-in datasets. Two subsets generated from 
each dataset were processed all together or independently by RMA. The 
independently processed data were integrated without or with quantile 
correction (QC) as a post-processing method.  Hereinafter, the datasets 
processed all together by RMA, the datasets processed independently and 
integrated without QC, and the datasets processed independently and 
integrated with QC are represented as S1, S2 and S3, respectively. The 
signals of triplicate samples in each subset were averaged and evaluated 
with Receiver Operating Characteristic (ROC) curves and areas under 
ROC curve (AUC). We adopted two- and four-fold as the thresholds 
although we had several options of the criteria of the LS dataset. We also 
used two thresholds, 1.2 and 2.0 fold, for the true positives although 
several fold-change spike-in transcripts are included in the DR dataset. The 
DR dataset consists of two conditions of triplicates and each sample 
contains same 3,860 RNA species. Concentrations of 1,309 transcripts vary 
from 1.2 to 4 folds between the two conditions and the concentrations of 
the remaining ones are constant. We originally assigned probesets to the 
transcripts using available information because the assignment is not 
shown in the original article. Therefore, the number of assigned probesets 
is slightly different from the original article [13]. 
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An atopic dermatitis (AD) dataset and a lung cancer (LC) dataset are used 
for the second evaluation. The AD dataset is composed of two independent 
datasets, i.e. GSE5667 and GSE6710. The LC dataset is composed of three 
independent datasets, i.e. GSE3268, GSE6253 and GSE7670. These GSE 
datasets were processed all together (S1) or independently by RMA. The 
separately processed data were integrated without (S2) or with (S3) 
additional QC. At first, correlation analyses between the S1 and S2 or S3 
were carried out. If the bias is properly removed, the slopes, intercepts and 
Pearson’s correlation coefficients (PCCs) are close to 1, 0 and 1, 
respectively. For the LC dataset, GSE6253 and GSE7670 are used for the 

evaluation because the raw data of GSE3268 are not available and the S1 
for GSE3268 cannot be calculated. Next, expression patterns of house 
keeping and disease specific genes were characterized. If the bias is 
properly removed, the house keeping genes would show similar 
distributions between the subsets which are represented as G1 to G5 in 
Figure 1, and the disease specific genes shows similar distributions 
between the analogous subsets of the independent experimental datasets.  
Only S2 and S3 are calculated for the LC dataset because the raw data of 
GSE3268 are not available.  

 

 
Figure 1: Expression patterns of disease specific and house keeping genes.  
The distributions of CCL18, SERPINB3, ACTB and GAPDH of the AD dataset are shown in A, and the distributions of SPP1, CD24, ACTB and GAPDH 
of the LC dataset are shown in B. The S1 of the LC dataset is not shown because the raw data of GSE3268 are not available. (A) G1: lesional skin samples 
of patients (GSE6710), G2: non-lesional skin samples of patients (GSE6710), G3: normal skin samples of healthy donors (GSE5667), G4: non-lesional 
skin samples of patients (GSE5667), G5: lesional skin samples of patients (GSE5667). (B) G1: normal samples of patients (GSE7670), G2: tumor samples 
of patients (GSE7670), G3: tumor samples of patients (GSE6253), G4: normal samples of patients (GSE3268), G5: tumor samples of patients (GSE3268).
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Discussion: 
Evaluation using artificial spike-in datasets: 
The LS dataset consists of fourteen conditions of triplicates with 42 spike-
in transcripts [12]. The 42 transcripts are also divided into fourteen groups, 
i.e. three transcripts in each group, and the concentrations vary from 0.125 
pM to 512 pM. The detail is described in Ref.12. We used three triplicate 
data, i.e. Exp 9, 10 and 11, from the dataset, and concentrations of the 
spike-in transcripts of Exp. 9 are two- and four-fold in combinations with 
Exp. 10 and Exp.11, respectively. The signals of group 6, and group 5 and 
6 were removed in the first and second combinations, respectively. The 
ROC curves and AUCs are shown in Supplementary Figure 1 and Table 
2 (see Supplementary material), respectively. The AUCs of the S2 and 
S3 are lower than the S1. It means that the integration processes without or 
with QC reduce the quality of data. The ROC curves and the AUCs are 
also shown in Supplementary Figure 1 and Table 2, respectively. It also 
indicates that the additional integration processes without or with QC 
reduce the quality of data. 
 
Evaluation using atopic dermatitis and lung cancer datasets: 
At first, we calculated the correlation and regression parameters between 
the S1 and S2 (P1-2) or the S1 and S3 (P1-3) (Table 1 see Supplementary 
material) of the AD and LC datasets. Although the PCCs and slopes of 
P1-2 and P1-3 are close to 1, the intercepts of P1-3 are closer to zero than 
P1-2. These results show the QC removes or reduces the bias between the 
original datasets. Next, expression patterns of several genes were 
characterized (Figure 1). Subset 3 (G3) is the skin of normal donors (NS), 
G1 and G5, and G2 and G4 are the lesion (LS) and non-lesion skin (NLS) 
of AD patients, respectively.  The expression levels of CCL18 and 
SERPINB3 are LS > NLS > NS and the results are consistent with 
previous reports [14, 15]. Although the expression levels of house keeping 
genes, beta action (ACTB) and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), are uniform in the S1 and S3, the levels of G1 
and G2 are higher than G3, G4 and G5 in the S2. These differences are 
correlated with the discrepancies of the global distributions (data not 
shown) and the QC properly removes or reduces the bias in the S2.  The 
expression levels of SPP1 and CD24 in cancer tissues (G2, G3 and G4) are 
higher than normal tissues (G1 and G5) and the results are also consistent 
with previous reports [16, 17].  The expression revels of GAPDH in cancer 
tissues are slightly higher than normal tissues although the expression 
revels of ACTB are uniform between the subgroups.  
 
Although an efficient use of public microarray data is crucial, a significant 
part of the datasets is difficult to compare with each other. One of the 
reasons is due to no provision of raw data, and additional correction of the 
pre-processed data is important to integrate independent datasets. Although 
keeping data quality is an essential point, the results using the spike-in data 
show that the integration reduces the data quality.  Various pre-processing 
methods are extensively evaluated using ROC curves and AUCs so far, and 
such results show that the performances of the methods are various. In 
consideration of the differences between the methods, the degradations 
caused by the integration would be an acceptable level.  Indeed, data 
should be processed all together if the raw data are available. The AUCs of 
S3 are better than S2 in the DS dataset but there are no differences in the 
LS dataset. The DS dataset contains large bias because 1,309 in 3,860 
transcripts are used as spike-in samples. Therefore, the QC reduces the bias 
of the DS dataset and the AUCs are improved. On the other hand, the LS 
dataset contains only 42 spike-in probesets and the effect of the spike-in 
samples to the distribution should be small. Therefore, no significant 

difference between S2 and S3 should be observed in the LS dataset. The 
correlations between the S1 and S3 of the AD and LC datasets are high. 
These results are also obtained with GCRMA [18], but the correlations of 
data processed with MBEI [19] or PLIER [20] are significantly lower than 
RMA or GCRMA (data not shown).  These results indicate that the 
integration using the QC is not applicable to all kinds of pre-processed data 
and user should confirm whether a set of pre-processed data is suitable for 
the integration or not using some raw data.  
 
Conclusion:  
We examined simple quantile correction as the post-processing method for 
integration of the data processed by RMA. Our results indicate that the 
integration using the QC is not applicable to all kinds of pre-processed 
data. It might be considered that the described results are not informative 
because our method is applicable to restricted methods.  The GeneChip 
data processed by RMA shares significant part of the public data and the 
total amount is huge. Therefore, we believe our findings are quite 
informative for scientists who want to use such pre-processed data, and 
encourage effective use of public microarray data.   
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Supplementary material: 
 
Table 1: Regression and correlation parameters of the AD and LC datasets; Slopes, intercepts and Pearson’s correlation coefficients (PCCs) between S1 
and S2 (P1-2) or S1 and S3 (P1-3) are shown. Intercepts, slopes and PCCs are calculated for each sample and the values belonging to the same GSE set 
are averaged. 

Dataset Combination GSE No. Intercept Slope PCC 

GSE5667 -1.792  0.951  0.986  P1-2 
GSE6710 0.628  0.998  0.996  

GSE5667 -0.328  0.981  0.987  
AD 

P1-3 
GSE6710 -0.328  0.979  0.995  

GSE6253 0.580  0.950  0.986  P1-2 
GSE7670 -0.161  1.012  0.998  
GSE6253 -0.049  1.008  0.986  

LC 
P1-3 

GSE7670 0.000  0.998  0.997  
 
Table 2: AUCs calculated from the supplementary Figure 1 

Dataset LS   DR 

Threshold x2 x4   x1.2 x2 

S1 0.95  0.99   0.89  0.97  
S2 0.89  0.98   0.81  0.92  
S3 0.89  0.97    0.86  0.95  
 

 
Supplementary Figure 1: ROC curves of artificial spike-in datasets; The ROC curves are calculated with two thresholds for each dataset, two- and four-
fold for the Latin Square dataset (LS) and 1.2- and two-fold for the Drosophila cDNA spike-in experiment (DR) dataset. The S1, S2 and S3 are described 
elsewhere. 
 
 
 
 


