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Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide,
is widely distributed throughout the body. The abundance of PACAP expression in the
central and peripheral nervous systems, and years of accompanying experimental
evidence, indicates that PACAP plays crucial roles in diverse biological processes
ranging from autonomic regulation to neuroprotection. In addition, PACAP is also
abundantly expressed in the hypothalamic areas like the ventromedial and arcuate
nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus
accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area
(VTA) – suggesting that PACAP is capable of regulating energy homeostasis via both the
homeostatic and hedonic energy balance circuitries. The evidence gathered over the
years has increased our appreciation for its function in controlling energy balance.
Therefore, this review aims to further probe how the pleiotropic actions of PACAP in
regulating energy homeostasis is influenced by sex and dynamic changes in energy
status. We start with a general overview of energy homeostasis, and then introduce the
integral components of the homeostatic and hedonic energy balance circuitries. Next, we
discuss sex differences inherent to the regulation of energy homeostasis via these two
circuitries, as well as the activational effects of sex steroid hormones that bring about
these intrinsic disparities between males and females. Finally, we explore the multifaceted
role of PACAP in regulating homeostatic and hedonic feeding through its actions in
regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex-
and energy status-dependent ways.

Keywords: proopiomelanocortin (POMC), pituitary adenylate cyclase activating peptide (PACAP), food addiction,
sex difference, A10 dopamine neurons, feeding, homeostatic feeding
INTRODUCTION

The brain receives and processes metabolic signals from multiple sources such as gut hormones,
nutrients, and circulating leptin and insulin levels to modulate energy intake and energy
expenditure by sending the information to the brainstem and the hypothalamus (1). The
hypothalamus and the brainstem coordinately modulate energy homeostasis by controlling food
n.org June 2022 | Volume 13 | Article 8776471
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intake and body weight, autonomic regulation of gastrointestinal
function (2), as well as energy expenditure through changes in
thermogenesis and locomotor activity (3).The dorsal vagal
complex is an important center within the brainstem that
process signals received through vagal afferents and projects to
the hypothalamus and other regions (4). The dorsal vagal
complex consists of the nucleus tractus solitarius (NTS), the
dorsal motor nucleus of the vagus, and the area postrema, which
is easily accessible to peripheral signals due to the incomplete
blood brain barrier surrounding it (5). Vagal afferent fibers
emanating from the gut have cell bodies in the nodose
ganglion and release glutamate from terminals in the NTS to
activate group II metabotropic glutamate receptors in these cells.
These second order NTS neurons, in turn, employ an array of
different neurotransmitters to control gastric functions (2). The
NTS also contain other neuropeptides like proopiomelanocortin
(POMC), cocaine- and amphetamine-regulated transcript
(CART), and glucagon-like peptide-1 (GLP-1) (5–7), which
has been touted as anorexigenic (i.e., appetite suppressing)
peptides known for their predictive biomarkers of satiety.
Indeed, these neurons are stimulated upon food consumption,
in part, through the activation of signal transducer and activator
of transcription 3 in response to exogenous leptin (8). A recent
paper reported that NTS catecholaminergic and neuropeptide Y
(NPY) neurons also play a role in the vagal-mediated gut-brain
pathway to both stimulate orexigenesis (i.e., hunger or appetite)
and suppress feeding in an opposing manner such that the
activation of NTS epinephrine neurons co-expressing NPY
triggers food consumption while activation of NTS
norepinephrine neurons induces satiety, respectively (9). Vagus
nerve transmission from the gut to the NTS is extremely
important in sensing distension of the gut wall as well as
luminal contents, and either acute or chronic stimulation of
vagus nerve causes weight loss and food reduction in rats (2, 10).
Gut-derived hormones such as GLP-1, cholecystokinin, and
peptide YY are released upon sensing food consumption and
upon binding to their receptors (11–14), and the vagus nerve
conveys this information to the NTS, which, in turn, relays it to
the hypothalamus to induce satiety (7, 15). Beside sending signals
to the hypothalamus, the NTS receives descending neuronal
projections from both the lateral hypothalamus (LH) and the
paraventricular nucleus (PVN) (16, 17). As an example, orexin
neurons are highly expressed in the LH, extensively projected to
many different brain regions, and the administration of orexin A
into the caudal brainstem (18) or the hindbrain (19) causes an
increase in food intake.

Food consumption is controlled and regulated via two circuits:
the homeostatic and the hedonic energy balance circuitries. It is
well known that the hypothalamus functions in both the
modulation of energy homeostasis and feeding regulation. Four
hypothalamic regions that contribute to this modulation are: the
ventromedial nucleus (VMN), the arcuate nucleus (ARC), the LH,
and the PVN. It has been shown that bilateral lesion of the VMN
produced severe obesity – indicating that the VMN suppresses
appetite and food intake; whereas large lesions of the LH led to
death by inanition/starvation (20) – suggesting that the LH
promotes food consumption and appetite. Similarly, the ARC
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and PVN are also known to regulate feeding as global ablation of
the ARC (21) and lesions caudal to the PVN (22) resulted in
morbid obesity and overeating. Within these regions, hormones
like insulin and leptin released from the pancreas and adipose
tissues, respectively, exert anorexigenic effects. In contrast, ghrelin
released from the gastric mucosa exerts orexigenic effects. For
instance, leptin suppresses appetite via the excitatory effect on
anorexigenic POMC neurons in the ARC (23–25) that depolarizes
these neurons and increases their firing rate through activation of
transient receptor potential cation 5 (TRPC5) channels. On the
other hand, leptin also exerts inhibitory effects on orexigenic
neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in
the ARC (26, 27). Similarly, insulin also inhibits and
hyperpolarizes NPY/AgRP neurons in the ARC, and it can
inhibit SF-1 neurons in the VMN as well via the activation of
ATP-gated potassium (KATP) channels (28–30). Insulin can
regulate POMC neuronal plasticity to control energy balance.
For instance, the excitatory effect of insulin depolarizes and
stimulates POMC neurons via the activation of TRPC5
channels (29, 31); whereas, its inhibitory effect results in
hyperpolarization and inhibition of POMC neurons (24, 32–
34). Interestingly, it is now known that the balance between
excitatory and inhibitory of insulin-induced responses in POMC
neurons is dependent on the levels of protein tyrosine
phosphatase 1B (PTP1B) and T-cell protein tyrosine
phosphatase (TCPTP) within these cells (34). In contrast to
insulin and leptin, ghrelin promotes appetite via the excitatory
effects on orexigenic NPY/AgRP neurons by depolarizing and
increasing the firing rate while also inhibiting and suppressing
firing of POMC neurons (35, 36). Satiety and hunger are two
physiological responses that can directly reduce food
consumption and promote feeding, respectively. If the
homeostatic feeding regulates energy intake and expenditure
based on survival and physiological needs, the hedonic feeding
behavior modulates energy balance pertaining to reward-based or
pleasure-driven food intake. The hedonic energy balance circuitry
involves the mesolimbic dopamine (A10) neurons in its regulation
of palatable food. These A10 dopamine neurons emanate from the
ventral tegmental area (VTA) and project to several regions such
as the nucleus accumbens (NAc), hippocampus, prefrontal cortex
(PFC), and amygdala (37–39). Evidence accumulated over the
past 20 years indicates that other neuropeptides like PACAP can
regulate food intake in both homeostatic and hedonic circuitries.
Indeed, the VMN PACAP neurons are ideally suited to do just
that (Figure 1). In this review, we will focus on the effect of
PACAP on the homeostatic and hedonic aspects of feeding. In this
context, we aim to describe the in vivo and in vitro effects of both
exogenous and endogenous PACAP in regulating energy intake
and energy expenditure.
THE HOMEOSTATIC ENERGY
BALANCE CIRCUITRY WITHIN
THE HYPOTHALAMUS

Several seminal lesioning studies conducted in rats and mice
during the 50s and 60s denoted the importance of the
June 2022 | Volume 13 | Article 877647
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hypothalamus in feeding regulation (20, 21). This provided a
catalyst for future experiments leading to a better understanding
of the hypothalamus as the fundamental nexus in controlling the
whole-body energy balance within the homeostatic circuitry. The
cross-communicating systems are conveyed by various
hypothalamic nuclei and their associated neuronal populations,
including those in the VMN, ARC, LH, the dorsomedial nucleus
(DMN), and the PVN. These hypothalamic nuclei produce both
anorexigenic and orexigenic signals to reduce and promote
energy intake, respectively.

As mentioned above, the VMN has long been considered a
central satiety center. SF-1 is a transcription factor encoded by
the NR5A1 gene, and the SF-1 expressing neurons play crucial
roles in the control of energy balance demonstrated by the
studies of conditional knock-out mice (40–42). SF-1 can
directly impact the VMN development such that the deletion
of SF-1 or leptin receptor in SF-1 neurons leads to obesity in mice
(42–44). In addition, the brain-derived neurotrophic factor
(BDNF) as well as its neurotrophic receptor kinase 2 (NTRK2)
receptor are also strongly expressed in the VMN, and the
deletion of BDNF and its receptor leads to hyperphagia and
obesity in humans and mice (45, 46). In contrast, the
administration of BDNF either by central venous or peripheral
venous results in body weight loss and food reduction through
melanocortin 4 receptors (MC4R) signaling (47).

Excitatory input from VMN SF-1 neurons activates the
anorexigenic POMC neurons, which leads to a reduction in
energy intake and an increase in energy expenditure (48–50).
POMC neurons in the ARC make up the melanocortin system
of the hypothalamus. Alpha-melanocyte-stimulating hormone
Frontiers in Endocrinology | www.frontiersin.org 3
(a-MSH) consists of 13-amino acid residues and is derived from
posttranslational modification of the POMC precursor peptide
along with other bioactive peptides like the endogenous opioid b-
endorphin (51–53). The ARC also houses another population of
neurons that co-express orexigenic neuropeptide Y(NPY) and
agouti-related peptide (AgRP) (54). POMC/CART and NPY/
AgRP cells together with downstream target neurons expressing
the MC4R (or MC3R) constitute the melanocortin system (55,
56). Studies have shown that a-MSH plays a critical role in the
central nervous system (CNS) in suppressing food intake (55, 57)
such that the MC4R knock-out mice exhibit obesity,
hyperphagia, hyperleptinemia, and hyperglycemia (58). Similar
results were observed with AgRP, a high-affinity competitive
antagonist of MC4R, which directly inhibits POMC neurons and
ultimately impedes the anorexigenic signaling of a-MSH to
promote feeding and decrease energy expenditure (55, 56).

Previous studies have reported that m-opioid agonists, inhibit
POMC cells by inducing outward current and hyperpolarization
(59–62) and promote appetite in rodents (63, 64) by
physiologically antagonizing the effects of a-MSH on
downstream melanocortin receptors (65). In contrast, b-
endorphin knock-out male, but not wild-type male mice
exhibit hyperphagia, hyperleptinemia, hyperinsulinemia, and
greater adiposity (66). Additionally, the anorexigenic
neuropeptide CART is co-expressed in an appreciable number
of POMC neurons (67).

Of the orexigenic neuropeptides in the ARC, both NPY and
AgRP can directly modulate energy balance. NPY/AgRP neurons
inhibit POMC neurons via synaptic release of the inhibitory
amino acid neurotransmitter gamma-aminobutyric acid
FIGURE 1 | Schematic depiction of VMN PACAP neurons innervating other hypothalamic and mesencephalic structures (e.g., the ARC and VTA, respectively) to
regulate homeostatic and hedonic feeding. Postsynaptic targets of these VMN PACAP neurons include POMC neurons and A10 dopamine (DA) neurons, the latter of
which project to regions like the amygdala, nucleus accumbens and prefrontal cortex to regulate executive decision-making based on cues associated with
anticipated reward.
June 2022 | Volume 13 | Article 877647
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(GABA) from these cells (68). NPY acts at five different receptors
known as Y1, Y2, Y4, Y5, and y6; however, concrete evidence
suggests that postsynaptic Y1 and Y5 receptors mediate the
effects of NPY under ad libitum-fed conditions (69, 70). For
instance, direct administration of NPY into specific
hypothalamic sites like the VMN, PVN and LH (71–73), as
well as injection into the lateral ventricle (72, 74–76) swiftly
induces feeding responses in rats. Similarly, chronic central
administration of AgRP reduces energy expenditure, induces
food intake, and causes obesity (77–79). In congruence with
these studies, Krashes and colleagues employed designer
receptors exclusively activated by designer drugs (DREADDs)
and chemogenetic approaches to acutely stimulate AgRP
neurons through action on MC4R to induce feeding over a
prolonged period as compared to the rapid stimulation of
feeding by GABA and NPY – indicating that AgRP plays a
role in a different phase of appetite regulation (80, 81). Despite
these reports demonstrating the effects of NPY and AgRP as
positive modulators of energy balance, some genetic studies have
shown contradicting results as NPY- and AgRP- knock-out mice
failed to show changes in feeding behavior and body weight (82–
84). In contrast, several papers have indicated that AgRP ablation
in adult mice eventually leads to death due to starvation but
completely ineffective in neonatal mice (85). There is also a
population of nociceptin/orphanin FQ (N/OFQ)-expressing
neurons in the ARC. These cells are glucose- and leptin-
sensitive, and their excitability is enhanced by acute exposure
to a high-fat diet (HFD) (86). ARC N/OFQ neurons co-release
GABA, and optogenetic stimulation of these cells inhibits
neighboring POMC neurons via a combination of fast GABAA

receptor/mediated neurotransmission and activation G protein-
gated, inwardly rectifying K+ (GIRK) channels (86, 87).

Besides the VMN and ARC, the LH also plays a crucial role in
the regulation of energy balance (88). Two neurons that are
abundantly expressed in the LH are melanin-concentrating
hormone (MCH) and orexin. MCH has been recognized as a
feeding stimulator in mammalian brain because MCH mRNA
levels are not only upregulated by threefold in ob/ob (i.e., leptin
deficient) mice under ad libitum fed, but MCH mRNA
expression also increase under fasting condition in both ob/ob
and normal mice (89). Several studies have demonstrated that
intracerebroventricular (ICV) injections of MCH produce an
increase in food intake in both rats (90, 91) and mice (92);
whereas, mice with reduced MCH mRNA levels or disruption of
the MCH1 receptor remain lean and hypophagic (93, 94). Orexin
neurons, on the other hand, are found to have increased in
mRNA expression under fasting conditions (95) and stimulation
of these neurons increases both food intake and energy
expenditure (96). Central administration of orexin not only
promotes food consumption (95, 97), but also increases
behavioral responses to food reward (98). Taken together, it
could be said that neurons found within the LH, such as those
containing orexin or MCH, can relay orexigenic signals. For
example, orexin enhances GABAergic and diminishes
glutamatergic inputs onto POMC neurons, which electrically
silences these cells (99). On the other hand, endocannabinoids
elicit its orexigenic effect by retrogradely inhibit GABAergic
Frontiers in Endocrinology | www.frontiersin.org 4
input onto MCH neurons in a leptin-dependent manner,
which may account in part for the hyperphagic effect of these
cells (100).

The PVN and DMN are also very crucial in the control of
energy balance and regulation of food intake (74, 101, 102) and
also play important roles in physiological processes including
thermoregulation, stress, and appetite (103, 104). The PVN
expresses high levels of MC4R and MC3R, and it receives
innervation not only from the POMC and AgRP neurons from
the ARC, but also from the NTS (105, 106). Direct injection of
NPY or anti-NPY g lgG into the PVN causes stimulatory or
inhibitory effects on food consumption, respectively (107, 108).
On the other hand, the DMN receives projections from the ARC
and sends projections to the PVN and LH. Several studies
reported that NPY expression in the DMN is increased in
rodents with obesity (103, 109), and the increased NPY levels
play a significant role in the development of diet induced obesity
(DIO) as well as the regulation of thermogenesis (104).

Besides playing a significant role in the regulation of energy
balance, these neurons are susceptible to the influence of
peripheral hormones like insulin, leptin, ghrelin, and sex
hormones. Leptin was first discovered by Zhang and his
colleagues in 1994 which opened up new avenues of research
in the regulation of body weight homeostasis and obesity (110).
Leptin is synthesized primarily in mature adipocytes within
white adipose tissue and acts as an anorexigenic hormone after
being released into the bloodstream (110, 111). Leptin acts not
only as an appetite suppressor, but also plays a role in stimulating
metabolism and reducing excessive stored energy (112). There
are several isoforms of leptin receptor (LepR) that have been
cloned like Ob-Ra, Ob-Rb, Ob-Rc (113–116), but the long form
(LepRb) is the most crucial to bring out the effects of leptin and is
abundantly expressed in the hypothalamus (113). For instance,
activation of LepRb via the Janus kinase (JAK)/signal transducer
and ac t i v a to r o f t r an s c r i p t i on ( JAK/STAT) and
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)
signaling pathways depolarizes both the ARC POMC and
VMN SF-1 neurons leading to ions entering and increase in
firing via the activation of TRPC5 channels (23–25, 44). By
contrast, the inhibitory effect of leptin on NPY/AgRP neurons is
mediated by the activation of KATP channel; leading to
hyperpolarization and decrease in firing (26). Studies of NPY/
AgRP and POMC neurons from ob/ob mice as well as DIO
guinea pigs and NR5A1-cre mice reveal that they undergo
extensive synaptic plasticity under conditions of obesity; with
the former getting more excitatory glutamatergic inputs and
fewer inhibitory GABAergic inputs, and the latter receiving large
number of GABAergic inputs and less glutamatergic input (49)
(117); however, fasting can diminish the strength of the
excitatory inputs onto POMC neurons (48). Previous reports
have shown that a deficiency in leptin (i.e., ob/ob) or LepRb (i.e.,
db/db) not only causes hyperphagia and reduces energy
expenditure in both humans and mice (118–120), but also
results in morbid obesity in mice (114, 115).

Like leptin, insulin is known as an anorectic hormone in the
hypothalamus and is synthesized in pancreatic b-cells. Insulin
receptor (IR) is highly expressed in the hypothalamic areas that
June 2022 | Volume 13 | Article 877647
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play a role in the regulation of energy balance (121, 122) and also
colocalizes with POMC and AgRP neurons (123, 124). Though
the absence of IR in these POMC and AgRP neurons did not
significantly alter energy homeostasis, deficiencies in the ability
of insulin to decrease hepatic glucose production and suppress
adipocyte lipolysis were observed (124–126) – indicating that
insulin not only acts as an anorexigenic hormone in the CNS but
also plays an important role in glucose metabolism. While LepRb
activity is mediated via JAK/STAT and PI3K signaling as well as
TRPC5 and KATP channels, the inhibitory effects of insulin are
mediated via similar yet distinct pathways. For instance, insulin
inhibits NPY/AgRP (29, 127) and VMN SF-1 (28) neurons via
the activation of KATP channels. On the other hand, insulin can
exert both excitatory (via activation of TRPC5 channels) and
inhibitory effects (via PI3K) on POMC neurons (24, 29, 32, 33,
128). The directionality of these effects depends on the levels of
PTP1B and TCPTP expressed by POMC and NPY/AgRP
neurons, which fluctuate with changes in energy status (34,
129, 130). The phosphatases PTP1B and TCPTP are highly
expressed in the ARC and can directly regulate leptin and
insulin signaling in POMC neurons such that PTP1B
attenuates leptin activity while TCPTP decreases insulin
signaling via dephosphorylation of JAK2 tyrosine kinase and
IR. However, in NPY/AgRP neurons, TCPTP decreases only
insulin signaling (129–131). Furthermore, deletion of both
phosphatases in POMC neurons, or of TCPTP in NPY/AgRP
neurons, from obese mice prevents DIO in animals fed a high-fat
diet, increases energy expenditure, and enhances leptin and
insulin signaling to promote weight loss (129, 130).

By contrast, ghrelin, acts as an orexigenic peptide and its
circulating levels increase in response to negative energy balance.
Within the ARC, ghrelin, the orexigenic peptide hormone, plays
a crucial role in regulating energy intake and energy expenditure.
To promote food intake, ghrelin acts on its growth hormone
secretagogue receptor (GHSR), which is highly expressed in the
ARC and is located near the median eminence, a site known to
allow the swift access of circulating ghrelin (132). A growing
body of evidence shows that peripheral administration of ghrelin
selectively increases c-Fos expression in the ARC, and ghrelin
fails to stimulate food consumption in ARC-ablated rats (133–
135). Ghrelin regulates food intake and energy balance by
stimulating the NPY/AgRP neurons to elicit an inward current
coupled with depolarization and an increase in firing rate, and
mice lacking NPY- and AgRP-expression are insensitive to the
exogenous administration of ghrelin (35, 136). Similarly, ghrelin
also increases NPY and AgRP mRNA expression (137, 138). The
ghrelin-induced depolarization of NPY/AgRP neurons can occur
directly through activation of postsynaptic sulfonylurea receptor
1/transient receptor potential melastatin 4 receptors as well as
indirectly given that tetrodotoxin did not completely block the
depolarization and decrease in input resistance caused by the
peptide (139). The ghrelin-induced activation of NPY neurons
causes an increase in inhibitory postsynaptic currents in POMC
neurons, and the GABAA receptor-mediated inhibition of
POMC neurons is secondary to the excitatory effect on NPY/
AgRP neurons – indicating that ghrelin is most likely stimulating
Frontiers in Endocrinology | www.frontiersin.org 5
the release of GABA from NPY neurons to induce this
hyperpolarization (140). Indeed, the inhibition of both NPY Y1
and GABAA receptors reverses the hyperpolarization of POMC
neurons – suggesting that ghrelin stimulating the release of both
NPY and GABA from NPY/AgRP/GABA nerve terminals (140).
This increase in the firing of NPY/AgRP neurons enhances
GABAergic input onto POMC neurons such that deletion of
the vesicular GABA transporter in AgRP-cre mice blunts the
ghrelin’s hyperphagic effect (68). This is an indicative that
presynaptic GABA release from NPY/AgRP neurons is an
essential mediator of ghrelin’s effect on food intake. Moreover,
ghrelin enhances NPY’s feeding stimulant action and NPY’s
effects on respiratory quotient (141). The fasting-induced
increase in circulating ghrelin concentrations (142) is
consistent with the increase in spontaneous firing rate in NPY/
AgRP neurons from food-deprived mice compared to those from
ad libitum-fed animals (143). Thus, either peripherally
originated ghrelin or ghrelin neurons in the periventricular
hypothalamus or ARC that send synaptic inputs onto various
ARC neurons can regulate the activity of these cells by
controlling the release of neuropeptides and inhibitory amino
acid neurotransmitter (140, 144). Besides the ARC, the
orexigenic effect of ghrelin may also be attributed to its actions
in the PVN. Intranuclear administration of ghrelin into the PVN,
where ghrelin GHSR-expressing cells are found (145), promotes
appetite (146). Interestingly, it has been reported that blockade of
cannabinoid CB1 receptors in the PVN not only stimulates
fasting-induced hyperphagia but also increases ghrelin’s effect
in ad libitum-fed rats (147). On the other hand, the orexigenic
effects of both cannabinoids and ghrelin appear to involve the
activation of AMP-activated protein kinase (AMPK) (148, 149).
Lastly, it has been recently discovered that liver-expressed
antimicrobial peptide-2 functions as an endogenous antagonist
of the GHSR (150).

AMPK is known as a central regulator of lipid metabolism
and of energy homeostasis. AMPK is a serine/threonine kinase
comprising of two alternative a catalytic subunits (a1 and a2) as
well as two regulatory b and g subunits (151). Activation of
AMPK is dependent on the cellular AMP : ATP ratio such that
increasing in AMP level while decreasing in ATP level stimulates
its activity (151, 152). According to Yan and colleagues, AMPK
activity is regulated by direct allosteric activation and by
activation loop phosphorylation, in which, ATP inhibits, and
AMP triggers, AMPK in these mechanisms (152). As indicated,
the orexigenic effects of ghrelin and cannabinoids are mediated
by the activation of AMPK. There exists a ghrelin-cannabinoid
interaction responsible for this, such that ghrelin requires an
intact endocannabinoid system to promote food intake and fails
to induce the same effect in CB1 knock-out mice (153).
Furthermore, the AMPK-stimulating effect of cannabinoids
was shown to be CB-1 dependent, which was blocked by
rimonabant but had no effect in CB-1 knock-out animals
(153). Taken together, the GHSR-mediated decrease in
excitatory input onto parvocellular neurons in the PVN is
mediated by the activation of AMPK as well as the increased
production of endocannabinoids via subsequent activation of
June 2022 | Volume 13 | Article 877647
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CB1 receptor (153, 154). Leptin and insulin also modulate the
activity of energy-sensing AMPK, such that they inhibit both
AMPK and its downstream targets in the hypothalamus (155,
156). Leptin does this by phosphorylation on serine491 of the
a2AMPK subunit, which was found to be crucial for leptin’s
effects on food intake and body weight (157). On the other hand,
insulin does this by inducing direct phosphorylation via Akt
(protein kinase B) on serine485 of the a1AMPK subunit, which
was showed to inhibit threonine172 phosphorylation and thus
promote cell survival and proliferation (158).

As mentioned above, KATP channels play a crucial role in the
regulation of energy and glucose homeostasis (159, 160). They
are present in most cell types, and are critical in regulating the
membrane potential of neurons (161). The electrochemical
gradient for K+ is such that its equilibrium potential is
considerably more negative than the resting membrane
potential of most neurons; therefore, the opening of K+
channels induces outward currents that result in K+ efflux and
the hyperpolarization of the cell (160). Because K+ channels have
a major role in setting the resting membrane potential, reducing
action potential duration and decreasing firing rate, this indicates
that these channels play a profound role in suppressing cell
excitability (161). KATP (aka. Kir6) channels belong to a
subfamily of the weak inward rectifier K+ channels that are
classified into Kir6.1 and Kir6.2 subtypes (162). While Kir6.1
genes are mainly expressed in the mitochondria (163, 164),
Kir6.2 subunits are involved in most functional KATP channels
that are present in pancreatic b cells, cardiac muscle cells, smooth
muscle cells, and all brain regions (162, 165, 166). These channels
are negatively gated by ATP. For instance, a decrease in the ratio
of ATP/ADP opens cardiac KATP channels and results in
hyperpolarization, which stabilizes cardiac myocytes (162,
165). In contrast, an increase in the ratio of ATP/ADP in
hyperglycemic conditions closes KATP channels of pancreatic b
cells and leads to depolarization and insulin secretion (162). The
antagonism of KATP channels can also be induced by
tolbutamide, a KATP channel blocker that binds preferentially
to the regulatory sulfonylurea receptor subunits SUR1 (165).
THE HEDONIC ENERGY BALANCE
CIRCUITRY AND THE MESOLIMBIC
DA PATHWAY

While the homeostatic-hypothalamic circuitry regulates energy
balance based on physiological needs, the hedonic circuit
modulates energy intake and expenditure based on food
reward. A growing body of literature suggests that both the
consumption of palatable foods and substance abuse converge on
a shared pathway within the limbic system in humans and
rodents alike to mediate motivated behaviors (167–169). This
indicates that the consumption of palatable food involves the A10

neurons that originate from the VTA and project to the NAc,
hippocampus, prefrontal cortex, and amygdala (37–39). The
dopamine (DA) neurons were first discovered ~50 years ago
and were classified anatomically based on the clustering of
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somata into three areas: the retrorubral area (A8), the
substantia nigra pars compacta (SNc, A9), and the ventral
tegmental area (VTA, A10) (170–172). These neurons share the
rate limiting enzyme tyrosine hydroxylase and dopa
decarboxylase, which catalyzes an irreversible decarboxylation
reaction to produce dopamine (173). The VTA is made up
predominantly of three types of neurons including GABAergic,
glutamatergic and A10 DA cells. Beier and colleagues employed
viral trans-synaptic tracing to demonstrate that the GABAergic
and A10 DA neurons receive direct inputs from similar brain
regions; the VTA GABAergic neurons, however, receive inputs
mostly from the central amygdala (a region regulates emotions
such as fear and aggression) and the anterior cortex (174).
Consistent with this finding, stimulation of VTA GABAergic
neurons induces place aversion and disruption in food
consumption via the inhibition of DA activity; whereas, their
inactivation promotes reward by enhancing the A10 DA signaling
(175–177). In contrast, activation of DA neurons within the NAc
promotes reward seeking behavior (178–181). In addition, A10

DA neurons have been shown to express vesicular glutamate
transporters 2 (VGlut2), which reportedly enhances DA storage,
neuronal growth and survival, the density of DA innervation of
the NAc, as well as promotes the corelease of DA and glutamate,
the latter of which induces a fast excitatory postsynaptic current
(182–185). The knockout of VGlut2 gene, in contrast, reverses all
the effects by abolishing glutamate release from A10 DA neurons
and reducing the excitatory signal to the NAc (184, 185). In
addition, local superfusion of glutamate at the VTA not only
selectively activates A10 DA neurons but also enhances the
excitatory synaptic signaling, whereas the superfusion of
quinpirole, a D2 DA receptor agonist, increases the activation
threshold of DA neurons and inhibits the excitatory synaptic
event (182). This may be indicative that glutamatergic co-
transmission plays a crucial role in conveying signals related to
incentive salience. It is indeed the case as the activation of
glutamatergic fibers in the anterior NAc shell causes a
temporary cessation of feeding and promotes reward-seeking
behavior (186).

As stated above, the A10 DA neurons receives direct input
from other hypothalamic areas. For instance, it has been shown
that a subpopulation of ARC POMC neurons project to the VTA
to inhibit A10 DA neurons and induce hypophagia as a result
(187). The local stimulation of VTA GABAergic neurons
disrupts food intake and induces place aversion (175, 176),
whereas photoactivation of LH GABAergic neurons projecting
to the VTA instigates the opposite effect. This is because
photostimulation of LH GABAergic neurons-VTA projection
inhibits local VTA GABAergic neurons, increases DA release,
and promotes social interaction and approaching, whereas
photoactivation of VTA-projecting LH glutamatergic neurons
reduces DA release and promotes avoidance (188). In addition,
they noticed that the inhibition of LH GABAergic-VTA
projection in food-restricted suppresses behavioral responses
illustrated by significantly decreasing the time spent feeding
and investigating the objects (188); however, the activation of
LH GABAergic-VTA projection promotes feeding in sated mice
(189). Within the LH, the two neuropeptides, orexin and MCH,
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have also been studied extensively to better understand how they
modulate feeding and reward seeking behavior in the VTA.
While both peptides project widely throughout the brain,
orexin-expressing LH neurons also project to the A10 DA
neurons to promote intake, but MCH-expressing LH neurons
do not. For instance, orexin signals emanating from the LH to
the VTA to promote neuronal activity by enhancing excitation
via orexin receptors in the VTA and triggering DA neurons and
thus promoting food intake (190, 191). On the other hand,
MCH-expressing LH neurons project to the NAc to elevate
food intake and reward reinforcement (168, 192, 193). Since
neuropeptides from the LH project to the VTA and NAc to
regulate energy balance, it is indicative that there must be a
neural circuit conveying information from the homeostatic to the
hedonic energy balance circuitry.

Interestingly, leptin and its receptors have been shown to
modulate these two energy balance circuitries. Activation of VTA
LepRb neurons decreases motivation for food reward and food
intake in food-restricted mice (194), whereas the activation of
VTA-projecting LH LepRb neurons, which form inhibitory
synapses with non-DA VTA neurons and promote motivation
for food intake (195). In addition, optogenetic activation of LH
LepRb neuron-VTA projections drives appetitive learning while
not affecting consummatory behaviors in vivo (196). Taken
together, the neuropeptides and LepRb neurons in the LH can
modulate energy balance within the hypothalamic-VTA-
NAc circuits.

Hedonic eating is linked to the A10 system, which is known
for its regulation of reward-related behaviors (197, 198) and its
role in binge eating episodes (199, 200). Berridge and colleagues
were one of the first teams to distinguish the role of A10 DA
neurons in hedonic feeding by terming them as reward ‘liking’
and reward ‘wanting’ (201, 202). While ‘liking’ is associated with
the hedonic pleasure triggered by a rewarding stimulus, such as
highly palatable food, ‘wanting’ is related to incentive salience
and is a mesolimbic-induced event that enhances reward-seeking
(201, 202). In addition, ‘liking’ has been measured by observing
changes in facial expressions provoked by taste stimulus in which
sweet tastes are associated with lip smacking while bitter tastes
showed a combination of face expressions like moving the brows,
nose and face (203). In contrast, ‘wanting’ is established via
neural interactions between the NAc, VTA, and amygdala, which
is driven by both physiological state and a reward cue (201, 202).
Though ‘wanting’ and ‘liking’ occur simultaneously, they can be
psychologically and neurally distinguishable from one another
and both are needed to achieve a full reward (202).

Pharmacological and genetic studies demonstrate that
peripheral hormones such as leptin, insulin and ghrelin can act
on the A10 DA systems to control food intake. For instance,
leptin is involved in negative affective encoding within the DA
reward system to regulate hedonic feeding behavior and energy
balance. Several reports indicate that administration of leptin
into the VTA decreases feeding, while adeno-associated virus
(AAV)-mediated LepRb knockdown in the VTA leads to an
increase in both food intake and the sensitivity to palatable foods
(204, 205). Leptin does this by reducing the firing of DA neurons
through the activation of an intracellular JAK/STAT pathway
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(204, 205). Like leptin, acute microinjection of insulin in the
VTA induces long-term depression to suppress excitatory
synaptic transmission onto A10 DA neurons and reduces food
consumption (206–208). Insulin does this by suppressing alpha-
amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-mediated
excitatory post synaptic currents onto A10 DA neurons as well
as inducing the activation of cannabinoid CB1 receptors, that in
turn, inhibiting glutamate release (207). On the other hand,
ghrelin binds to its GHSR to modulate DA release in the NAc
and regulate hedonic feeding in a dose-dependent manner (209,
210). It has been reported that direct administration of ghrelin
into the VTA or NAc triggers hedonic feeding. Ghrelin does this
by triggering the cannabinoid CB1 signaling in VTA neurons to
regulate release of GABA and glutamate, as well as increasing DA
neuronal activity and turnover in a GHSR-dependent manner
via the activation of Gq/phospholipase C (PLC)/diacylglycerol
(DAG) protein signaling pathway and Gs/cyclic adenosine
monophosphate (cAMP)/cAMP-response element binding
protein (CREB) pathway (149, 209–211). Moreover, while the
neuropeptide nociceptin/orphanin FQ (N/OFQ) is largely
considered orexigenic through its actions within the
homeostatic energy balance circuitry (212), it inhibits A10 DA
neurons and attenuates binge feeding behavior when
administered into the VTA (87). These findings reinforce the
notion that A10 DA neurons are an important neural substrate in
the regulation of incentive salience, motivated behaviors and
hedonic feeding.
SEX DIFFERENCES IN, AND
ACTIVATIONAL EFFECTS OF GONADAL
HORMONES ON, THE REGULATION OF
ENERGY BALANCE

Sex differences in the context of energy homeostasis have been
studied extensively. Some reports have shown that men have a
higher prevalence of obesity in early adulthood than their age-
matched female counterparts, but this gender difference tapers
off as reproductive senescence is approached (213, 214). Other
studies have reported that women exhibit a higher chance of
developing eating disorders and extreme obesity (215, 216). Sex
differences exist in the regulation of energy balance as men and
women not only crave different kinds of food but also show
diverse changes under the condition of negative energy balance.
For instance, previous studies reported that women experience
more frequent episodes of state craving (217–219) while men
report 15.6% fewer cravings for sugar-sweetened drinks (219,
220). Compared to men, women were reported to exhibit greater
neural reactivity in the orbitofrontal cortex and insula in
response to highly palatable food under food deprivation (221).
This is congruent with other lines of evidence depicting that
women have a reduced ability to control food desire, higher
cortical and limbic activation when presented with visual,
olfactory, gustatory cues, and increased susceptibility to
episodes of food-craving compared to men (222–225). Sex is
also thought to be one of the main determinants for susceptibility
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to food-related disorders, including binge eating disorder (226,
227). Indeed, binge-prone female rats endured high levels of foot
shock for access to Oreo cookies in comparison to males,
confirming the ‘continued use despite negative consequences’
criteria for substance dependence (228). Similarly, the N/OFQ-
induced suppression of binge feeding is greater in females than in
males, and more robust in obese subjects than in lean ones (87).
Consistent with these findings, Yu and co-workers assessed sex
differences using self-reported of the Yale Food Addiction Scale
and Eating Attitude Test, and they reported that female college
students were 3 times more likely to exhibit disordered eating
behaviors that was positively associated with food addiction
regardless of weight status (229).

The role of sex hormones, especially the circulating estrogen
levels, play in an important role in feeding regulation as feeding
decreases during the estrous stage when serum estrogen levels are
at the highest (230). Consistent with this result, the
administration of estrogen, either centrally or peripherally,
greatly reduces food intake and decreases body weight (230–
235). 17b-estradiol (E2) is the predominant form of estrogen in
the non-pregnant state. E2 diffuses through biological
membranes and interact with two well-known estrogen
receptors (ER): ERa and ERb. ERa is highly expressed in the
ARC and the VMN, whereas ERb is abundantly expressed in
other regions of the brain but scarcely expressed in the ARC
(236). It has been shown that ERa is involved in E2-mediated
effects on body weight and food intake, as mice with ERa
deficiency have increased body weight and heightened food
consumption in both male and female mice (237). Estrogenic
actions are mediated by two different cellular responses; one is
characterized by changes in gene transcription when estrogen
binds to nuclear ERs (aka. ERa and ERb), and the other involves
rapid signaling initiated by E2 binding to membrane-bound ERa,
ERb or the Gq-coupled membrane ER (Gq-mER), which
activates second messengers signaling molecules such as PLC
and protein kinase A (PKA) (238–240). Gq-mER has been
shown to induce opposite effects on POMC and NPY/AgRP
neurons. For instance, the activation of Gq-mER by E2 or the
nonsteroidal compound STX uncouples m-opioid, CB1,
nociceptin opioid and GABAB receptors from GIRK channels
in POMC neurons; resulting in an increase in membrane
excitability illustrated by diminished outward currents and
hyperpolarizations in these cells (240–243). In contrast, the
activation of Gq-mER by E2 or STX enhances the ability of
GABAB receptors to activate GIRK channels in NPY/AgRP
neurons thus eliciting robust but reversible inhibitory outward
currents (244). Interestingly, there is evidence to suggest that
kappa opioids are involved in the weight gain associated with the
hypoestrogenic state (245). Together, these findings confirm that
the estrogenic actions mediated via ERs and Gq-mER play a
crucial role in regulating energy homeostasis

As mentioned, ERa is abundantly expressed in the ARC,
which houses both POMC and NPY/AgRP neurons. A growing
body of evidence has reported that the effects of E2 on feeding
largely occur through multifaceted actions on synapses involving
these cells (238, 244, 246, 247), while E2 in the VMN regulates
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brown adipose tissue (BAT) thermogenesis (246, 248, 249). In
addition, central administration of E2 reduces food intake in
controls but not in AgRP knock-out mice (250). Furthermore, E2
dampens the refeeding response and suppresses c-Fos activation
in NPY/AgRP neurons of fasted female mice (250) – suggesting
that estrogen may regulate NPY/AgRP neurons indirectly via
presynaptic neurons that express ERa. E2 might also do this by
influencing other peripheral hormones, as E2 was reported to
inhibit ghrelin’s orexigenic effect (251); ghrelin, in turn, regulates
food intake and energy balance in large part through its effects on
NPY/AgRP neurons. E2 has been shown to affect the M-current
flowing through KCNQ channels, which is a voltage- and time-
dependent, non-inactivating outward K+ current that is often
targeted by G-protein-coupled receptors (252). The KCNQ 2, 3
and 5 subunits are abundantly expressed in the NPY/AgRP and
POMC neurons. Fasting attenuates M-current and increases the
excitability in NPY neurons by reducing the mRNA expression
of KCNQ 2 and 3 subunits, whereas E2 escalates M-current and
reduces the excitability of NPY neurons to decrease food intake
by increasing the expression of KCNQ5 while not affecting
KCNQ2 and KCNQ3 subunits (252). In addition, targeted
knockout of KCNQ3 has been shown to reduce M-current in
NPY neurons which correlated to an increase in body weight of
high-fat diet (HFD)-fed mice but did not affect food
consumption (253). In contrast, the inhibition of M-current
has been shown to enhance the activity of POMC neurons in
ad libitum chow-fed mice demonstrated by the reduction of food
intake and the control of glucose homeostasis (254, 255). The
Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons in the
ARC also plays an important role in controlling of energy
balance as optogenetic stimulation of the kisspeptin neurons
directly excites POMC neurons and induces a depolarization
(256, 257). In congruence with these findings, E2 has been shown
to increase the ARC KNDy neuronal activity via ghrelin-induced
inhibition of the M-current in female mice (258), and also
enhances glutamate release from KNDy neurons that excites
POMC neurons and inhibits NPY/AgRP neurons via subsequent
activation of metabotropic group I and group II/III receptors,
respectively (259). This, in turn, likely contributes to the
anorexigenic actions of the steroid. Finally, ERs are also found
within the VTA, as intra-VTA injection of E2 significantly
reduced sucrose-seeking behaviors within an hour after
injection (260).

In contrast to estrogen, testosterone in males rapidly increases
food intake caused by the activation of cannabinoid CB1
receptors that leads to the decrease in glutamatergic input onto
POMC neurons (261, 262). Testosterone induces the increase in
endocannabinoid tone via the activation of AMPK, which leads
to suppression of glutamate release at VMN SF-1/ARC POMC
synapses via the upregulation of DAG lipase-a (261, 262).
Interestingly, these effects are intensified in obese males due to
reduced PI3K signaling in the ARC (49, 128). In addition, the
appetite-stimulating effect of N/OFQ, as well as its ability to
inhibit POMC neurons via activation of GIRK channels and
presynaptically inhibit glutamatergic input onto these cells, is
greater in males than their female counterparts (263).
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DYNAMIC AND PLEIOTROPIC
INVOLVEMENT OF PACAP IN THE
REGULATION OF HOMEOSTATIC AND
HEDONIC ENERGY BALANCE CIRCUITS

Pituitary adenylate cyclase-activating polypeptide (PACAP) was
first isolated in 1989 from ovine hypothalamus (264). It has since
been revealed that PACAP is highly conserved among vertebrates
in terms of its amino acid sequence, which remained almost
unchanged during an evolutionary period of ~700 million years
(265–267); indicating its critical role in a number of different
physiological responses (266, 268, 269). PACAP presents in two
isoforms: a neuropeptide with 38 amino acid residues named
PACAP1-38 or a C-terminally truncated version with 27 residues
called PACAP1-27 as well as PACAP-related peptides (266, 267).
PACAP exhibits high homology to vasoactive intestinal peptide
(VIP), and is considered to belong to the VIP/secretin/growth
hormone-releasing hormone/glucagon superfamily (268). PACAP
is localized throughout the central and peripheral nervous system
(CNS - PNS); thus, PACAP is equipped to act as a neurotransmitter,
hormone, as well as a trophic factor in various cell types (268). In
the rat brain, the highest concentration of PACAP can be found in
the hypothalamus (270), which helps regulate many metabolic
processes and activities of the autonomic nervous system. PACAP
exerts a wide range of biological effects such as the regulation of
hormone secretion, the control of neurotransmitter release, as well
as neurotrophic and neuroendocrine actions (266, 269). There are
two classes of PACAP receptors. The type I receptor is termed the
PACAP-specific receptor (PAC1R), which has high binding affinity
and selectivity for PACAP. On the other hand, type II receptors
were originally called VIP-PACAP 1 and 2 receptors but were later
reclassified as VPAC1R and VPAC2R, and they exhibit high
binding affinity for both PACAP and VIP (267). The PACAP/
PAC1 receptor system is distributed throughout the central nervous
system, and is highly expressed in hypothalamic nuclei including
the ARC, DMN, VMN, and PVN (266, 268, 271, 272).

There are two separate pathways that can be stimulated upon
PAC1 receptor activation; the G protein coupled receptors Gs
and Gq pathways. The insulinotropic effect of PACAP is
triggered via the Gs pathway. PACAP binds to PAC1 receptor
and activates Gs, which turns on adenylate cyclase (AC), leads to
the production of cAMP, and activates PKA. PKA, in turn, opens
Ca2+ and Na+ channels and augments glucose-induced insulin
secretion (269). In addition, activation of the Gs by PACAP also
leads to increase in firing and depolarize the membrane potential
of magnocellular neurons in rats brain slices (273–275). PACAP
also has a neuroprotective effect which is accomplished through
the Gq pathway. Briefly, PACAP binds to the PAC1 receptor and
stimulates Gq, which activates PLC. PLC generates inositol
triphosphate (IP3) and DAG, which boosts protein kinase C
(PKC) activity to stimulate cell proliferation, cell survival, cell
differentiation, as well as activate TRPC5 channels (50, 268).
Known for its pleiotropic effects, PACAP can act differentially in
multiple brain regions to stimulate signaling factors and
modulate several ionic currents. The signaling pathways of
PACAP will be summarized in the schematic shown in Figure 2.
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PACAP and VIP are known to exert both neurotrophic and
neuroprotective effects (268). These effects are stimulated
through the activation of different signaling pathways. Several
reports suggest that PACAP can restore not only dopaminergic
transmission but also hippocampal cholinergic transmission
(276–278). This is indicative that PACAP may be a promising
therapeutic agent to fight against cognitive decline in Parkinson’s
and Alzheimer’s disease. Parkinson’s disease is a neurodegenerative
disorder that is secondmost common after Alzheimer’s disease, and
a cure has yet to be found. Along these lines, PACAP exhibits
promising neuroprotective properties as it has been shown to rescue
DA neurons from neurodegeneration and improve locomotor
function in rat parkinsonian models (278).

As stated, the hypothalamic areas such as the ARC, VMN and
PVN play an important role in the regulation of energy
expenditure, energy intake, and thermogenesis. Furthermore,
these regions highly express PACAP and its PAC1 receptor,
suggesting that PACAP must also play a role in these processes
(268, 270, 279). Studies that employed laser microdissection
revealed a number of VMN-enriched genes; including that
encoding for PACAP, the expression of which is diminished in
SF-1 knock-out mice (280). PACAP is also found to colocalize
with SF-1 within the VMN (281). Administration of PACAP has
been shown to notably diminish food consumption either by
intraperitoneal (IP) injection (282, 283), ICV (271, 284, 285),
intra-PVN (272), intra-VMN (272, 286, 287), intra-VTA (288), or
intra-ARC (50, 212) under ad libitum-fed, HFD-fed, and fasting
conditions. Several studies found that PACAP given ICV or intra-
VMN in CD-1 mice and Sprague-Dawley rats increases
locomotor activity, raises in O2 consumption and core body
temperature (272, 281, 286) as well as elevates uncoupling
protein 1 mRNA expression while reducing interscapular brown
adipose tissue level (272). In contrast, intra-PVN administration
of PACAP is without effect on locomotor activity and core body
temperature (272).. Interestingly, ICV injection of PACAP at
higher doses reduced locomotion in C57BL/6J mice (289) –
suggesting the difference in doses of this peptide may affect the
final results when used in different species. Similarly, intra-ARC
administration of PACAP significantly increases O2 consumption
and metabolic heat production while decreasing in respiratory
exchange ratio (RER), and these effects are attenuated in DIO
male mice (50). In ovariectomized (OVX) females, PACAP also
significantly decreases cumulative energy intake, and increases O2

consumption, CO2 production, and metabolic heat production.
The anorexigenic effect, but not the catabolic effects, of PACAP in
OVX females are potentiated by E2 (50). Consistent with this
finding, McMillan and colleagues reported that PACAP is likely
involved in the melanocortin system regulation of sympathetic
nerve activity that triggers thermogenesis. Although treatment
with melanotan II, a melanocortin receptor agonist, did not affect
body weight, white adipose tissue and lipid content of brown
adipose tissue, melanotan II partially rescued the impaired
thermogenic capacity of PACAP deficient mice under cold-
acclimated condition compared to the controls (290). The
appetite-suppressing and metabolic-enhancing effects of
PACAP administered into the mediobasal hypothalamus are
most likely due PAC1 receptor-mediated excitation of POMC
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neurons via activation of TRPC5 channels. This effect can be
attributed to a Gq-coupled signaling pathway involving PI3K,
potentiated by E2 in females via activation of ERa and Gq-mER,
and diminished by DIO in males (50). Optogenetic stimulation of
VMN PACAP neurons elicited the same excitatory effect in
POMC neurons, which was again augmented by E2 in females
(50). Similarly, IP injection of PACAP prior to the dark cycle
decreases food intake in wildtype but not PAC1 receptor fl/flmice
and it does this in a dose-dependent manner (283). Furthermore,
only the highest dose of PACAP [10 mM] consistently and
significantly suppressed bout duration, bout frequency, meal
size, time spent in feeding, and rate of consumption during the
first 8-hour after injection compared to the vehicle, while the
lowest dose [100 nM] only significantly attenuated rate of
consumption (283) – illustrating that these effects were achieved
via the coupling of PACAP/PAC1 receptor system.

How PACAP exerts its anorexigenic or orexigenic effect to
regulate the homeostatic energy balance depend not only on its
site of injection but also on the anatomical location of particular
PACAP neuronal populations as well as the ambient energy
status, with ad-libitum (chow or HFD) feeding reflecting a more
positive energy balance relative to fasting. Food-restriction (i.e.,
fasting) affects the levels of endogenous PACAP. Some have
reported that PACAP expression is elevated in the hypothalamus
of food-deprived rats as well as in chickens; suggesting that
PACAP acts as a regulator of food intake (291). This was
confirmed in mice in a sex differentiated manner such that
hypothalamic PACAP levels increased to a greater extent in
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male than in female mice with food deprivation, while they
decreased to a greater extent in female than in male mice under
water deprivation (292). The result enhances the idea that male
and female PACAP systems react differently under food
deprivation, which may explain their differences in the choice
of food and amount of food consumption in response to
starvation (221). Still, others report that positive energy states
upregulate PACAP levels in the VMN of mice (281), food
restriction reduces the PACAP mRNA expression in mice in
both the hypothalamus and more specifically the VMN (271,
281). In addition, food-restricted mice show low levels of POMC
and PACAP mRNA expression coupled with high NPY mRNA
expression, and ICV injection of PACAP decrease energy intake
after 30-min of refeeding (271, 281). Interestingly, and yes
paradoxically, we found that fasting completely reversed the
anorexigenic effect of an intra-ARC injection of PACAP by
significantly increasing the cumulative energy intake of
wildtype mice, which is greatly reduced by E2 in OVX female
mice (212). This reversal was due to a switch in the polarity of the
response in POMC neurons from excitatory to inhibitory caused
by a shift in the coupling of PAC1 receptors from TRPC5
channels to KATP channels brought on by upregulated AMPK
as well as PTP1B and TCPTP in these cells (212). These fasting-
induced changes in PAC1 receptor-mediated signaling in ARC
POMC neurons is highlighted in Figure 3.

In other studies, researchers found that PACAP-deficient mice
showed reduction in food intake, carbohydrate intake, and NPY
mRNA expression (293), suggesting that endogenous PACAP
FIGURE 2 | A schematic summary of PACAP signaling cascades. PACAP exerts its effects via interaction and activation of the PAC1 receptor. This receptor
couples to both Gs and Gq. Upon PAC1 receptor stimulation activation of Gs and subsequently adenylyl cyclase (AC) triggers the production of cyclic adenosine
monophosphate (cAMP), which augments protein kinase A (PKA) phosphorylation and feeds into glucose signaling and insulin release. In contrast, the coupling with
Gq activates phospholipase C (PLC) and boosts the production of inositol triphosphate (IP)3 and diacylglycerol (DAG), which leads to the activation of protein kinase
C (PKC) and increases intracellular Ca2+ to promote cell survival, cell proliferation, and cell differentiation.
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affects carbohydrate consumption via the orexigenic effect of NPY/
AgRP neurons as PACAP and its receptors including PAC1R and
VPAC2R are highly expressed on NPY neurons (294). In
congruence with these findings, PACAP neurons in the PVN
provide excitatory input onto NPY/AgRP neurons that can drive
homeostatic feeding (295). Additionally, PACAP knock-out mice
show reduced nocturnal and daily food intake as compared to the
controls, but diurnal intake was increased; indicating that food
intake may be dependent on time of the day for these PACAP
knock-out mice (296). In addition, PACAP knock-out mice exhibit
increased POMC mRNA expression and decreased AgRP mRNA
level (296), and AgRP levels were higher in the wildtype compared
to PACAP knock-out mice. Furthermore, ICV administration of
PACAP6-38 lead to a reduction in food intake, body weight, and
AgRP expression in wildtype mice, while no changes were observed
in POMC expression (296). This is indicative that PACAP can act as
either an orexigenic or anorexigenic neuropeptide in the
hypothalamus, and PACAP is capable of regulating the release of
the peptidesa-MSH and AgRP. As a neuropeptide that is intimately
involved in energy homeostasis, PACAP may also be capable of
regulating the release of other peptides like leptin, insulin, and
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ghrelin. This was indeed the case under the fasting state and
postprandially where insulin and leptin expression levels were
reduced in PAC1 knock-out mice, while ghrelin levels were
greatly elevated by overnight fasting and postprandially in PAC1
knock-out mice compared to the wildtype (283). Additionally,
evidence suggests that PACAP may mediate the anorexigenic
effect of leptin (297). As with POMC neurons, leptin depolarizes
VMN SF-1/PACAP neurons and increases their firing rate (44).
Leptin injection into the VMN reduced food intake compared to
saline-treated animals and the effect was completely blunted by
PACAP6-38; however, administration of PACAP6-38 per se into the
VMN showed no effect on either food consumption or body weight
(297). This gives the indication that leptin may exert its effect via
PAC1R activation in the VMN. Furthermore, they found not only
that PACAP expression is colocalized with BDNF mRNA, but
PAC1R expression was also co-expressed with BDNF and LepRb.
With this information, they administered PACAP in the VMN and
observed STAT3 phosphorylation as well as increased BDNF and
suppressor of cytokine signaling 3 mRNA levels – just like with
LepRb activation (297). Again, these effects of leptin and PACAP
were blocked by PACAP6-38; suggesting that PACAP is downstream
FIGURE 3 | Schematic overview of the energy status-dependent plastic changes in PAC1 receptor-mediated signaling at VMN PACAP/ARC POMC synapses. Top
row, Under ad libitum-fed conditions, optogenetic stimulation of VMN PACAP neurons and subsequent release of PACAP stimulates PAC1 receptors in ARC POMC
neurons, which in turn activates TRPC5 channels via Gq-mediated signaling. This depolarizes the POMC neurons and increases their firing, and ultimately decreases
homeostatic feeding. These effects are potentiated by membrane-initiated estrogenic signaling via ERa and Gq-mER in females, and diminished by DIO in males.
Bottom row, Under fasting conditions, PAC1 receptor/effector coupling in POMC neurons switches from TRPC5 channels to KATP channels via upregulation of
AMPK and protein tyrosine phosphatases (PTPs) like PTP1B and TCPTP. This hyperpolarizes the POMC neurons and suppresses their firing; ultimately enhancing
the rebound hyperphagia that occurs during refeeding.
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of leptin and mediating leptin’s effect on energy balance (296).
Indeed, this may be how leptin activates the anorexigenic VMN
PACAP/ARC POMC circuit under normophysiologic conditions
(50, 212). Taken together, PACAP is capable of exerting
dynamically pleiotropic actions within the homeostatic energy
balance circuitry that include mediating the anorexigenic actions
of leptin and regulating the activity of POMC and NPY/AgRP
neurons as well as other peptide systems such as a-MSH, AgRP,
and leptin.

The BNST plays a crucial role in regulating anxiety caused by
long-term threats, and it is also important in mediating stress-
induced anorexia and associated weight loss (298–300). The term
“stress” refers to processes involving appraisal, perception, and
response to stimuli or noxious events (301). Stress is manifested
through two different pathways: the sympathetic adrenal
medullary system, which releases catecholamines during
periods of acute stress, and the hypothalamic-pituitary-adrenal
(HPA) axis (302). The infusion of PACAP in the posterior BNST
in both female and male Sprague-Dawley rats mimics weight loss
induced by long-term stress exposure (300). Interestingly, the
effect was not seen with PACAP administration ICV or in the
anterior BNST – suggesting that PACAP exerts its effect only in
the posterior BNST.

Given the role of PACAP in the posterior BNST, and the
significance of the BNST in regulating food intake and the
response to stress, this suggests that the PACAP/PAC1 receptor
system may also be involved in stress-induced eating disorders.
Prolonged stress increases glucocorticoid secretion, which can
work synergistically with insulin to promote abdominal fat
deposition, decrease HPA axis activity, and consequently affect
energy homeostasis and eating behavior (303). It has been shown
that chronically stressed rats tend to eat more under acute stress
conditions and show a preference to consume palatable food (304,
305). Similarly, stress produces a greater intake of palatable food
in overweight or obese individuals as compared to lean
individuals (306, 307), and promotes food-seeking even in the
absence of hunger and homeostatic need for calories (308). Stress-
induced eating may contribute to the development of obesity
(304), and may also adversely impact meal pattern and food
preference (304). As mentioned above, stress increases the
consumption of palatable food (304, 305), which might be an
indicator of elevated DA release from A10 DA neurons. Indeed,
DA release in the dorsal striatum is enhanced in obese, binge
eating disorder (BED) participants as compared to non-BED
obese participants during exposure to food cues (309, 310). The
hallmark of BED is the excess consumption of food (311), which
could result in an elevated body mass index (BMI). In addition,
BED is significantly and strongly associated with severe obesity
(BMI > 40) (312, 313). Taken together, stress increases
vulnerability to binge-eating behavior and promotes irregular
eating patterns, and these effects may be intensified in
overweight and obese individuals.

In addition to its critical functions within the homeostatic
energy balance circuitry, PACAP can also regulate the
consumption of palatable food via the hedonic energy balance
circuitry. PACAP effects within the hedonic circuit were
demonstrated when Hurley and coworkers microinjected
Frontiers in Endocrinology | www.frontiersin.org 12
PACAP into the NAc, which then mimicked the actions of
GABA agonists to reduce hedonic feeding as well as hedonic
drive (287, 314). By contrast, while intra-VMN microinjection of
PACAP replicates the AMPA-induced reduction in homeostatic
feeding, it was without effect on hedonic feeding (287). Similarly,
we have shown that PACAP administered into the VTA attenuates
the binge-like consumption of palatable food (limited to one hour/
day for five consecutive days) in lean male wildtype mice (288).
This can be attributed to the PAC1 receptor-mediated activation
of KATP channels in A10 DA neurons following bath application of
PACAP, which results in membrane hyperpolarization and the
cessation offiring. This inhibitory effect is mirrored by optogenetic
stimulation of VTA-projecting VMN PACAP neurons (288).
Surprisingly, intra-VTA PACAP is without effect on binge
feeding behavior in either estradiol- or vehicle-treated OVX
wildtype females (288) (Figure 4A). Estradiol did abrogate the
PACAP-induced increase in bout duration (Figure 4B), and
homeostatic feeding observed during the remaining 23 hours of
the day was reduced in estradiol- and PACAP-treated OVX
females (Figure 4D). However, neither E2 nor PACAP have any
effect on rate of consumption (Figure 4C). Given the links
between obesity and BED, we then investigated whether PACAP
could suppress the rampant binge feeding observed in DIO OVX
females (87). Unexpectedly, intra-VTA PACAP increased rather
than decreased binge feeding in these animals (Figure 4E). This is
associated with a decrease in bout duration (Figure 4F), and a
sizable increase in the rate of consumption (Figure 4G). We
followed this up with in vitro recordings in mesencephalic slices
from lean, chow-fed and DIO, HFD-fed OVX TH-cre mice. We
found that the PACAP-induced change in the excitability of A10

DA neurons switched from predominantly inhibitory in
recordings from lean, chow-fed animals to excitatory seen in the
majority of cells from DIO, HFD-fed animals (Figure 5), and this
is illustrated schematically in Figure 6.
CONCLUDING REMARKS

Extensive ongoing research for the past several decades has
identified many of the major players comprising the circuits
involved in homeostatic and hedonic energy balance regulation.
We now understand that the components of the homeostatic
energy balance circuits are deeply interconnected and ultimately
converge at sites of integration within the PVN. We also know
that peripheral hormones like leptin, insulin and ghrelin impart
energy status-dependent signals to the neural substrates of these
circuitries; changing their excitability in ways that profoundly
impact appetitive behavior and satiety. More importantly, there
is a growing appreciation for how connections between the
hypothalamus and VTA as well as the NAc allow for cross-talk
between the homeostatic and hedonic energy balance circuitries
that coordinates nutrient- and palatability-based energy intake.

PACAP has emerged as another major player in the
regulation of energy homeostasis. A considerable body of
evidence accumulated over the past 30 years indicates that the
PACAP/PAC1 receptor system exerts perplexingly pleiotropic
actions in regulating both the homeostatic and hedonic energy
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FIGURE 5 | DIO-induced alterations in the response profile of A10 DA neurons from OVX female TH-cre mice to the postsynaptic effect of PACAP. (A, B) enhanced
yellow fluorescent protein signal from A10 DA neurons in VTA slices captured at 4X and 40X. (C) differential interference contrast image of the recorded A10 DA soma
seen in (B). (D, F) PACAP (100 nM; n = 17) produces a reversible outward current in the considerable majority (17/21; 81% vs males): of A10 DA neurons from lean,
chow-fed females, which is very similar to the percentage of PACAP-inhibited A10 DA neurons seen lean, chow-fed males (21/24; 87%). (E, G) Conversely, PACAP
(n = 11) exerts a more heterogenous response in A10 DA neurons from obese, HFD-fed females, with the majority (11/20; 55%) of them being an excitatory inward
current. Arrows indicate where I/Vs were conducted. *, p < 0.05; with respect to chow-fed controls, Chi-squared test.
A B D

E F G H

C

FIGURE 4 | Dichotomous effects of intra-VTA PACAP on binge feeding in OVX, lean vs obese, sesame oil- vs EB-treated female mice. In lean chow-fed mice, EB (20
mg/kg; s.c.) but not PACAP (30 pmol) decreases binge intake (A), and significantly reduces bout duration in PACAP-treated animals (B). Neither E2 nor PACAP have any
effect on rate of consumption (C). EB and PACAP work synergistically to decrease chow intake during the remaining 23 hours (D). In obese HFD-fed animals given a one-
week respite prior to implementation of the binge paradigm, PACAP increases binge intake in both oil- and EB-treated females (E), which is associated with decreased bout
duration (F) and increased rate of consumption (G). EB reduces homeostatic feeding during the remaining 23 hours (H). Bars represent means and lines 1 SEM.
^, p < 0.05; with respect to sesame oil; *, p < 0.05; with respect to saline; repeated measures, multi-factorial ANOVA/LSD (A–H); n = 6 for all treatment groups.
Frontiers in Endocrinology | www.frontiersin.org June 2022 | Volume 13 | Article 87764713

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Le et al. PACAP Regulates Energy Homeostasis
balance circuitries. The anorexigenic and orexigenic effects of
PACAP are dependent on site of injection, the anatomical
location of the PACAP neuronal populations (i.e., VMN vs
PVN), and strongly influenced by the ambient energy status
not to mention the animal model and strain used in any given
study. We have demonstrated that PACAP reduces homeostatic
feeding and increases energy expenditure in lean, sated chow-fed
animals, due largely to its excitatory actions on ARC POMC
neurons. These appetite-suppressant and catabolic effects are
diminished by DIO in males, whereas the anorexigenic (but not
the metabolic) effect is potentiated by E2 in OVX females, and
completely reversed under negative energy balance upon fasting.
On the other hand, we have shown that PACAP dampens
hedonic binge feeding through its inhibitory actions on A10

DA neurons in the VTA. This effect is sexually differentiated in
that it occurs in lean, otherwise chow-fed males but not OVX
females, and diet-dependent in that PACAP actually increases
binge feeding in DIO OVX females.

Nevertheless, future research will be imperative to fully
evaluate the paradoxical function of PACAP in regulating
energy homeostasis not only under normophysiologic
conditions and positive energy (i.e., DIO) but also under
Frontiers in Endocrinology | www.frontiersin.org 14
negative energy states (i.e., food-restriction). In addition, the
underlying mechanism of how PACAP exerts its pleiotropic
actions not only in the hypothalamic areas and other brain
regions, but also in the context of sex differences will need to be
further addressed. For example, how might ER- and PAC1
receptor-mediated signaling converge to modulate the
ingestion of palatable food in DIO females? What forms of
synaptic plasticity might be occurring that would allow
projections of VMN PACAP neurons to potentially target
other VTA neural substrates in DIO females? Lastly, what are
the activational effects of testosterone in males that may
contribute to sexually differentiated PAC1 receptor-mediated
regulation of energy homeostasis? Only in this way will we
unravel the mysteries and further advance our understanding
of how PACAP and its receptor adaptively regulate energy
balance in response to dynamic changes in energy status.
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GLOSSARY

a-MSH Alpha-melanocyte-stimulating hormone
A10 DA neurons Mesolimbic Dopamine neurons
AAV Adeno-associated virus
AgRP Agouti-related peptide
AMPA alpha-amino-3-hydroxyl-5-methyl-4 -isoxazole
AMPK AMP-activated protein kinase
ARC Arcuate nucleus
BDNF Brain-derived neurotrophic factor
BNST Bed nucleus of stria terminalis
CART cocaine-and amphetamine-regulated transcript
DIO Diet-induced obesity
DMN Dorsomedial nucleus
DREADDs Designer receptors exclusively activated by designer drugs
GABA neurotransmitter gamma-aminobutyric acid
GHSR growth hormone secretagogue receptor
GLP-1 Glucagon like peptide-1
Gq-mER Gq-coupled membrane estrogen receptor
HFD High-fat diet
ICV Intracerebroventricular
IP Intraperitoneal
IR Insulin receptor
JAK/STAT Janus kinase/signal-transducer- and activator-of-transcription
KATP ATP-gated potassium
LepRb Leptin receptor
LH Lateral hypothalamus
MCH Melanin-concentrating hormone
MC4R Melanocortin 4 receptor
NAc Nucleus accumbens
NPY Neuropeptide Y
NTS Nucleus tractus solitarius
OVX Ovariectomized
PACAP Pituitary Adenylate Cyclase-Activating Polypeptide
PAC1R PACAP-specific 1 receptor
PI3K phosphatidylinositol-4,5-bisphosphate 3 kinase
POMC proopiomelanocortin
PVN Paraventricular nucleus
SF-1 Steroidogenic factor-1
TRPC5 Transient receptor potential cation 5
VMN Ventromedial nucleus
VTA Ventral Tegmental Area
VGlut2 Vesicular glutamate transporters 2
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