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 2 

Abstract 47 

 48 

Cell segmentation and classification are critical tasks in spatial omics data analysis. We 49 

introduce CelloType, an end-to-end model designed for cell segmentation and classification of 50 

biomedical microscopy images. Unlike the traditional two-stage approach of segmentation 51 

followed by classification, CelloType adopts a multi-task learning approach that connects the 52 

segmentation and classification tasks and simultaneously boost the performance of both tasks. 53 

CelloType leverages Transformer-based deep learning techniques for enhanced accuracy of 54 

object detection, segmentation, and classification. It outperforms existing segmentation methods 55 

using ground-truths from public databases. In terms of classification, CelloType outperforms a 56 

baseline model comprised of state-of-the-art methods for individual tasks. Using multiplexed 57 

tissue images, we further demonstrate the utility of CelloType for multi-scale segmentation and 58 

classification of both cellular and non-cellular elements in a tissue. The enhanced accuracy and 59 

multi-task-learning ability of CelloType facilitate automated annotation of rapidly growing 60 

spatial omics data.  61 
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 3 

Introduction 62 

 63 

Recent advancements in spatial omics technologies have markedly improved our ability to 64 

analyze intact tissues at the cellular level, revealing unparalleled insights into the link between 65 

cellular architecture and functionality of various tissues and organs1. Collaborative efforts, such 66 

as the Human Tumor Atlas Network2, the Human Biomolecular Atlas Program3, and the BRAIN 67 

initiative, are leveraging these technologies to map spatial organizations of various types of 68 

healthy and diseased tissues. With the anticipated surge in spatial omics data, there is a pressing 69 

need for sophisticated computational tools for data analysis. A typical analysis workflow of 70 

spatial omics data begins with cell segmentation. Following cell segmentation and quantification 71 

of molecular analytes, cell type annotation is the next critical, albeit often time-consuming task 72 

before further analysis can proceed. Conventional analysis pipelines perform these two tasks 73 

sequentially, typically using the segmentation results as the inputs for the classification task. As 74 

representatives of state-of-the-art segmentation methods, Mesmer4 uses a convolutional neural 75 

network (CNN)5 backbone and a Feature Pyramid Network with the watershed algorithm for 76 

both nuclear and cell segmentation. Cellpose6 and Cellpose27 use a CNN with a U-net8 77 

architecture to predict the gradient of topological map. A gradient tracking algorithm is then used 78 

to obtain the segmentation mask. For cell classification task, CellSighter9 employs CNN to 79 

predict cell types based on segmentation masks and the tissue images. CELESTA10 uses an 80 

iterative algorithm to assign cell types based on quantified cell-by-protein matrix. 81 

 82 

Despite achieving satisfactory performance in certain tissues, conventional approaches have 83 

several limitations. First and foremost, the reliance of cell classification models on segmentation 84 

results hampers their ability to leverage the full spectrum of semantic information present in 85 

tissue images. In fact, these two tasks are interconnected. Segmentation can enhance focus on 86 

relevant signals, thus mitigating noise and enabling more precise learning of class features for 87 

classification. Conversely, information specific to classes aid in the segmentation process, as the 88 

unique texture and morphology of certain object types can enhance segmentation accuracy. 89 

Second, the two-step approach is computationally inefficient, requiring separate training for each 90 

task. Third, the performance of existing segmentation methods also varies significantly across 91 

different tissue types, suggesting substantial room for improvement. Moreover, to our 92 

knowledge, existing methods do not offer a confidence assessment for the segmentation task. 93 

  94 

Deep learning, especially through the use of CNNs, has gained popularity in biomedical image 95 

analysis, especially in segmentation11 and classification9. Mesmer, for example, has notably 96 

improved cell segmentation accuracy using CNN. However, recent developments in computer 97 

vision has shown that Transformer-based models12, such as the Detection Transformer (DETR) 98 
13 and the Detection transformer with Improved deNoising anchOr (DINO)14, significantly 99 

outperform CNN-based models in object detection. These Transformer-based models have also 100 

shown superior performance in instance segmentation of histological images15. Despite these 101 

breakthroughs, the application of Transformer-based models to cell/nuclear segmentation in 102 

multiplexed images and other spatial omics data type remains unexplored. A unified framework, 103 

MaskDINO16, which integrates object detection and segmentation, has shown superior 104 

performance across diverse datasets for multi-class instance segmentation. However, its effective 105 

ness has only been tested on RGB images of natural objects. This leaves a significant gap in 106 

applying Transformer-based models to multiplexed tissue images, which present greater 107 
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 4 

challenges due to their larger number of imaging channels, varying shapes of tightly 108 

apposed/overlapping cellular and non-cellular elements. 109 

 110 

The limitations of current methodologies and the advent of novel deep learning techniques 111 

motivated us to develop CelloType, an end-to-end method for joint cell segmentation and 112 

classification. CelloType employs a Transformer-based deep neural network architecture with 113 

multiple branches to handle object detection, segmentation, and classification concurrently. We 114 

benchmarked the performance of CelloType against state-of-the-art methods using a variety of 115 

public image datasets, including single-channel, and multiplexed fluorescent tissue and cell 116 

images and bright-field images of nature objects. We further demonstrated a novel feature of 117 

CelloType for multi-scale segmentation and classification to delineate both cellular and 118 

noncelluar elements in tissue images.  119 

 120 

Results  121 

 122 

Overview of CelloType 123 

 124 

CelloType is a deep neural network (DNN)-based framework (Figure 1) designed for joint multi-125 

scale segmentation and classification of a variety of biomedical microscopy images, including 126 

multiplexed molecular images, histological images, and bright-field images. The core of 127 

CelloType's functionality begins with the extraction of multi-scale image features through the 128 

use of a Swin Transformer17. These features are then fed into the DINO object detection module 129 

that extracts instance-specific latent features and predicts a preliminary object bounding box with 130 

associated class label for each instance. Finally, the MaskDINO segmentation module integrates 131 

the multi-scale image features from the Swin Transformer and DINO outputs to produce the final 132 

refined instance segmentations. The CelloType model is trained using a loss function that 133 

considers segmentation masks, object detection boxes, and classes labels. 134 

 135 

The DINO module's architecture (Figure 1b) includes a Transformer encoder-decoder set-up 136 

with multiple prediction heads. It begins by flattening image features and integrating them with 137 

positional embeddings18. By employing a strategy that mixes anchor and content queries, the 138 

module can adapt to various object features. The module refines bounding boxes through a 139 

deformable attention mechanism. A contrastive denoising training (CDN) procedure is used 140 

together with the attention mechanism to improve the robustness of bounding box detection. 141 

Finally, a linear transformation is applied to the denoised bounding box features to predict the 142 

class label of the object.   143 

 144 

CelloType can tackle diverse image analysis tasks including cell/nuclear segmentation, non-145 

cellular structure segmentation, and multi-scale segmentation (Figure 1c). Different data types 146 

are used to train CelloType for various tasks. For cell or nuclear segmentation, training data 147 

includes one/two-channel images with corresponding cell membrane or nuclear masks. For joint 148 

segmentation and classification, the training data consists of images with segmentation mask, 149 

bounding box, and class label of each object. The images can contain many channels in addition 150 

to the cell membrane and nuclear channels. CelloType is implemented in Python and publicly 151 

available at http://github.com/tanlabcode/CelloType. 152 

 153 
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 5 

Benchmark of cell and nuclear segmentation performance using multiplexed images 154 

 155 

We first applied CelloType to the TissueNet dataset4 that includes tissue images generated using 156 

six multiplexed molecular imaging technologies (CODetection by indexing (CODEX)19, Cyclic 157 

Immunofluorescence (CycIF)20, Imaging Mass Cytometry (IMC)21, Multiplexed Ion Beam 158 

Imaging (MIBI)22, Multiplexed Immunofluorescence (MxIF)23, and Vectra24) and six tissue types 159 

(breast, gastrointestinal, immune, lung, pancreas, skin). The images were divided into 2,580 160 

training patches (512 x 512 pixels) and 1,324 test patches (256 x 256 pixels). 161 

 162 

We compared CelloType with two state-of-the-art methods, Mesmer4 and Cellpose27. For object 163 

detection and instance segmentation, we used the Average Precision (AP) metric25 defined by the 164 

Common Objects in Context (COCO) project and the Intersection over Union (IoU) thresholds 165 

from 0.5 to 0.9 in 0.05 increments (Methods). The precision-IoU curves (Figure 2a) revealed that 166 

CelloType consistently outperformed both Mesmer and Cellpose2 across the entire range of IoU 167 

thresholds on the TissueNet dataset. Additionally, considering that CelloType provides a 168 

confidence score for each segmentation mask and the COCO metric incorporates these 169 

confidence scores in matching predicted and ground truth cell boundaries, we also evaluated a 170 

version of CelloType that outputs confidence scores, CelloType_C. Overall, performance is 171 

higher for cell segmentation than nuclear segmentation for all methods except for Mesmer. For 172 

cell segmentation, CelloType_C achieved an average AP of 0.556, significantly surpassing the 173 

basic CelloType (0.450), Cellpose2 (0.354), and Mesmer (0.312). For nuclear segmentation, 174 

CelloType_C achieved a mean AP of 0.655, outperforming CelloType (0.571), Cellpose2 175 

(0.516), and Mesmer (0.237) by considerable margins. These results underscore CelloType's 176 

superior segmentation accuracy and the added value of incorporating confidence scores. 177 

 178 

To evaluate the effect of imaging technology and tissue type on the segmentation performance, 179 

we next analyzed the mean AP scores stratified by these two factors (Figure 2b). Overall, 180 

performance of all methods is lowest on the IMC data and breast tissue data. CelloType and 181 

CelloType_C consistently outperformed Mesmer and Cellpose2 across the technology platforms 182 

and tissue types. Figure 2d-e show representative cell and nuclear segmentation results by the 183 

compared methods. These examples illustrate Cellpose2 tends to produce segmentation 184 

boundaries that are larger than the ground truth and thus often under-segmentation. On the other 185 

hand, Mesmer tends to miss more cells or nuclei.  186 

 187 

Benchmark of cell segmentation performance using diverse image types 188 

 189 

To further evaluate CelloType’s performance of cell segmentation across diverse microscopy 190 

images beyond multiplexed fluorescent images, we applied CelloType to the Cellpose Cyto 191 

dataset6 which include fluorescent, bright-field microscopy images of cells and images of natural 192 

objects. Since most of the images in this dataset contain only one channel and Mesmer was 193 

trained on two-channel image data, we only benchmarked the performance of CelloType, 194 

CelloType_C, and Cellpose2.  195 

 196 

Across the entire dataset, CelloType_C achieved an average AP of 0.469, surpassing the 197 

performance of both CelloType (0.368) and Cellpose2 (0.322). This superiority is consistently 198 

observed across 6 diverse image sets (Figure 3b). Figure 3c shows representative segmentation 199 
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 6 

results by Cellpose2 and CelloType for a single-channel image from the “Other microscopy” 200 

category. Consistent with the findings in Figure 2d with multiplexed IMC image, Cellpose2 201 

exhibited a tendency for under-segmentation, while CelloType produced more precise 202 

segmentation boundaries. Additionally, Figure 3d shows the segmentation result for another 203 

single-channel image from the “Non-fluorescent” cell category, where CelloType demonstrated 204 

enhanced accuracy in both identifying the correct number of cells and delineating their 205 

boundaries, in contrast to Cellpose2, which tended to over-segment.  206 

 207 

Joint segmentation and cell type classification of multiplexed images 208 

 209 

To assess the performance of CelloType for simultaneous cell segmentation and classification, 210 

we applied it to a colorectal cancer CODEX dataset26. This dataset consists of 140 images of 211 

tumor tissue sections from 35 patients. Each tissue section was imaged using 56 fluorescent 212 

antibodies plus two nuclear stains, resulting in a total of 58 channels. These images were 213 

processed into 512 x 512 pixels image patches, which were subsequently divided into a training 214 

set of 720 patches and a test set of 120 patches (Supplemental Figure 1). Given the lack of 215 

established methods for simultaneous cell segmentation and classification, we combined 216 

Cellpose2 and CellSighter as a baseline model. This choice was motivated by the reported 217 

superior performance of each method for their respective task.  218 

 219 

Using manual cell type annotation as the ground truth, we computed the AP score at an IoU 220 

threshold of 0.5 (i.e. AP50) for each cell type. CelloType achieved a mean AP50 of 0.84 across 221 

all cell types, markedly exceeding the Cellpose2+CellSighter model’s mean AP of 0.24 (Figure 222 

4a). Furthermore, both CelloType_C and CellSighter produce a confidence score for their cell 223 

type predictions. To assess the utility of the confidence score, we explored the relationship 224 

between these confidence scores and accuracy of predictions. Notably, CelloType's confidence 225 

scores demonstrated a strong, nearly linear correlation with prediction accuracy, particularly 226 

within the confidence score range of 0.5 to 0.7. In contrast, the relationship for CellSighter’s 227 

confidence scores appeared flat, indicating a lack of reliable calibration in its confidence 228 

assessment (Figure 4b). 229 

 230 

Figure 4c shows two examples of predictions by CelloType and Cellpose2+CellSighter along 231 

with the ground truth annotations. These predictions encompass cell segmentation masks, 232 

predicted cell types and associated confidence scores. CelloType correctly predicted the 233 

identities of the vast majority of cells of different types with varying morphologies and 234 

abundance. For instance, in the top image, CelloType correctly predicted abundant neoplastic 235 

cells, alongside rare regulatory T cells (Treg), and morphologically irregular macrophages. 236 

Similarly, in the bottom image, CelloType correctly predicted abundant smooth muscle cells and 237 

sparsely distributed CD8+ T cells. In contrast, the Cellpose2+CellSighter model misclassified 238 

several cell types as plasma cells (top image) and granulocytes (bottom image). Moreover, we 239 

found many instances where CellSighter’s predictions, despite being incorrect, were 240 

accompanied by high confidence scores, as indicated by arrows. 241 

 242 

We next evaluated the performance of each component of the Cellpose2+CellSigher model, 243 

focusing on the segmentation function of Cellpose2 and the cell type classification function of 244 

CellSighter. Figure 5a shows the AP-IoU curve for cell segmentation on the colorectal cancer 245 
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 7 

CODEX dataset. CelloType achieved a mean AP of 0.585, significantly exceeding Cellpose2's 246 

mean AP of 0.345. In assessing CellSighter’s classification performance, we used the ground 247 

truth segmentation masks as inputs, treating the task purely a classification task. The resulting 248 

confusion matrix revealed the distribution of predictions for each cell type and the accuracy 249 

values displayed along the diagonal (Figure 5b). Furthermore, Figure 5c shows CellSighter's 250 

classification precision for 11 cell types, achieving a mean precision of 0.53, compared to 251 

CelloType’s mean AP50 score of 0.81. This comparative analysis underscores CelloType's 252 

superior performance not only as an end-to-end tool for cell type annotation but also in its 253 

individual functions for segmentation and classification, outperforming the two-stage approach 254 

of combining Cellpose2 and CellSighter. 255 

 256 

 257 

Multi-scale segmentation and annotation by CelloType  258 

 259 

Non-cellular components, such as the vasculature, lymphatic vessels, trabecular bone, and extra 260 

cellular matrix, and reticular fibers play important roles in tissue function. These elements are 261 

typically much larger than cells. Moreover, certain cell types like macrophages and adipocytes 262 

are either large or possess irregular shapes. Together, these elements present challenges to 263 

conventional segmentation methods. Furthermore, existing methods are incapable of 264 

simultaneous, multi-scale segmentation of both cellular and non-cellular elements within a tissue 265 

image. To assess the effectiveness of CelloType for multi-scale segmentation and classification, 266 

we applied it to a human bone marrow CODEX dataset27 (Supplemental Figure 2). This dataset 267 

comprises 12 whole-slide images of bone marrow sections from healthy donors, with each tissue 268 

section imaged using 53 fluorescent antibodies plus one nuclear stain, totaling 54 channels. The 269 

images were divided into 512 x 512 pixels patches with 1600 for training and 400 for testing. 270 

The dataset presents a unique challenge due to the diversity of cell/non-cell types, notably 271 

adipocytes, which are substantially larger than other cell types, and trabecular bone fragments, 272 

which have irregular and complex shapes.  273 

 274 

Using 5-fold cross-validation, we evaluated the performance of CelloType on simultaneous 275 

segmentation and classification of both cell and non-cell elements in the bone marrow, including 276 

small regularly shaped cell types and much larger adipocytes and irregularly shaped trabecular 277 

bone fragments.CelloType achieved average AP50 values of 55.4, 44.3, and 58.9 for adipocytes, 278 

trabecular bone fragments, and the rest of cell types, respectively (Figure 6a). Consistent with 279 

our results with the colorectal cancer CODEX dataset, we observed a strong correlation between 280 

the prediction confidence scores and prediction accuracy (Figure 6b). Figure 6c shows two 281 

representative examples of predictions by CelloType along with the ground truths. In addition to 282 

correctly identifying smaller and regularly shaped cells, CelloType correctly identified most 283 

adipocytes and trabecular bone fragments. This result demonstrates CelloType's efficacy of 284 

analyzing challenging tissue images consisting of tightly packed cells and non-cell elements with 285 

varying sizes and shapes. 286 

 287 

Discussion 288 

  289 

We present CelloType, an end-to-end method for joint segmentation and classification for 290 

biomedical microscopy images. Unlike existing methods that treat segmentation and 291 
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 8 

classification as separate tasks, CelloType uses a multi-task learning approach. By leveraging 292 

advancements in Transformer-based deep learning techniques, CelloType offers a unified 293 

approach to object detection, segmentation, and classification. It starts with Swin Transformer-294 

based feature extraction from an image, followed by the DINO object detection and classification 295 

module, which produces latent features and detection boxes that, when combined with the raw 296 

image inputs within the MaskDINO module, culminate in refined instance segmentation and 297 

classification. The shared encoder in the DINO module extracts latent information that is shared 298 

by both tasks, explicitly enhancing the connection between the segmentation and classification 299 

tasks, and simultaneously boosting the performance of both tasks. Moreover, the improved 300 

object detection accuracy of DINO through deformable attention and contrastive denoising 301 

allows the classification task to focus on relevant regions of the image.  302 

 303 

It should be noted that this work has the following limitations. First, CelloType requires training 304 

for segmentation and classification tasks. In terms of segmentation, there is a rapid growth of 305 

training data, exemplified by resources like TissueNet and Cellpose Cyto databases. Models that 306 

are pre-trained on these public datasets are readily transferable to new images, provided that they 307 

contain nuclear and/or membrane channels. However, for classification, training data is 308 

considerably more limited. As a result, pretrained CelloType classification model cannot be 309 

readily applied to new images unless there is a substantial overlap of cell/structure types between 310 

the training and testing images. To mitigate this need for training data for classification, 311 

methodologies such as few-shot learning28, self-supervised learning, and contrastive learning29 312 

can be incorporated into the CelloType framework. Additionally, with the rapid growth of spatial 313 

omics data, it is anticipated that high-quality tissue annotations will also grow quickly. 314 

Consequently, CelloType's pre-training process can be broadened to include a wider array of 315 

datasets, thereby facilitating its application in automated annotation of common tissue types. 316 

 317 

Spatial transcriptomics technologies can profile hundreds to thousands of genes at single-cell 318 

resolution, yielding a much larger number of features compared to spatial proteomics 319 

technologies such as CODEX which typically can only profile fewer than a hundred proteins. 320 

This substantial increase in the feature space, coupled with the distinct spatial distribution 321 

patterns of RNA transcripts versus proteins, introduces new computational challenges for 322 

segmentation and classification. To address the challenge of high dimensionality, a spatially 323 

aware dimensionality reduction step30 can be integrated into the CelloType framework. To 324 

capture the spatial distribution patterns of RNA transcripts, an additional learnable positional 325 

embedding step can be introduced in the DINO module. These enhancements could significantly 326 

broaden CelloType’s applicability to a wide range of spatial omics data. 327 

 328 

 329 

Online Methods 330 

 331 

CelloType 332 

 333 

A schematic overview of CelloType is depicted in Fig. 1a. The method consists of three 334 

modules: 1) a feature extraction module based on the Transformer deep neural network model to 335 

generate multi-scale image features which are used in the DINO and MaskDINO modules; 2) a 336 

DINO module for object detection and classification; and 3) a MaskDINO module for 337 
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segmentation. The resulting latent features and detected bounding boxes are then integrated with 338 

the input image in the MaskDINO module to produce instance segmentation results. Both DINO 339 

and MaskDINO modules are integrated in a single neural network model for an end-to-end 340 

learning. 341 

  342 

Feature extraction module 343 

 344 

Multi-scale image features are generated using the Swin Transformer17 deep neural network 345 

model. Swin Transformer is a hierarchical version of the original Transformer model that utilizes 346 

shifted window operations for efficient self-attention. It can capture both local and global 347 

features, outperforming conventional convolutional networks in modeling complex image data 348 

with improved computational efficiency. Here we use the Swin-L Transformer model pretrained 349 

on the Common Objects in Context (COCO) Instance Segmentation dataset25.  350 

 351 

DINO object detection and classification module 352 

 353 

The DINO14 deep neural network architecture, standing for "DETR with Improved DeNoising 354 

Anchor Boxes", is a novel end-to-end object detection model improving upon the DETR 355 

(Detection Transformer) architecture. DINO leverages the strengths of the Transformer 356 

architecture to effectively capture spatial relationships, essential for discerning overlapping or 357 

adjacent cells. On the other hand, DINO incorporates denoising techniques essential for the 358 

precise identification of cells against intricate backgrounds and under-varied imaging conditions. 359 

Major components of the DINO architecture in CelloType are described as follows. 360 

 361 

1. Query Initialization and Selection: To generate the initial anchor box for detecting 362 

objects, the model uses two types of queries: positional queries and content queries. It 363 

initializes anchor boxes only based on the positional information of the selected top-K 364 

features, while keeping content queries unchanged. These queries provide spatial 365 

information of the objects. On the other hand, content queries remain learnable and are 366 

used to extract content features from the image. This mixed query selection strategy helps 367 

the encoder to use better positional information to pool more comprehensive content 368 

features, hence more effectively combines spatial and content information for object 369 

detection. This mixed query selection method is formulated as following: 370 

𝑄pos = 𝑓encoder (𝑋),  𝑄content =  learnable  371 

where 𝑄𝑝𝑜𝑠 and 𝑄content  represent positional and content queries, respectively. 𝑄𝑝𝑜𝑠 is a 372 

n-by-4 matrix and 𝑄content  is a n-by-embed_dim matrix where n is the number of anchor 373 

boxes and embed_dim is the embedding dimension. 𝑋 represents the flattened image 374 

features and positional embeddings. 375 

 376 

2. Anchor Box Refinement and Contrastive Denoising Training: DINO refines the anchor 377 

boxes step-by-step across decoder layers using deformable attention31. The conventional 378 

attention mechanism examines the whole image whereas the deformable attention selects 379 

more important regions of the image and controls the range of self-attention more 380 

flexibly, making the computation more efficient. The conventional denoising training 381 
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 10 

technique32 involves adding controlled noise to ground truth labels and boxes, formulated 382 

as: 383 

|Δ𝑥| < 𝜆
𝑤

2
, |Δ𝑦| < 𝜆

ℎ

2
, |Δ𝑤| < 𝜆𝑤, |Δℎ| < 𝜆ℎ 384 

where (𝑥, 𝑦, 𝑤, ℎ) denotes a ground truth bounding box where (𝑥, 𝑦) is the center 385 

coordinates of the box and 𝑤 and ℎ are the width and height of the box. 𝜆 denotes a 386 

hyper-parameter controlling the scale of noise. Contrastive Denoising Training adds both 387 

positive and negative samples of the same ground truth, enhancing the model's ability to 388 

distinguish between objects. DINO involves generating two types of queries (positive and 389 

negative) with different noise scales 𝜆1 and 𝜆2, where 𝜆1 < 𝜆2. 390 

 391 

3. Classification Head and Confidence Score: For the classification of each bounding box, a 392 

linear transformation is applied to the corresponding denoised features. The linear layer 393 

outputs a logit vector 𝑍 = [𝑧1, 𝑧2, … , 𝑧𝐾+1], where K is the number of classes. The vector 394 

represents the raw predictions for K classes and the “no object” class. Subsequently, a 395 

SoftMax function is employed on the logit vector to compute the class probabilities:  396 

SoftMax (𝑧𝑖) =
𝑒𝑧𝑖

∑𝑗=1
𝐾+1  𝑒𝑧𝑗

 397 

The confidence score for each detected object is taken as the maximum class probability 398 

(excluding the “no object” class) outputted by the model. This score represents the 399 

model’s confidence in its prediction of the class for the detected object. 400 

MaskDINO segmentation module 401 

 402 

We use MaskDINO16 to predict the segmentation masks using outputs from the feature extractor 403 

module and DINO decoder. MaskDINO enhances the DINO architecture by integrating a mask 404 

prediction branch. This mask branch utilizes the DINO decoder's content query embeddings, 𝑞𝑐, 405 

to perform dot-product operations with pixel embedding maps, derived from both image and 406 

latent features at high resolution. These operations result in a set of binary masks, where each 407 

segmentation mask, 𝑚, is computed as follows: 408 

 409 

𝑚 = 𝑞𝑐 ⊗ 𝑀(𝑇(𝐶𝑏) + 𝐹(𝐶𝑒)) 410 

where 𝑞𝑐 is the content query embedding, 𝑀 is the segmentation head, 𝑇 is a convolutional layer 411 

to map the channel dimension to the Transformer hidden dimension, 𝐶𝑏 is the feature map from 412 

the feature extractor module, 𝐶𝑒 is the latent features from the DINO Transformer encoder, and 𝐹 413 

is an interpolation-based upsampling function to increase the resolution of latent feature and to 414 

make the result match the size of the image feature. 415 

Segmentation task, being a pixel-level classification task, offers more detailed information in the 416 

initial training stages compared to the region-level object detection task. Therefore, MaskDINO 417 

employs the Unified and Enhanced Query Selection technique, which enables the DINO object 418 

detection module to leverage the detailed information from the segmentation task early in the 419 

training process, enhancing the detection task by providing better-initialized queries for 420 
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subsequent stages. This cooperative task approach between detection and segmentation results in 421 

improved detection performance due to the enhanced box initialization informed by 422 

segmentation mask. 423 

During the unified model training, the loss function is calculated by considering three 424 

components: segmentation mask, bounding box prediction and class prediction. The composite 425 

loss function is expressed as follows: 426 

Loss = 𝜆cls 𝐿cls + 𝜆box 𝐿box + 𝜆mask 𝐿mask  427 

where 𝐿cls, 𝐿box, 𝐿mask  represent classification, bounding box, and segmentation mask losses, 428 

respectively, and 𝜆cls , 𝜆box , 𝜆mask  are their corresponding weights. 429 

Implementation of CelloType for Segmentation tasks 430 

 431 

The CelloType software was implemented using the Detectron2 library. Detectron2 is a 432 

Facebook AI Research open source library that provides a high-performance, easy-to-use 433 

implementation of state-of-the-art object detection algorithms written with PyTorch33. 434 

Furthermore, it efficiently manages large datasets and features a flexible architecture that 435 

facilitates customization and integration of various image detection or segmentation pipelines. 436 

 437 

Dataset was randomly divided into 80% for training, 10% for validation, and 10% for testing. All 438 

images and cell/nuclear masks in the training, validation, and testing sets were converted to align 439 

with Detectron2's JSON dictionary schema. For the training dataset, bounding boxes were 440 

derived for each cell using the ground truth segmentation masks. The final dictionary 441 

encompasses the bounding box, segmentation mask, and raw image for each cell. 442 

 443 

For model training, we initialized the DINO and MaskDINO parameters using the weights 444 

pretrained on the COCO instance segmentation dataset, as this dataset is extensive and diverse, 445 

providing a foundational knowledge for the model. This pretraining helps in better feature 446 

extraction and generalization. We used the Adam optimizer with a learning rate of 10-6 and a 447 

batch size of 8. For every 5 training epochs, the trained model was evaluated on the validation 448 

set. The training was terminated when the evaluated AP scores did not improve after 15 epochs.  449 

The model with the best AP scores was used for predicting the cell masks.  450 

 451 

For evaluation and testing, we set the number of queries to 1,000 which determines the number 452 

of boxes and masks generated by the model. In general, this number should exceed the instance 453 

count in each image yet remain reasonable to reduce computational cost. Considering the 454 

maximum cell count in an image patch in all our datasets does not exceed 1,000, this number 455 

was used as the default parameter. Consequently, the model outputs 1,000 instances per image, 456 

each comprising a segmentation mask and a corresponding confidence score. For testing, a 457 

confidence threshold of 0.3 was used to call predicted instances.  458 

 459 

Implementation of CelloType for classification task 460 

 461 
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The same training, validation, and testing protocols were used as for the segmentation task. 462 

However, during model training for multiplexed images with over three channels, the n_channels 463 

hyperparameter within the Swin Transformer was set to match the input images’ dimensionality.  464 

 465 

Running of existing methods 466 

 467 

Mesmer  468 

 469 

Mesmer was run using the pretrained model detailed by the authors in the “Mesmer-470 

Application.ipynb” notebook located in the DeepCell-tf GitHub repository. Key parameter 471 

settings included “image_mpp”= 0.5, "compartment” = “whole-cell" for cell segmentation and 472 

"nuclear" for nuclear segmentation. 473 

 474 

Cellpose2 475 

 476 

For TissueNet and Cellpose Cyto datasets, Cellpose2 was run using the pretrained model 477 

provided by the authors. For colorectal and bone marrow CODEX datasets, we retrained the 478 

Cellpose2 model following the procedure described by the authors at 479 

https://cellpose.readthedocs.io/en/latest/gui.html#training-your-own-cellpose-model. 480 

 481 

CellSighter 482 

 483 

We trained the CellSighter cell type classification model following the protocol provided by the 484 

authors. Key parameters settings included "crop_input_size"=60, "crop_size"=128, 485 

“epoch_max”=300 epochs, and “lr”=0.001. 486 

 487 

Combining Cellpose2 and CellSighter for segmentation and classification 488 

 489 

Since there is no existing method for end-to-end joint segmentation and cell type classification, 490 

we devised a baseline model combining Cellpose2 and CellSighter, given their reported high 491 

performance in the respective tasks. Training of the hybrid model comprised two steps, each 492 

optimizing the performance of the individual method. For Cellpose2, CODEX images and 493 

corresponding ground-truth cell segmentation masks were used for model training. For 494 

CellSighter, the same ground-truth cell segmentation masks along with associated cell type 495 

labels were used for training. 496 

 497 

During the testing phase, a CODEX image was processed with the trained Cellpose2 model to 498 

produce cell segmentation masks, which were subsequently used by the trained CellSighter 499 

model for cell type classification. The final results were the combination of the segmentation 500 

results of Cellpose2 and cell type classification results of CellSighter. 501 

 502 

Metrics and procedure for evaluating segmentation accuracy 503 

 504 

The Average Precision (AP) metric is a widely adopted standard for evaluating the performance 505 

of instance segmentation methods in computer vision tasks34,35. Specifically, for a given 506 

Intersection-over-Union (IoU) threshold, 𝑡, a prediction is considered a true positive if the IoU 507 
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between the predicted segmentation and the ground truth is greater than 𝑡. The IoU is defined as 508 

the ratio of the area of overlap between the predicted segmentation mask and the ground truth 509 

mask. The AP is calculated at IoU values from 0.50 to 0.9 with a step size of 0.05. The final AP 510 

is the average of the AP values at these different IoU thresholds. This gives a more 511 

comprehensive understanding of a model's performance, from relatively lenient (IoU=0.50) to 512 

stricter overlaps (IoU=0.9).  513 

 514 

In the context of multiple classes, mAP is computed by taking the mean of the AP values 515 

calculated for each individual class. Specifically, if the task only has one class, such as cell 516 

segmentation or nuclear segmentation, the mAP would be the average precision across all the 517 

IoU we evaluated. This gives an overall sense of the method's performance across the various 518 

classes in the dataset, rather than focusing on its efficacy in detecting a single class. 519 

 520 

To evaluate segmentation performance using the AP metric, we used the Common Objects in 521 

Context (COCO) evaluation package, a widely used, standardized benchmarking tool in the field 522 

of instance segmentation. Segmentation results were first converted into the COCO format 523 

before the AP metric was computed using the package. To eliminate redundant detections and 524 

ensure that each object is uniquely identified, the package implements the Non-Maximum 525 

Suppression (NMS) procedure. NMS selectively filters out overlapping bounding boxes, 526 

retaining only the box with the highest confidence score while discarding others with substantial 527 

overlap, as determined by the IoU threshold. Since methods such as Mesmer, Cellpose2, and 528 

CelloType do not generate confidence score for the predicted segmentation masks, we arbitrarily 529 

assigned the confidence score to be 1. For the CelloType variant that outputs the confidence 530 

score (CelloType_C), we used the actual confidence scores computed by the method when 531 

applying the NMS procedure.  532 

 533 

 534 

Datasets 535 

 536 

TissueNet dataset 537 

 538 

The TissueNet dataset4 consists of 2,601 training and 1,249 test multiplexed images collected 539 

using multiple imaging platforms and tissue types. Imaging platforms include CODEX, CycIF, 540 

IMC, MIBI, MxIF and Vectra. Tissue types include breast, gastrointestinal, immune cells, lung, 541 

pancreas, and skin. Although many images have dozens of protein markers, all images contain at 542 

least two channels necessary for cell/nucleus segmentation: a cell membrane channel and a 543 

nuclear channel. Each image contains a manual segmentation of cells and/or nuclei. Each 544 

training and test image has a dimension of 512 × 512 pixels and 256 × 256 pixels, respectively. 545 

 546 

Cellpose Cyto dataset 547 

 548 

The Cyto dataset6 consists of images from a variety of sources, including: 1) Cells (Cell Image 549 

Library) set: 100 fluorescent images of cultured neurons with both cytoplasmic and nuclear 550 

stains obtained from the Cell Image Library database (http://www.cellimagelibrary.org); 2) Cells 551 

(Fluorescent) set: 216 fluorescent images of cells visualized with cytoplasmic markers. This set 552 

contains images from BBBC020, BBBC007v1, mouse cortical and hippocampal cells expressing 553 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.15.613139doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.15.613139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

GCaMP6 imaged using a two-photon microscope, confocal images of mouse cortical neurons, 554 

and the rest were obtained through Google image search; 3) Cells (non-fluorecent) set: 50 555 

brightfield microscopy images from OMERO and Google image search; 4) Cells (Membrane) 556 

set: 58 fluorescent images of cells with membrane maker, 40 of which were from the Micro-Net 557 

image set and the rest were obtained through Google image search; 5) Other microscopy set: 86 558 

images of other types of microscopy that contain either non-cells or cells with atypical 559 

appearances. These images were obtained through Google image search; 6) Non-microscopy set: 560 

98 images of non-microscopy images obtained through Google search of repeating objects 561 

including images of fruits, vegetables, artificial materials, fish and reptile scales, starfish, 562 

jellyfish, sea urchins, rocks, seashells, etc. All images in the dataset were manually segmented by 563 

a human operator. 564 

 565 

Colorectal cancer CODEX dataset 566 

 567 

This dataset contains CODEX images of 140 human colorectal samples stained with a 56 568 

fluorescent antibodies and 2 nuclear stains26. Cells were segmented using Mesmer. Cell types 569 

were annotated by the authors using a combination of iterative clustering and manual 570 

examination of marker expression profiles and morphology. For each tissue image in the dataset, 571 

image patches of 512 x 512 pixels were generated. 572 

 573 

Bone marrow CODEX dataset 574 

 575 

This dataset27 contains CODEX images of 12 human bone marrow samples stained with 54 576 

fluorescent antibodies and one nuclear stain. Hematopoietic cell types were annotated by the 577 

authors using a combination of iterative clustering and manual examination of marker expression 578 

profiles and morphology. Adipocytes and trabecular bone fragments were manually annotated by 579 

the authors.  580 

 581 

Code availability 582 

 583 

CelloType is available at: https://github.com/tanlabcode/CelloType. 584 

 585 

 586 

Figure Legends 587 

 588 

Figure 1 – Overview of CelloType. 589 

 590 

a) Overall architecture, input, and output of CelloType. First, a Transformer-based feature 591 

extractor is employed to derive multi-scale features (Cb) from the image. Second, using a 592 

Transformer-based architecture, the DINO object detection module extracts latent features (Ce) 593 

and query embeddings (qc) that are combined to generate object detection boxes with cell type 594 

labels. Subsequently, the MaskDINO module integrates the extracted image features with 595 

DINO’s outputs, resulting in detailed instance segmentation and cell type classification. During 596 

training, the model is optimized based on an overall loss function (Loss) that considers losses 597 

based on cell segmentation mask (maskLmask), bounding box (boxLbox), and cell type label 598 

(clsLcls).  b) Input, output, and architecture of the DINO module. The DINO module consists of 599 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.15.613139doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.15.613139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

a multi-layer Transformer and multiple prediction heads. DINO starts by flattening the multi-600 

scale features from the Transformer-based feature extractor. These features are merged with 601 

positional embeddings to preserve spatial context (step 1 in the figure). DINO then employs a 602 

mixed query selection strategy, initializing positional queries (Qpos) as anchor detection boxes 603 

and maintaining content queries (Qcontent)as learnable features, thus adapting to the diverse 604 

characteristics of cells (step 2). The model refines these anchor boxes through decoder layers 605 

using deformable attention mechanism and employs contrastive denoising training by 606 

introducing noise to ground truth (GT) labels and boxes to improve robustness and accuracy. 607 

Then a linear projection acts as the classification branch to produce the classification results for 608 

each box (step 3). c) Multi-scale ability of CelloType. CelloType is versatile and can perform a 609 

range of end-to-end tasks at different scales, including cell segmentation, nuclear segmentation, 610 

microanatomical structure segmentation, and full instance segmentation with corresponding class 611 

annotations. 612 

 613 

Figure 2 – Evaluation of segmentation accuracy using TissueNet datasets 614 

 615 

a) Average Precision (AP) across Intersection over Union (IoU) thresholds for cell segmentation 616 

by Mesmer, Cellpose2, CelloType and CelloType_C (CelloType with confidence score). Mean 617 

AP value across IoU thresholds of 0.5-0.9 (mAP) for each method is indicated in parenthesis. b) 618 

AP across IoU thresholds for nuclear segmentation. c) Performance of methods stratified by 619 

imaging platform and tissue type. The top left heatmap shows the mAP scores for cell 620 

segmentation stratified by imaging platform, including CODEX, CyCIF, IMC, MIBI, MxIF and 621 

Vertra. The top right heatmap shows the mAP scores for cell segmentation stratified by tissue 622 

type, including breast, gastrointestinal, immune, pancreas and skin. The second row of heatmaps 623 

shows the mAP values for nuclear segmentation. d) Representative examples of cell 624 

segmentation of immune tissue imaged using Vectra platform. Blue, nuclear channel; 625 

green,membrane channel; white, cell boundary. The red box highlights a representative region 626 

that the methods perform differently. The AP75 score (Average precision at IoU threshold of 627 

0.75) is displayed on the images. e) Representative examples of nuclear segmentation of 628 

gastrointestinal tissue using the IMC platform. The AP50 scores are shown on the images.  629 

 630 

Figure 3 – Evaluation of segmentation accuracy using Cellpose Cyto dataset 631 

 632 

a) Average precision (AP) across Intersection over Union (IoU) thresholds for Cellpose2, 633 

CelloType and CelloType_C (CelloType with confidence score). Mean AP value across IoU 634 

thresholds of 0.5-0.9 (mAP) for each method is indicated in parenthesis. b) Mean AP values of 635 

Cellpose2, CelloType, and CelloType_C stratified by imaging modalities and cell types. The test 636 

dataset comprises microscopy and non-microscopy images from the Cellpose Cyto dataset that 637 

comprises 6 subsets, including Cells (Cell Image Library), Cells (Fluorecent), Cells (Non-638 

fluorecent), Cells (Membrane), Other microscopy, and Non-microscopy. c) Representative 639 

examples of cell segmentation of a microscopy image by the compared methods. The red boxes 640 

highlight a representative region that the methods perform differently. The AP75 score is 641 

displayed on the images. d) Representative examples of cell segmentation of a non-fluorescent 642 

image by the compared methods.  643 

 644 

Figure 4 – CelloType performs joint segmentation and cell type classification. 645 
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 646 

a) Barplot showing AP50 values for cell type annotation by the two compared methods. 647 

b) Line plot showing the relationship between classification accuracy and confidence score 648 

threshold by the two methods. c) Representative examples of cell segmentation and classification 649 

results using the colorectal cancer CODEX dataset. Each row represents a 200 by 200 pixels 650 

field of view (FOV) of a CODEX image. Each FOV shows predicted cell segmentation masks 651 

(boxes) and cell types (colors). Ground Truth, manually annotated cell types; CelloType, end-to-652 

end cell segmentation and cell type classification; Cellpose2+CellSighter, cell segmentation by 653 

Cellpose 2 followed by cell type classification by CellSighter. Randomly selected confidence 654 

scores for cell classification computed by the two methods were displayed next to the predicted 655 

instances.  656 

 657 

Figure 5 – Performance benchmarking of Cellpose2 and CellSighter.  658 

Each method was evaluated for its originally intended task, namely Cellpose2 for segmentation 659 

and CellSighter for cell classification. Colorectal cancer CODEX dataset was used for 660 

benchmarking purpose. a) AP value of segmentation across a range of IoU thresholds. Mean AP 661 

value (mAP) is shown in parenthesis. b) Heatmap showing the confusion matrix of CellSighter 662 

cell type classification results. Ground truth cell segmentation masks were used as input to 663 

CellSighter. Each grid in the heatmap includes an accuracy score and the count of cells. c) 664 

Barplot showing the precision scores for each class identified by the CellSighter model based on 665 

the ground truth cell segmentation mask, with an overall mean precision of 0.53.  666 

 667 

Figure 6 – CelloType supports joint multi-scale segmentation and classification. 668 

a) Performance evaluation of CelloType stratified by cell and microanatomic structure types. 669 

The bar plot shows the mean and 95% confidence interval of AP50 values in 5-fold cross-670 

validation experiments. b) Line plot showing the relationship between classification accuracy 671 

and confidence score threshold. c) Representative examples of multi-scale segmentation and 672 

classification using human bone marrow CODEX data. The first row of images shows an 673 

example of bone marrow area consisting of various types of smaller hematopoietic cells and 674 

much larger adipocytes. The second row of images shows an example of bone marrow area 675 

consisting of various hematopoietic cell types and microanatomic structure such as trabecula 676 

bone fragments. Randomly selected confidence scores for cell classification were displayed next 677 

to the predicted instances.  678 

 679 

 680 

Supplemental Figure 1 – Distribution of cell types in the colorectal cancer CODEX dataset. 681 

 682 

Supplemental Figure 2 – Distribution of cell types in the human bone marrow CODEX 683 

dataset. 684 
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