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Purpose: To introduce a perimetric algorithm (Spatially Weighted Likelihoods in Zippy
Estimation by Sequential Testing [ZEST] [SWeLZ]) that uses spatial information on
every presentation to alter visual field (VF) estimates, to reduce test times without
affecting output precision and accuracy.

Methods: SWeLZ is a maximum likelihood Bayesian procedure, which updates
probability mass functions at VF locations using a spatial model. Spatial models were
created from empirical data, computational models, nearest neighbor, random
relationships, and interconnecting all locations. SWeLZ was compared to an
implementation of the ZEST algorithm for perimetry using computer simulations on
163 glaucomatous and 233 normal VFs (Humphrey Field Analyzer 24-2). Output
measures included number of presentations and visual sensitivity estimates.

Results: There was no significant difference in accuracy or precision of SWeLZ for the
different spatial models relative to ZEST, either when collated across whole fields or
when split by input sensitivity. Inspection of VF maps showed that SWeLZ was able to
detect localized VF loss. SWeLZ was faster than ZEST for normal VFs: median number
of presentations reduced by 20% to 38%. The number of presentations was
equivalent for SWeLZ and ZEST when simulated on glaucomatous VFs.

Conclusions: SWeLZ has the potential to reduce VF test times in people with normal
VFs, without detriment to output precision and accuracy in glaucomatous VFs.

Translational Relevance: SWeLZ is a novel perimetric algorithm. Simulations show
that SWeLZ can reduce the number of test presentations for people with normal VFs.
Since many patients have normal fields, this has the potential for significant time
savings in clinical settings.

Introduction

Glaucoma is a disease of the optic nerve, which
results in the progressive loss of peripheral vision.1

Visual function is typically quantified clinically in
glaucoma using automated perimetry, which enables
measurement of contrast detection thresholds at
various locations across the visual field (most
typically the central 24–30 degrees). Static white-on-
white automated perimetry (SAP) is the most
common form of clinical perimetry and has been
used as a measure of visual function in a number of
large clinical trials.2–5

Since SAP’s conception, there has been a demand
for tests to be faster. SAP requires observers to
maintain fixation whilst attending to small dim lights
for the duration of the test. As the length of the test
increases, observers start to fatigue and have atten-

tional lapses.6–9 The Full Threshold algorithm was the
first SAP procedure and had test times of approxi-
mately 9 minutes per eye in normally sighted
observers.10

Swedish Interactive Threshold Algorithm (SITA)
was developed in the 1990s and superseded Full
Threshold in the Humphrey Field Analyzer, reducing
test times to 4 to 5 minutes for normally sighted
observers.11,12 Most of this time saving was not
algorithmic; SITA matched the response window to
patient response times and used post hoc analysis to
determine false response rates, instead of using catch
trials. Using the Zippy Estimation by Sequential
Testing (ZEST) algorithm engineered for multiple
locations has a similar test time to SITA, with
improved accuracy and precision of visual sensitivity
estimates.13,14 Note that these test times increase for
observers with visual field loss. While the ZEST
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algorithm was originally described as an algorithm to
threshold a single location in the visual field, we will
use ‘‘ZEST’’ in this article to refer to the procedure
where ZEST is used at multiple locations.

We hypothesized that incorporating spatial infor-
mation into the test algorithm would further reduce
test times. Currently, spatial information is only
loosely incorporated into clinical perimetric algo-
rithms, such as via a growth pattern in SITA15 (Fig. 1,
top left panel). The growth pattern relates neighbor-
ing locations by seeding a location’s initial stimulus
test value from its neighbors. The sequence of test
presentations is then performed independently for
each location in the visual field. Spatial information is
also used to calculate the final visual sensitivity
estimates in the SITA postprocessing phase.16 How-
ever, the details of this postprocessing phase are not
available in the public domain.

Incorporating spatial information into a perimetric
algorithm requires knowledge of the spatial relation-
ships present in the visual field. One such source of
spatial information is the arcuate trajectories of the

retinal nerve fibres. In glaucoma, when nerve fibres
are damaged, defects project into the visual space
along the nerve fibre trajectories.17–19 Spatial infor-
mation can therefore be inferred at the retinal level
from models of nerve fibre trajectories,20–24 as
confirmed in visual space from data sets of glau-
comatous visual field defects.25–30

In this article, we develop a new algorithm,
Spatially Weighted Likelihoods in Zest (SWeLZ),
which uses spatial information to help determine the
order and luminance of perimetric stimulus presenta-
tions. SWeLZ extends the ZEST procedure to update
visual sensitivity estimates across multiple locations
after each test presentation. The online updating of
visual sensitivity estimates across the visual field
should allow locations to reach termination in fewer
test presentations, which should result in an overall
reduction in test time.

The aim of SWeLZ is to reduce test times relative
to ZEST, without compromising on the accuracy and
precision of visual sensitivity estimates. ZEST was
chosen as a comparison clinical algorithm because it

Figure 1. Graphical models for SWeLZ using the 24-2 test pattern. The growth pattern is the same as that used in SITA and was used for
the ZEST procedure in the simulations described here. The four seed locations labelled ‘10 (69, 69) are tested first. After these four
locations have reached the termination criteria, the PMFs of the ‘20 locations are seeded with initial values based on the visual sensitivity
estimates of the neighboring ‘10 locations. After all of the ‘20 locations have terminated, the PMFs of the ‘30 locations are seeded based on
their neighboring ‘20 locations and then finally the PMFs of the ‘40 locations are seeded based on their neighboring ‘30 locations. The
correlation model, geometric model, nearest neighbor, random, and all-interconnected panels show the interlocation relationships used for
the respective models. The edge weights can be interpreted using the colored bar on the right.
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performs with improved accuracy and precision
relative to SITA. SITA is commonly used in the
clinic but cannot be simulated, since the full details of
the procedure are not available in the public domain.
The procedures were tested through computer simu-
lation, which allow thousands of simulated observers
with known underlying true sensitivities to be tested
within a short period of time. Testing new algorithms
via computer simulations prior to commencing
clinical trials is a well-established methodology in
the literature, which has been used to test SITA,31 as
well as other perimetric algorithms.14,32–36 Computer
simulations are also widely used in the development
of techniques for both visual field analysis and the
detection of visual field progression.37–39 Compari-
sons were made on test time and sensitivity estimates.

Methods

Software

Custom software was written in C and Cþþ using
the MinGW environment (Minimalist GNU for
Windows, version 4.8.1, VA Software). Simulations
were run using the Victorian Life Sciences Computa-
tion Initiative (VLSCI) supercomputing facility.
Analysis was performed in the open-source environ-
ment, R (http://www.r-project.org/, in the public
domain), using RStudio (version 0.98.501, RStudio,
Inc.).

Test Procedures

Zippy Estimation by Sequential Testing
ZEST employs a maximum likelihood Bayesian

approach to determine the order and luminance of
test presentations.13,14,34,40 The ZEST implementation
used in this article was parameterized based on
previous literature that has explored how to efficiently
run ZEST for perimetry.34,41–43 The ZEST procedure
employed a growth pattern with four waves (Fig. 1,
top left panel).

Before testing begins, each location in the visual
field is assigned a probability mass function (PMF).
The PMF defines the probability that each possible
visual sensitivity value (�5 to 40 dB) is the true visual
sensitivity of the observer. Note that, although
negative intensity values cannot be physically tested,
they are included in the domain to prevent a floor
effect on visual sensitivity estimation. Negative dB
values cannot be tested because luminance values
increase with decreasing dB values, and 0 dB

represents the maximum intensity that the visual field
machine can display.

A bimodal PMF was created using a weighted
combination of normal and abnormal visual sensitiv-
ity population data (4:1, respectively).14,43 The
resultant curve has two peaks: one peak representing
healthy visual sensitivities and another smaller peak
representing dysfunctional sensitivities, centered at 0
dB (Fig. 2, top panels). The position of the PMF peak
representing healthy visual sensitivities varied accord-
ing to the wave number of the growth pattern: the
four locations in the first wave (698, 698) had their
peaks centered on 30 dB,43 while locations in waves 2
to 4 had the position of their peaks calculated from
the mean of the eccentricity-corrected visual sensitiv-
ity estimates of their already terminated neighbors.33

Eccentricity corrections were performed according to
the formula by Hermann, et al.44 describing the
normal hill of vision.

During the test, stimuli are presented with intensity
equal to the mean of a location’s PMF. After each
presentation, a new PMF is generated for the tested
location by multiplying the current PMF by a
likelihood function. The likelihood function repre-
sents the probability that the observer will see the
stimulus and is defined by a cumulative Gaussian
centered on the test presentation intensity with a
standard deviation of 1 dB (see Fig. 2, left-most
panels). The test terminates when the standard
deviation of the PMF at each location is , 1.5
dB.41,42 The final estimate of visual sensitivity for
each location is the mean of the final PMF for that
location.

Spatially Weighted Likelihoods in ZEST
SWeLZ is a newly developed algorithm that

extends the ZEST procedure to propagate informa-
tion across the visual field after each test presenta-
tion. SWeLZ uses a spatial graph to define
relationships between visual field locations. A spatial
graph is defined by edges and edge weights: each
edge relates two locations together and the edge
weight specifies the strength of this relationship.
Larger edge weights indicate stronger relationships.
The spatial graphs used in this article are detailed
later (see Fig. 1).

Prior to test commencement, each location is
assigned a bimodal PMF with peaks at 0 dB and 30
dB (as per wave 1 locations in ZEST). The test then
identifies the location with the PMF with the largest
standard deviation (i.e., the most uncertainty regard-
ing the sensitivity estimate). If many locations have
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PMFs with the same standard deviation—as occurs at
the test beginning—the location is chosen randomly
from this pool. The presented stimulus intensity is
equal to the mean of the location’s PMF.

After each presentation, a new PMF is generated
for the tested location, as well as any location that
shares an edge with the tested location. The likelihood
function used to update the PMFs is eccentricity-
corrected and has a height equivalent to the relevant
edge weight. Thus, updating strongly related locations
has more effect on the shape of the PMF than
updating weakly related locations (for an example, see
Fig. 2). The test terminates when the PMF at every
location is , 1.5 dB. The final estimate of visual
sensitivity is the mean of the final PMF at each
location.

Defining Spatial Relationships

SWeLZ requires the spatial relationships between
locations in the visual field to be defined. Because
high edge weights result in extensive spatial smooth-
ing, preliminary experiments optimized the edge
weights for the trade-off in speed and error (data
not shown). Optimization was achieved using a
fabricated data set of 52 visual fields, each with a
single location defect of�10 dB (one for each location
in the visual field). Edge weights were scaled down
until the defect was no longer smoothed out (the
median error at the defective location from 100
simulations was ,5 dB).

We limited spatial relationships to the 24-2 test
pattern, to test SWeLZ on previously collected
clinical data. However, it should be noted that

Figure 2. SWeLZ example. In this example, the first location tested was location 28. Location 28 is related to locations 29 (weight 0.33),
31 (weight 0.03), 40 (weight 0.04), and 45 (weight 0.01), according to the geometric model. Along the top row, the spatial configurations
of locations 29, 31, 40, and 45 with respect to location 28 are given in the insets. The value at the bottom of the inset is the edge weight
between the tested location 28 and the related locations from the geometric model. The top row shows the bimodal PMF assigned to
each location at the beginning of testing. A test stimulus is presented at the mean of the PMF of location 28 (24 dB). The PMF is then
multiplied by a likelihood function (shown in the middle row), whose form is based on whether the observer saw the stimulus (black) or
not (red dashed). The resultant PMF is shown in the bottom row. The PMF at each location that shares an edge with location 28 is updated
by a modified likelihood function: the height (the vertical distance between upper and lower asymptotes) is equivalent to the edge
weight; and the function is centered on the intensity value that was presented at location 28 corrected by an eccentricity factor.44
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SWeLZ can be used with any test pattern. In order to
investigate the effect of using different spatial
relationships on the performance of SWeLZ, five
different spatial graphs were derived from either
published data or heuristic models (Fig. 1), and are
explained in turn below.

Correlation Model
The spatial graph for the correlation model was

derived from a previously published spatial filter.27

The filter was derived from a study data set of 98,821
visual fields from 14,675 individuals, collected using
the 30-2 and 24-2 test patterns on the Humphrey Field
Analyzer (HFA; Zeiss Humphrey Systems, Dublin,
CA).27 Only the 24-2 locations were used for the
derivation of the filter.

For the purpose of creating a spatial graph, the
average of two filter values was used to determine the
edge weight of the edge shared between each pair of
locations. Edge weights were rescaled linearly to have
a maximum weight of 0.55 and a minimum weight of
0 (Fig. 1, top middle panel).

Geometric Model
The spatial graph for the geometric model was

derived from a computational model relating retinal
ganglion cells to the angle of their insertion at the
optic disc.23,24 The model requires input of axial
length and optic nerve head position.

For the purpose of deriving a spatial graph,
population average biometric data were used: axial
length 25 mm; optic nerve head position (�158, �28).
Locations that were separated by less than 308 at the
disc were considered to share an edge.45 The edge
weight was defined by an exponential decay function
on the degree of angular separation at the optic nerve
(a), and a linear decay function on the Euclidean
distance between locations (d), which was optimized
to have a maximum edge weight of 0.47 and a
minimum edge weight of 0: (0.4747 3 0.0099a/30 �
0.0047) 3 (6 / d) (Fig. 1, top right panel).

Nearest Neighbor
The growth pattern used in SITA is based on

nearest neighbor relationships (see Fig. 1, top left
panel).31 In order to have a comparison model for
SWeLZ, we created a spatial graph based on nearest
neighbors. Locations were connected to their nearest
spatial neighbors, without crossing the horizontal
midline to be consistent with the SITA growth
pattern. All edges were given a weight of 0.2 (Fig. 1,
bottom left panel).

Random
In order to determine whether the specific config-

uration of edges affects error rates, a spatial graph
with randomly assigned edges was generated. Each
location in the visual field was randomly assigned
edges to four other locations. A location could not be
related to itself, and pairings were not allowed to be
duplicated. All edges were given a weight of 0.2 (Fig.
1, bottom middle panel).

All Interconnected
To further explore the effects of edge configura-

tions on error rates, we created a spatial graph in
which every location shared an edge with every other
location in the visual field. All edges were given a
weight of 0.05 (Fig. 1, bottom right panel).

Computer Simulation

Computer simulations were used to test the newly
developed algorithm. The simulation begins by
reading in visual sensitivities, which are assumed to
represent the true underlying visual sensitivities of the
simulated patient. For each simulation, the test
procedure is run until all locations have reached the
termination criteria. Visual sensitivity estimates are
returned rounded to the nearest integer. Patient
responses are simulated based on a frequency of
seeing curve calculated using Abbott’s formula, which
has been shown to effectively model human response
characteristics.46,47

Wðx; t; sÞ ¼ 1� FN� ð1� FN� FPÞ �Gðx; t; sÞ ð1Þ
where FN is the false-negative response rate; FP is the
false-positive response rate; t is the true sensitivity; s is
the standard deviation of a cumulative Gaussian;
G(x,t,s) is the value of a cumulative Gaussian with
mean t and standard deviation s at visual sensitivity x.
The standard deviation of the frequency of seeing curve
is known to increase with decreasing visual field
sensitivity.48,49 Thus, the standard deviation of the
cumulativeGaussian was varied according to a clinically
derived formula, capped at a maximum of 6 dB.49

s ¼ min
�

expð�0:081 3 tþ 3:27Þ; 6
�

ð2Þ

Both reliable (FP¼3%, FN¼3%) and unreliable (FP
¼15%, FN¼3%) observers were simulated. Simulations
were run 1000 times for each visual field using each test
procedure. Test procedures were assessed by comparing
the error—the true sensitivity minus the returned
sensitivity estimates—and the number of presentations
required for the test to reach completion.
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Input Visual Fields

For the computer simulations, we used visual field
data that has been used previously for published
simulations.14,42,50–52 Note that these are different
visual fields to both the fabricated visual fields used to
train the spatial models and the visual fields used to
determine the bimodal pattern of the initial PMF. The
data set comprises 233 normal and 163 glaucomatous
visual fields, obtained using the 24-2 Full Threshold
procedure on the HFA (Zeiss Humphrey Systems).
These visual fields were collected for a previous study,
at which time participants provided written informed
consent to have their perimetric data kept in a
deidentified database for future research purposes.
Normal participants were aged 47 6 16 years, and
glaucomatous participants were aged 61 6 13 years,
with visual field damage ranging from early to severe
(median MD¼�1.81 dB, fifth percentile¼þ2.14 dB,
95th percentile ¼ �22.55 dB). Visual fields were
altered by 1 dB/decade in order to age-correct them
to 45 years and were converted to left eye format. The
locations directly adjacent to the blind spot were
excluded from analysis (�158 638), resulting in a total
of 52 locations for each visual field (see Fig. 1).

Analysis Measures

The performance of SWeLZ using each of five
different spatial graphs (see Fig. 1) was compared
with ZEST. Since the data did not follow the form of
a normal distribution, the median was used as a

measure of central tendency and the 5th to 95th
percentile range was used as a measure of spread or
variability. Errors were calculated by subtracting the
returned estimate of visual sensitivity from the true
sensitivity value, resulting in signed errors: negative
indicates overestimation and positive indicates under-
estimation. Thus, the distribution of errors is equiv-
alent to a vertical translation of the distribution of
output values. Global errors were calculated for each
visual field simulation by taking the median error
across all locations. Global errors and numbers of
presentations for each visual field simulation were
pooled for analysis. Group comparisons were per-
formed using a Wilcoxon rank sum test. Boxplots and
difference plots of error by input sensitivity were
plotted, to give an indication of how the algorithm
performs across different severities of visual field loss.

Very few locations had input sensitivities above 36
dB. Results from these sensitivities are not represent-
ed in the boxplots and difference plots, as there is not
enough data to make a useful inference regarding the
outcome measures. Also note, no locations in the
normal data set had input sensitivities below 16 dB,
which is reflected in the lower limits of the x-axes in
Figures 5 and 7.

Results

All comparisons of error and number of presenta-
tions between ZEST and SWeLZ were statistically

Table. Summary Statistics for ZEST and SWeLZ with Five Different Spatial Models

Perimetric Algorithm

Glaucoma Normal

Error (dB)

Number of
Presentations

per Test Error (dB)

Number of
Presentations

per Test

FP 3%
ZEST 0 (�1, 1) 257 (219, 322) 0.5 (0, 1) 245 (213, 289)
Correlation 0 (�1, 1) 252 (162, 371) 0 (�1, 1) 191 (155, 281)
Geometric 0 (�1, 1) 263 (167, 384) 0 (�1, 1) 196 (160, 292)
Nearest neighbor 0 (�1, 0.5) 253 (160, 372) 0 (�1, 1) 188 (153, 282)
Random 0 (�1, 1) 244 (146, 389) 0 (�1, 1) 173 (140, 270)
All interconnected 0 (�1, 0.5) 217 (119, 364) 0 (�1, 1) 151 (116, 239)

FP 15%
ZEST 0 (�1.5, 1) 257 (219, 319) 0 (�1, 1) 244 (212, 288)
Correlation �1 (�2, 0) 238 (160, 365) 0 (�2, 1) 186 (154, 256)
All interconnected �1 (�2, 0) 199 (119, 371) 0 (�2, 1) 148 (117, 224)

Data are presented as median (fifth percentile, 95th percentile). The top six rows indicate statistics for a reliable observer
(FP ¼ 3%, FN ¼ 3%), and the bottom three rows indicate statistics for an unreliable observer (FP ¼ 15%, FN ¼ 3%).
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significant (Wilcoxon P , 0.001). However, in large
data sets such as those used in this study, small
magnitude differences that are statistically significant
may not be clinically meaningful. The summary
statistics of global error and number of presentations
are listed in the Table. The number of presentations
plotted against the level of visual field impairment is
shown in Figure 3. Figures 4, 5, and 7 show boxplots
and difference plots of error across input sensitivity.
Figure 6 shows the simulated performance of ZEST
and SWeLZ on visual fields with typical glaucoma-
tous visual field defects.

Reliable Observer (FP ¼ 3%, FN ¼ 3%)

For simulations using a reliable observer, global
error performance was similar for all implementations
of SWeLZ and ZEST (Table, first and third columns).
Median global error was 0 dB for both SWeLZ and
ZEST simulated on the glaucoma data set; and 0.5 dB
(underestimation) for ZEST and 0 dB for all
implementations of SWeLZ simulated on the normal
data set. The spread of the global error, as indicated
by the 5th to 95th percentile range, was similar for all
models simulated on the glaucoma data set (3–4 dB),
but was 1 dB greater for all implementations of
SWeLZ (2 dB) relative to ZEST (1 dB) simulated on
the normal data set.

All implementations of SWeLZ showed a reduc-
tion in the number of presentations per visual field
relative to ZEST for simulations on the normal data
set, while maintaining similar numbers of presenta-
tions to ZEST for simulations on the glaucoma data
set (Table, second and fourth columns). The median
number of presentations was reduced by 20% to 38%
for simulations run on the normal data set for SWeLZ
relative to ZEST, with the smallest gain seen for the
geometric model and the greatest gain seen for the all
interconnected model.

Plotting the mean number of presentations against
the degree of visual field loss (Fig. 3) reveals that the
number of presentations follows a parabola-like
shape for both ZEST and the correlation model.
The number of presentations is lowest for both mild
(mean loss:�10 to 4 dB) and severe (mean loss:�28 to
�20 dB) glaucoma and is highest for moderate (mean
loss:�10 to�20 dB) glaucoma. However, the range of
the number of presentations for the correlation model
is approximately twice that of ZEST: the correlation
model terminates faster than ZEST in very mild
glaucoma (160 vs. 220 presentations) but shows more
variability in the number of presentations in moderate
glaucoma than ZEST (ZEST range: 270–340; corre-
lation model range: 250–400), on average terminating
slightly slower than ZEST.

Figure 3. Mean number of presentations against mean loss for the glaucoma data set (ZEST and the correlation model). Mean loss is
calculated by subtracting the median of the normal visual fields from each of the glaucomatous input visual field and averaging across
the 52 locations.

7 TVST j 2016 j Vol. 5 j No. 2 j Article 7

Rubinstein et al.



All implementations of SWeLZ had a greater

spread of the number of presentations, as shown by

the 5th to 95th percentile range. This increased spread

manifested as skewed distributions with a tail in the

direction of increasing numbers of presentations for

simulations on the normal data set, and bimodal

distributions for simulations performed on the
glaucoma data set.

To compare algorithm performance across vary-
ing degrees of visual field loss, we looked at error
across input sensitivity. Figures 4 and 5 show the
results from simulations performed on the glauco-
ma and normal data sets, respectively. All imple-

Figure 4. Results from glaucoma data set (FP¼ 3%, FN¼ 3%), split by input sensitivity. Left column: boxplots of error. Middle column:
difference plots of median absolute error (ZEST less SWeLZ). Right column: difference plots of 5th to 95th percentile range of the error
(ZEST less SWeLZ). Positive values in the middle and left columns indicate where SWeLZ performs better than ZEST. Boxplots are drawn
such that the bottom and top edges of the box indicate the first and third quartiles (interquartile range [IQR]), respectively; the band
inside the box indicates the second quartile (median); and the whiskers represent the 5th and 95th percentiles.
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mentations of SWeLZ performed the same across
input sensitivity for both data sets. Error profiles of
ZEST and SWeLZ were also similar across all
conditions.

For the glaucoma data set, comparisons of SWeLZ
with ZEST revealed no median difference in absolute
errors for intensity values , 22 dB and differences in
the order of 1 dB for sensitivity values . 21 dB
(SWeLZ error greater than ZEST: 22–26 dB and 34–
36 dB; ZEST error greater than SWeLZ: 29–31 dB).

SWeLZ had reduced spread of error over the lower
(0–16 dB) and higher ends (26–36 dB) of the dynamic
range of intensities, while ZEST had reduced spread
centrally (17–25 dB). Differences in spread were of the
magnitudes: 1–4 dB.

For the normal data set, comparisons of SWeLZ
with ZEST revealed median differences in absolute
error in the order of 1 dB (SWeLZ error greater than
ZEST: 20–26 dB and 35–36 dB; ZEST error greater
than SWeLZ: 30–31 dB). SWeLZ has reduced spread

Figure 5. Results from normal data set (FP ¼ 3%, FN ¼ 3%), split by input sensitivity. Formatting is the same as for Figure 4.
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Figure 6. Estimates of ZEST and SWeLZ (correlation model) for visual fields with typical glaucomatous defects and a quadrantanopia for
a randomly chosen simulation (FP ¼ 3%, FN ¼ 3%). Left column: input sensitivity. Middle column: estimate for ZEST procedure. Right
column: estimate of SWeLZ (correlation model) procedure.

10 TVST j 2016 j Vol. 5 j No. 2 j Article 7

Rubinstein et al.



at the higher end of the range of intensities (26–36

dB), while ZEST had reduced variability relative to

ZEST at lower dB values (16–25 dB). The magnitude

of the difference in spread spanned: 1–4 dB.

In order to verify that localized defects were not

being smoothed out, we looked at visual fields with

typical patterns of glaucomatous loss. The results of

randomly chosen simulations of ZEST and the

correlation model are shown in Figure 6. Both ZEST

and SWeLZ were capable of detecting a paracentral

scotoma, nasal step, hemifield loss, and arcuate

defects.

Figure 7. Results for an unreliable observer (FP¼ 15%, FN¼ 3%), split by input sensitivity. Top three rows: results from glaucoma data
set. Bottom three rows: results from normal data set. Column formatting is the same as Figure 4.
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Unreliable Observer (FP ¼ 15%, FN ¼ 3%)

A typical false-positive responder was simulated
using both ZEST and SWeLZ (correlation and all-
interconnected models). The correlation model was
chosen for SWeLZ, because it showed the greater
reduction in test times of the two structurally and
functionally derived models. The all-interconnected
model was chosen as a nonspecific spatial model to
contrast with the literature-derived correlation model.
The relative performance of the correlation model
with ZEST was similar to the simulations using the
reliable observer. However, the tests simulated using
the all-interconnected model tended to smooth out
localized defects.

Median global error was 0 dB for ZEST and
SWeLZ (both geometric and all-interconnected mod-
els) for simulations on the normal data set, with
SWeLZ having a larger spread of global error (3 dB)
relative to ZEST (2 dB) (Table, bottom three rows).
Simulations using the glaucoma data set, revealed a
median error of 0 dB for ZEST and �1 dB
(overestimation) for SWeLZ, with a similar spread
of global error for the two procedures (2–2.5 dB).

The reduction in the number of presentations for
SWeLZ relative to ZEST for the normal data set was
of a similar magnitude to simulations using the
reliable observer (correlation model: 24% reduction;
all interconnected model: 39% reduction). ZEST
terminated in a similar number of presentations
(257) for the unreliable as for the reliable observer
using the glaucoma data set. However, results from
the glaucoma data set showed that SWeLZ required
slightly fewer presentations for the unreliable than the
reliable observer (correlation model: 238; all inter-
connected model: 199). This is likely because false-
positive responses give the semblance of a smoother
field.

Splitting the error by input sensitivity revealed
greater spread for the unreliable relative to the
reliable observer. However, the relationship between
the median error and spread of the error for the
correlation model and ZEST was the same as for the
reliable observer (Fig. 4 versus Fig. 7 top rows; Fig. 5
versus Fig. 7 bottom rows). While the median error
was similar for the reliable and unreliable all-
interconnected model results, localized defects tended
to be smoothed out for the unreliable observer. This is
shown by the large increase in the 5th to 95th
percentile range of locations with input sensitivities ,

15 dB (Fig. 4 bottom row versus Fig. 7 third row).

Discussion

We developed a novel algorithm that incorporates
spatial information into the choice of where and at
what intensity to present perimetric stimuli. The key
difference between SWeLZ and previous uses of
ZEST for perimetry is that PMFs are updated at
multiple locations after each response, rather than
just at the location where the stimulus was presented.

Computer simulations were used to compare the
performance of SWeLZ with ZEST. Computer
simulations provide a powerful method for evaluating
an algorithm’s performance prior to the initiation of
clinical trials. Thousands of tests can be run in a
relatively short space of time, with known underlying
visual sensitivities and controlled patient response
variability. These benefits are not possible with real
human observers.

There is a constant demand for perimetric tests to
be faster. SWeLZ was designed to meet this demand.
Relative to ZEST, simulated test times were reduced
by 20% to 38% for normal visual fields. These test
times are shorter than those expected for SITA by
approximately 32% to 47%, which takes an average of
287 presentations on normal visual fields.12 Many
people who regularly undergo visual field assessment
in primary care clinical settings have normal visual
fields. SWeLZ provides a reduction in test time for
these patients, without increasing error rates. A
further advantage of SWeLZ relative to the growth
pattern used in SITA is that peripheral locations do
not have to be tested last. When the peripheral
locations are always tested last, these same locations
will always be tested when the patient is most fatigued
by the test.

The reduction in test times is present only for
normal visual fields because the difference between
neighboring thresholds in normal visual fields is
small: the hill of vision is smooth. Connecting
locations across a relatively smooth surface allows
locations to reach the termination criteria faster,
without detriment to the final visual sensitivity
estimate.

It is likely that the correlation and geometric
models, while based on population data and repre-
senting the population average, are not true repre-
sentations for a particular individual. These models
do not take into account an individual’s biometric
data, which determines the distribution of nerve fibres
and thus the spatial relationships within glaucoma-
tous visual fields.22–24,53 For this article, we used
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population average biometric data to create models of
spatial relationships, but tested these models with
data that likely comprised a variety of different spatial
relationships. Individuals within the data set may not
be well described by the population average in some
cases.

While the spatial graphs may be able to be refined,
our data demonstrate that the exact configuration of
the spatial graph is not the limiting factor on
SWeLZ’s performance. Although the spatial graphs
used in this study had spatial configurations that
differed from each other, similar error profiles were
produced for each of them (Figs. 4, 5). The greatest
improvement in test times for both data sets was
achieved with a graph that had no spatial informa-
tion; all locations were interconnected with equal edge
weights (see Table). In effect, SWeLZ with this graph
produces a raising or lowering of the height of the hill
of vision with each stimulus presentation. SWeLZ is
thus not glaucoma-specific, as can be seen by the
ability to detect the quadrantanopia shown in Figure
6. However, sensible relationships should be chosen
so as not to smooth out localized defects when the
observer is an unreliable responder (Fig. 7). Thus, it
may be prudent to incorporate a real-time decision-
making process at the front-end of SWeLZ that
allows for changes in spatial models depending on the
suspected cause of visual field loss, as determined by a
clinician.

Additional simulations were run to see whether
increasing the number of test presentations beyond
the test termination criteria (SD , 1.5 dB) would
improve the error profile (not shown) to create a
procedure of the same duration as current procedures
but more accurate. Running SWeLZ for longer did
not improve the error profile. As SWeLZ is based on
ZEST, it may be that this reflects the best perfor-
mance achievable with ZEST and that either a
different approach is required to improve the
accuracy and precision of sensitivity estimates, or
that performance simply cannot be improved beyond
these levels due to other variability factors as
described by the frequency of seeing curve of the
responder. Alternately, using a more principled
approach to incorporate spatial information, such as
conditional random fields—a form of statistical
modeling—may improve error rates, by incorporating
combined probability functions across multiple visual
field locations.16,54

SWeLZ is not a screening approach but provides
genuine threshold estimates. There are several other
perimetric approaches that are rapid for normal

visual fields (e.g., Tendency Oriented Perimetry
[TOP] and SITA-Fast). Key differences are that while
SWeLZ dynamically chooses the number of presen-
tations at each location, TOP presents only one
stimulus at each location, commonly underestimating
defect depth.55,56 SITA-Fast terminates earlier than
SITA accepting a lower accuracy of test results.57,58

SWeLZ provides the benefits of a fast test procedure
for smooth, normal visual fields, while expending a
comparable or slightly greater number of test
presentations to existing procedures for glaucomatous
visual fields, without compromising on the precision
and accuracy of test results in either case.

The next step for SWeLZ will be to test the
algorithm on real observers. Computer simulations
make assumptions about patient responses, such as
the patient’s frequency of seeing curve, attentional
lapses and effects of fatigue, which do not necessarily
reflect the response characteristics of a real observer.
Thus, clinical testing is required to validate the
findings described in this article.

In summary, a novel algorithm was developed to
incorporate spatial information into the update
instructions of a Bayesian maximum likelihood
procedure. SWeLZ required 20% to 38% less presen-
tations than ZEST to complete a visual field test for a
normal visual field, without detriment to the error
profile and while still maintaining accuracy on
glaucomatous visual fields. Additionally, since the
order in which locations are tested is not determined
by a growth pattern, SWeLZ does not require
peripheral locations to be the last locations tested.
SWeLZ has the potential to reduce test times for
patients requiring regular visual field tests, who do
not have manifest visual field loss.
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