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The paper puts forward an on-board strategy for a training model and develops a

real-time human locomotion mode recognition study based on a trained model utilizing

two inertial measurement units (IMUs) of robotic transtibial prosthesis. Three transtibial

amputees were recruited as subjects in this study to finish five locomotion modes

(level ground walking, stair ascending, stair descending, ramp ascending, and ramp

descending) with robotic prostheses. An interaction interface was designed to collect

sensors’ data and instruct to train model and recognition. In this study, the analysis

of variance ratio (no more than 0.05) reflects the good repeatability of gait. The

on-board training time for SVM (Support Vector Machines), QDA (Quadratic Discriminant

Analysis), and LDA (Linear discriminant analysis) are 89, 25, and 10 s based on a

10,000 × 80 training data set, respectively. It costs about 13.4, 5.36, and 0.067 ms

for SVM, QDA, and LDA for each recognition process. Taking the recognition accuracy

of some previous studies and time consumption into consideration, we choose QDA

for real-time recognition study. The real-time recognition accuracies are 97.19 ± 0.36%

based on QDA, and we can achieve more than 95% recognition accuracy for each

locomotion mode. The receiver operating characteristic also shows the good quality of

QDA classifiers. This study provides a preliminary interaction design for human–machine

prosthetics in future clinical application. This study just adopts two IMUs not multi-type

sensors fusion to improve the integration and wearing convenience, and it maintains

comparable recognition accuracy with multi-type sensors fusion at the same time.

Keywords: robotic transtibial prosthesis, inertial measurement unit, on-board training, real-time recognition,

human-machine interaction

1. INTRODUCTION

Robotic prosthetics plays an important role in assisting with the daily walking of lower-limb
amputees. It can restore the functions of missed limb(s) and help to improve an amputee’s balance
and reduce the walking metabolic by adopting different control strategies (Au et al., 2009; Shultz
et al., 2016; Feng and Wang, 2017; Kim and Collins, 2017). As the control strategies of robotic
prosthetics depend on different locomotion modes or terrains, it is important to know the human
locomotion mode accurately and efficiently. The question as to how we can acquire a locomotion
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mode has attracted a lot of attention over these years (Yuan et al.,
2015; Zheng and Wang, 2016; Liu et al., 2017; Godiyal et al.,
2018).

For lower-limb locomotion mode recognition, a surface
electromyogram (sEMG) can record electrical potential
generated by muscle cells and can be used to detect human
locomotion intents, and this area has attracted plenty of
attention and spurred much progress (Kim et al., 2013; Hargrove
et al., 2015; Joshi et al., 2015; Afzal et al., 2016; Gupta and
Agarwal, 2018). A mechanical sensor is also widely used
in locomotion mode recognition. For example, the Inertial
Measurement Unit (IMU) can provide position information
(Ahmad et al., 2013; Young et al., 2014b; Bartlett and Goldfarb,
2018; Martinez-Hernandez and Dehghani-Sanij, 2018). Besides,
a mechanical sensor is easily integrated with prosthetics. In
addition, a capacitive sensing method has been applied in human
locomotion mode recognition since it can measure muscle
contraction and relaxation information directly (Zheng et al.,
2014, 2017). Recently, some studies tend to fuse different sensor
signals together to recognize locomotion intents and realize
control (Novak and Riener, 2015) [e.g., sEMG signals and
mechanical signals (Young et al., 2014a; Joshi and Hahn, 2016),
mechanical signals and capacitive signals (Zheng and Wang,
2016), etc.].

Based on the sensing methods, studies about online
locomotion mode recognition have been conducted (Elhoushi
et al., 2017). Huang’s research group has developed the
locomotion modes recognition with four amputees wearing a
hydraulic passive knee by fusing sEMG and mechanical signals,
they and achieved 95% accuracy for recognizing seven tasks in
real time (on Matlab) based on off-line model training (Zhang
and Huang, 2013). Furthermore, they tried on-line recognition
(on Matlab) based on sEMG and mechanical sensors with
powered prosthetics (Zhang et al., 2015). Hargrove et al. have also
developed on-line recognition by fusing sEMG and mechanical
sensors (Spanias et al., 2016, 2018). We have also developed real-
time on-board recognition of continuous locomotion modes for
amputees with robotic transtibial prostheses and got more than
93% recognition accuracy with just two IMUs (Xu et al., 2018).

Though much progress has been made in on-line locomotion
mode recognition, there still exist some problems to be solved.
As is known, real-time recognition based on the off-line trained
models is meaningful for the on-line control; however, off-
line training brings a series of disadvantages for real-time
recognition. Off-line training means bringing in other devices
(e.g., a computer) to train the model, which is not convenient in
integration with robotic prosthetics (Zhang et al., 2015; Xu et al.,
2018). To improve the problem, Spanias et al. (2018) conducted
a model updated on an embedded micro-controller based on
mechanical sensor and sEMG. However, the multi-type sensors
fusion method may bring wearing difficulty for amputees and
integration difficulty for the prosthesis.

In this study, we put forward an on-board training
model strategy for real-time recognition based on the robotic
transtibial prosthesis using IMUs (IMUs are easily integrated
with prosthesis) and develop a study of human locomotion
mode recognition. This study is designed to recognize five

locomotion modes [Level Ground walking (LG), Stair Ascending
(SA), Stair Descending (SD), Ramp Ascending (RA), and Ramp
Descending (RD)] based on the on-board trained model. A
human–machine (prosthesis) interaction interface is designed
to instruct to train model and recognize locomotion modes.
The repeatability of gait signals, on-board training time, and
recognition time are used to evaluate the performances based on
different algorithms [Support Vector Machine (SVM), Quadratic
Discriminant Analysis (QDA), and Linear Discriminant Analysis
(LDA)]. Real-time recognition was conducted based on QDA.

2. MATERIALS AND METHODS

2.1. Robotic Transtibial Prosthesis
A commercialized version robotic prosthesis was used in this
study (produced by SpeedSmart, a spin-off company of Peking
University), as shown in Figure 1. The prosthesis model and
other details can be seen in our previous studies (Wang et al.,
2015; Feng and Wang, 2017). The prosthesis was comprised of
one full bridge of strain gauge, one angle sensor, and two IMUs.
One full bridge of strain gauge could reflect the deformation
of the carbon-fiber foot, and the stance phase and swing phase
could be detected based on the deformation information. Control
strategies were performed based on the detected gait phases
(Wang et al., 2015; Feng and Wang, 2017). One angle sensor
was placed at the ankle of prosthesis to measure ankle’s rotation
with a 0–360◦ measurement range and a 12-bit resolution. Two
IMUs were integrated on the prosthetic shank and foot. Each
IMU included a triple-axis gyroscope (a measurement range of
0–2,000◦ with a resolution of 0.06◦/s), a triple-axis accelerometer
(a measurement range of 0–157 m/s2 with a resolution of 0.005
m/s2), and a triple-axis MEMS magnetometer (a measurement
range of−4,800–4,800µTwith a resolution of 0.6µT/LSB). IMU
could provide the inclination angles (yaw, pitch, and roll), tri-axis
acceleration, and tri-axis angular velocity information.

The control circuit of prosthesis consisted of a Micro
Controller Unit (MCU) and an Application Processor Unit
(APU), as shown in Figure 2. The MCU was based on a 216
MHz Cortex-M7 processer. The APU was constructed with an
integrated programmable SoC chip, which consisted of two parts:
a 667MHzCortex-A9MPCore-based processing system (PS) and
an FPGA-based programmable logic (PL) circuits. The MCU was
used to collect and synchronize the prosthesis sensors signals,
and it then packed them to the APU via Universal Asynchronous
Receiver/Transmitter (UART). In addition, the MCUwould send
program instructions to the other prosthetic units. The APU was
designed to execute on-board training and real-time recognition.
APU would receive sensor data transmitted from the MCU by
UART, and a micro SD card would be used to store data and
trainedmodel. The recognition results were packed together with
sensor signals and then transmitted to a computer for further
analysis in a wireless way.

2.2. Subjects
In this study, three transtibial amputees (Mean ± Standard
Deviation, age: 45 ± 11.4 years, height: 170.3 ± 0.5 cm, and
weight: 77 ± 5 kg) were recruited as subjects to finish the
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FIGURE 1 | (A) The robotic transtibial prosthesis. (B) The three-bar ankle model: three bars (AB, BC, and AC) and three hinges (A, B, and C).

FIGURE 2 | The control circuit of robotic transtibial prosthesis.

designed experimental tasks (S1, S2, and S3 represented the
number of subjects). All subjects provided written informed
consent forms. The experiments were approved by the Local
Ethics Committee of Peking University.

2.3. Experimental Protocol
In the experiments, each subject lived with a prosthetic socket
that would be mounted on the designed robotic prosthesis by
adapter. To gain familiarity with and adapt to the new prosthesis
and subsequent experimental tasks, all subjects would do some
walking exercises before the experiments. The control parameters
were adjusted according to the feedback of each subject ahead of
the experiment.

In this study, we first designed a preliminary interaction
interface for the experiments as shown in Figure 3A. The
interaction interface could send instructions to the prosthesis,
and the prosthesis would return results to the interaction
interface in a wireless way. The interaction interface included
five parts. (1) The wireless connection with prosthesis to
communicate with prosthesis. (2) Choosing signal channel(s)
to plot signal curve(s). (3) Recording and saving raw data
locally. (4) Signal display corresponding to the chosen channel
in (2). (5) The interactive operation for experimenter. Figure 3B

is a diagram of one amputee wearing a robotic prosthesis in
the experiment.

The experiment could be divided into two sessions: (1)
an on-board training session and (2) a real-time recognition
session. The experimental duration was about 2 h for each
subject. In the on-board training session, each subject was
instructed to accomplish the five modes, including the LG,
RA, RD, SA, and SD in sequence. All subjects were asked to
walk on the treadmill at their self-selected speeds for collecting
data on the LG mode. For the RA and RD, the subjects would
walk on the treadmill at an incline of 10◦ at their self-selected
speeds. The subjects accomplished SA and SD on the stairs with
a height of 16 cm and a length of 28 cm at their normal walking
speeds. For each locomotion mode, 20 s of data were collected in
the training session for training model. The real-time recognition
experiment in session (2) was conducted based on the trained
model in session (1).

In the experiment, we could perform data collection for
training models with corresponding modes (i.e., label) by use
of the interaction operation. When the experiment started, the
subject would walk in a steady locomotion mode (for example
LG), and we clicked the corresponding mode (corresponding to
“LG”) and then clicked “Data Collection” in (5) of Figure 3A to
collect sensor signals with labels as training data. After finishing
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FIGURE 3 | The designed interaction platform and experimental task of the study. (A) The designed interaction interface for the study. (1) Wireless connection option

with prosthesis. (2) Signal channel. (3) Raw data recording. (4) Signal display. (5) Interactive operation for experimenter. (B) Subject wears the robotic prosthesis to

finish five locomotion modes: LG, SA, SD, RA, and RD.

data collection, we clicked the “Stop” option and finished training
data collection. Then “Model Training” was clicked to send
instructions to the on-board system (i.e., control circuit) of the
prosthesis to start on-board training of the model. The real-
time recognition would start as soon as the on-board training
was finished. During real-time recognition, the recognition tasks
were the same as the training tasks, namely, finishing the five
locomotion modes: LG, SA, SD, RA, and RD.

2.4. Signal Processing
Signal processing is important to the on-board training
and recognition. The main procedures of on-board
training and recognition could be seen in Figure 4. For both
training and recognition, raw signals needed to be processed to
extract features. Feature extracting was performed based on raw
signal data by sliding window. For on-board training, feature
vectors and labels formed a training data set and were then used
for the training mode. After on-board training was finished,
the continuous feature vectors were fed into the model for
recognition one by one in time sequence. The feature extracting
method and recognition algorithm could been seen as follows.

2.4.1. Signal Feature Extracting
Two IMUs were integrated in the robotic prosthetic shank and
foot. IMU could provide the raw signals of nine channels as
mentioned: inclination angles (yaw, pitch, and roll), tri-axis
acceleration, and tri-axis angular velocity signals. The sample
frequency was 100 Hz. The pitch and roll angle of IMU
can be calculated according accelerometer, and the yaw angle
can be calculated according the MEMS magnetometer and
accelerometer, but it needs static calibration to remove the drift.
We chose IMU information from eight channels (angles from
two channels, triple-axis acceleration, and triple-axis angular
velocity), excluding yaw angle information. A sliding windowwas
selected to extract features of raw signals. Each window’s length
was 250 ms and the sliding increment was 10 ms (Zheng and
Wang, 2016; Xu et al., 2018). Five time domain features were

FIGURE 4 | The procedures of signal processing for (A) on-board training and

(B) real-time recognition.

selected for this study. These features were f 1 = mean(Y), f 2 =

std(Y), f 3 = max(Y), f 4 = min(Y), and f 5 = sum(abs(diff (Y))),
where Y was the data matrix of one sliding window, and the
data sizes of one sliding window were 25 (250 ms’ length) by
16 (16 channels in total). The mean(Y) and std(Y) were the
average value and the standard deviation of each channel in Y ,
respectively. The max(Y) and min(Y) were the maximum and
minimum of each channel in Y , respectively. The diff (Y) was
the difference value of adjacent two elements of each channel
in Y . The sum(Y) was the summation of each channel in Y .
The abs(Y) was the absolute value. All these feature values were
concatenated together to be a feature vector (we did not conduct
a feature vector dimension reduction). Feature vectors with labels
constituted a training data set, and the model was trained based
on the training data set. For recognition, the raw IMU signals
were also processed following the same processing procedures
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and one feature vector was generated each time. The continuous
feature vectors were fed into the trainedmodel and then we could
get the recognition results.

2.4.2. Recognition Algorithm
Recognition algorithms directly affect the recognition accuracy.
SVM, QDA, and LDA were widely used in locomotion mode
recognition (Liu et al., 2017). In the previous study, we have
compared the on-board recognition performances of different
algorithms (SVM, QDA, and LDA) (Xu et al., 2018). SVM
algorithm could achieve high recognition accuracy, LDA could
achieve good recognition time performance, and QDA could
take count of accuracy and recognition time performance (Xu
et al., 2018). For multi-class (five locomotion modes in this
study) recognition, a one vs. one strategy was adopted. Here we
conducted this study based on the three algorithms.

The core of SVM is to construct an optimal hyperplane to
separate the data belonging to different classes. The hyperplane
equation is as follows:

w · x+ b = 0 (1)

where w is the weight vector, b is the constant item (bias), and
x is the input vector (i.e., feature vector). To construct this
hyperplane, we need to optimize the objective function, and the
objective function is as follows:

min
w,x

(
1

2
‖w‖2 + C(

N
∑

i=1

ξi))

s.t. yi[w ∗ xi + b] ≥ 1− ξi

ξi ≥ 0, i = 1, 2, ...,N

(2)

where C is the penalty parameter (the default of C is 1)
that represents penalty for misclassification, and its function is
adjusting the confidence interval range. N is the number of
training data samples, ξi is the relaxation factor corresponding
to the ith training data sample (xi). yi (yi = 1 or −1) is the
label corresponding to xi. Its discriminant function can be seen
as follows (Vapnik and Hervonenkis, 1974):

f (x) = sgn(

N
∑

i=1

αiyiK(xi, x)+ b) (3)

where αi, xi, and bmainly construct the SVMmodel for the study,
which need to be trained on board, and they denote coefficient,
support vector, and constant terms, respectively. K(xi, x) is the
kernel function of SVM. In our study, a radial basis function is
chosen as the kernel function of SVM to realize on-board training
and recognition. It is shown as follows:

K(xi, x) = eγ ||xi−x||2 (4)

where γ is a coefficient that determines the distribution of data
mapped to a new feature space, and its function is adjusting the
effect of each sample on the classification hyperplane [γ = 1/n
(default), where n is the feature vector’s dimension, n = 80].

QDA and LDA are based on normal distribution hypothesis
(Friedman, 1989). It is assumed that the feature vectors are
multivariate normally distributed with estimated specific mean
vector µ, and covariance matrix 6 of each class data for QDA.
In this study, the number of class (locomotion modes) is five. For
the QDA algorithm, its discriminant function is

f (x) = x ·W · xT + w · xT + w0 (5)

Here, W, w, and w0 construct the QDA model, and they are the
functions of the estimated specific mean vector and covariance
matrix of each class, which could be denoted as

W = −
1

2
· (6−1

i − 6−1
j ) (6)

w = µi · 6
−1
i − µj · 6

−1
j (7)

w0 = −
1

2
· (µi · 6

−1
i · µT

i − µj · 6
−1
j · µT

j )−
1

2
· ln

|6i|

|6j|
(8)

Here, 6i, µi, 6j, and µj are the estimated specific mean vector
and covariance matrix corresponding to class i and class j,
respectively. |6i| and |6j| are the determinants of 6i and 6j.
In the study, all these parameters are estimated on board to
construct QDA model.

For LDA, it is assumed that the feature vectors are
multivariate, normally distributed with an estimatedmean vector
of each class data and common covariance matrices (61 = 62 =

. . .= 6) for LDA (Friedman, 1989). 6 can be denoted as

6 =

C
∑

i=1

Ni − 1

N − 1
6i (9)

where C is the number of classes, Ni is the number of feature
vectors of class i, and N is the number of total feature vectors (N
= N1 + N2 + . . . + Ni + NC). The discriminant function of LDA
can be denoted as

f (x) = w · xT + w0 (10)

Here, w and w0 could be denoted as

w = (µi − µj) · 6
−1 (11)

w0 = −
1

2
· (µi + µj) · 6

−1 · (µi − µj)
T (12)

The LDAmodel is constructed ofw and w0 withoutW compared
with QDA and it is a linear function of x, which is trained on
board with a lower computation amount than QDA model in
the study.

2.5. System Evaluation
In this study, the repeatability of gait signals was analyzed. The
time performance, recognition accuracy, and classifier quality
were also evaluated.
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FIGURE 5 | Normalized angle signals of the prosthetic shank. The horizontal axis represents the gait cycle. One gait cycle is from heel strike to toe off and ends at the

next heel strike of the prosthesis. The vertical axis denotes the shank angle of prosthesis relative to the vertical direction. The solid line shows the mean and the

shaded area represents the standard deviation (SD) of the signal. The different colors represent different subjects (S1, S2, and S3), as shown in the legend.

2.5.1. The Repeatability of Signals
Themovement of the lower limb is periodical or quasi-periodical.
The repeatability of signals can reflect the repeatability of gait
waveforms over gait cycles (Godiyal et al., 2018). The variance
ratio (VR) is a widely used metric to analyze the repeatability of
signals (Erni and Colombo, 1998; Hwang et al., 2003; Godiyal
et al., 2018). VR is expressed as follows (Hershler and Milner,
1978):

VR =

1
n

∑n
i=1(

1
N−1

∑N
j=1 (Xij − Xi)

2
)

1
n−1

∑n
i=1

∑N
j=1 (Xij − X)

2
(13)

where N denotes the number of gait cycles. For each gait cycle,
signals is normalized by interpolation and has a fixed length,
namely, n (n is 1,000 in the study). Xij is the ith shank angle signal

value in jth gait cycle. Xi is the mean of signals at ith data point
over N gait cycles, and X is the mean of Xi over the gait cycle. Xi

and X are formulated as

Xi =
1

N

N
∑

j=1

Xij (14)

X =
1

n

n
∑

i=1

Xi (15)

VR can measure the degree of dispersion of data, and it varies
from 0 to 1. When VR is close to 0 in the study, it means high
repeatability of the IMU signals, which reflects the repeatability
of gait.

2.5.2. Time Performance Evaluation
The training process started as the experimenter pressed the
“Model training” button (as shown in Figure 3A) and ended with
model saving. The training time consisted of model generating
and saving time. After the training process ended and the model
was generated and saved, the real-time recognition started to
run based on the trained model. Recognition was continuous
and multiple based on various feature vectors streams. For
each recognition, the recognition process was that one feature

vector was fed into the trained model, and the recognition
result was then outputted. The recognition decision consist of
collections of the data, preparation of the feature vector, and the
recognition process. The time to execute the recognition decision
was recorded as recognition time.

2.5.3. Recognition Accuracy Evaluation
Recognition accuracy was an important metric to evaluate the
recognition performance. The recognition accuracy for each
locomotion mode could be denoted as follows:

cij =
nij

ni
× 100% (16)

where nij was the number that test samples (belonging to mode
i) were recognized as mode j, and ni was the number of the total
test samples belonging tomode i. The confusionmatrix (CM)was
also used to evaluate the recognition performance for each mode
in detail, which is shown as follows:

CM =









c11 c12 ... c1m
c21 c22 ... c2m
... ... cij ...
cm1 cm2 ... cmm









(17)

Them denotes the number of locomotion modes. The elementcij
in confusion matrix CM is shown in Equation (16). The diagonal
elements in CM denoted the recognition accuracy of each mode.

2.5.4. Receiver Operating Characteristic
The receiver operating characteristic (ROC) could check the
quality of classifiers and was used to evaluate the locomotion
mode recognition in this study. For each class of a classifier, the
ROC applies threshold values across the interval [0,1] to outputs.
For each threshold, two values [the True Positive Ratio (TPR)
and the False Positive Ratio (FPR)] were calculated. TPR is the
predict/recognition accuracy for class i (i.e., locomotion mode i),
and FPR is the number of samples whose actual class is not class
i, but predicted to be class i, divided by the number of outputs
whose predicted class is not class i. Then we can get a series of
TPR and FPR pairs, which forms the ROC curve. The more each
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TABLE 1 | The repeatability of gait signals (waveforms) of subjects based on

variance ratio analysis.

LG SA SD RA RD

S1 0.013 0.029 0.011 0.013 0.008

S2 0.006 0.010 0.051 0.015 0.021

S3 0.014 0.023 0.008 0.006 0.014

curve hugs the left and top edges of the plot, i.e., the bigger the
area under the ROC curve (AUC) the better the classification.

3. RESULTS

3.1. Repeatability of Gait Signals
The normalized shank angle of prosthesis relative to the
perpendicular to the ground was shown in Figure 5. The solid
line shows the mean, and the shaded area represents the standard
deviation (SD) of the signal. The mean and standard deviation
showed the quasi-periodicity of lower-limb movement. From
Figure 5, it could be seen that each subject had their specific
signal feature.

The repeatability of gait signals (waveforms) over gait cycles
was analyzed based on variance ratio, as listed in Table 1. For LG
and SA, the shaded area corresponding to S2 (in Figure 5) was
smaller on the whole, and S2 could achieve smaller variance ratio
values (0.006 and 0.01), as shown in Table 1, which indicated
better repeatability than S1 and S3. For SD, RA, and RD, S2 could
achieve bigger variance ratio values (0.051, 0.015, and 0.021), and
its shaded area (in Figure 5) was bigger; S1 and S3 thus achieved
better repeatability than S2.

3.2. On-board Training and Recognition
Time
TheAPUof prosthesis control circuit was designed to execute on-
board training and real-time recognition. The on-board training
and recognition times based on the APU are shown in Figure 6.
On-board training time was related to the size of training data
set. The acquisition of training data set was as follow. For
each sampling, we could get one feature vector and each vector
contained 80 values (two IMUs, eight channels of each IMU, and
five feature values of each channel’s signal, 2× 8× 5= 80). In this
study, we asked each subject to finish the five locomotion modes
(LG, SA, SD, RA, and RD), and collected 2,000 feature vectors for
each locomotion modes. After this, we could get 10,000 feature
vectors corresponding five locomotion modes. The training data
set consisted of amatrix and its size was 10,000× 80. The training
time consisted of model generating and saving time, which were
89, 25, and 10 s for SVM, QDA, and LDA, respectively, as shown
in Figure 6A.

The recognition decision was comprised of data collection,
feature vector preparation, and the recognition process. It took
<1 µs for data collection and 0.146 ms for preparation of feature
vector each time. The data collection and preparation times of
the feature vector were the same for SVM, QDA, and LDA.
For recognition, when the each subject walked, we could get

FIGURE 6 | The time performances based on SVM, QDA, and LDA. (A)

Training time and (B) Recognition process time.

TABLE 2 | Recognition accuracy (mean ± SEM) based on QDA, LDA, and SVM.

Subjects QDA LDA SVM

(real-time) (%) (off-line) (%) (off-line) (%)

S1 96.51 90.50 97.05

S2 97.33 89.01 98.74

S3 97.73 90.37 95.53

Mean ± SEM 97.19 ± 0.36 89.96 ± 0.48 97.11 ± 0.93

one feature vector for each sampling, and each feature vector
contained 80 values. By feeding the feature vector streams into
the trained model, we could get the continuous recognition
results. The recognition process was from one feature vector fed
into the model to output the result. The recognition process time
were 13.4, 5.36, and 0.076 ms, corresponding to SVM, QDA, and
LDA, respectively, as shown in Figure 6B.

3.3. Recognition Accuracy
The real-time recognition was conducted based on QDA and
the off-line recognition was conducted based on LDA and SVM.
Real-time recognition and off-line recognition are conducted
using the same training data and test data. The total real-time
recognition accuracies for the three subjects were 96.51, 97.33,
and 97.73%, and the mean accuracy and SEM (standard error of
mistake) was 97.19± 0.36% based on QDA, as shown in Table 2.
The off-line recognition accuracies and SEMs (standard error of
mistake) were 89.96 ± 0.48%, and 97.11 ± 0.93% based on LDA
and SVM, as shown in Table 2, respectively.

For each locomotion mode, it could be recognized with more
than 92% accuracy for each subject, as shown in Figure 7. For
S1 and S2, this study could achieve the highest recognition
accuracies (99.78 and 99.71%, respectively) in RD and lowest
recognition accuracies in SA (92.31%) and RA (95.27%). For S3,
it could achieve the highest recognition accuracy in RA (99.94%)
and the lowest recognition accuracy in RD (96.28%). There were
some differences among the subjects for each locomotion mode.

A confusion matrix (mean ± SEM) was used to evaluate the
recognition performance for each locomotion mode, as listed in
Table 3. In Table 3, we could see that each locomotion mode
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FIGURE 7 | Real-time recognition result for each locomotion mode based on QDA algorithm. The height of the bar denotes the recognition accuracy. The different

colors of bars denote subjects as the legend shows.

TABLE 3 | Recognition confusion matrix (mean ± SEM) based on QDA (%).

LG SA SD RA RD

LG 97.46 ± 0.07 0.00 ± 0.00 0.23 ± 0.23 0.45 ± 0.28 1.87 ± 0.57

SA 0.15 ± 0.15 95.30 ± 1.63 3.64 ± 1.61 0.02 ± 0.02 0.89 ± 0.70

SD 0.68 ± 0.68 0.03 ± 0.03 98.24 ± 0.23 0.00 ± 0.00 1.05 ± 0.54

RA 2.64 ± 1.82 0.00 ± 0.00 0.48 ± 0.45 96.36 ± 1.84 0.52 ± 0.52

RD 0.07 ± 0.04 0.00 ± 0.00 1.34 ± 1.19 0.00 ± 0.00 98.59 ± 1.16

could be recognized with quite high accuracy, and the SEM
is no more than 2%. The highest accuracy was achieved in
recognizing RD (98.59 ± 1.16%), and the lowest was achieved
in recognizing SA (95.30 ± 1.63%). From Table 3, we could see
that LG was mistakenly recognized as RD (1.87± 0.57%), SA was
mistakenly recognized as SD (3.64 ± 1.61%), SD was mistakenly
recognized as RD (1.05± 0.54%), RA was mistakenly recognized
as LG (2.64 ± 1.82%), and RD was mistakenly recognized
as SD (1.34± 1.19%).

3.4. Receiver Operating Characteristic
The ROC curves can be seen in Figure 8. We could see that each
curve hugs the left and top edges of the plot. The AUC for each
subject and for the five locomotion modes (LG, SA, SD, RA, and
RD) can be seen in Table 4. For S1, the AUCs for SA were 0.9865
and 0.9957, 0.9915, 0.9991, and 0.9996, for LG, SD, RA, and RD,
respectively. For S2 and S2, the AUCs were more than 0.99 for
each locomotionmode, as shown inTable 4. ThemaximumAUC
was 0.9865 (S1, LG) and the maximum AUC was 1.0 (S3, RA).

3.5. Robustness of Recognition
We conducted a robustness analysis of recognition, which was
done by adding some white noise artificially to the data and
running the experiments in off-line mode. The signal noise ratios
were 100 : 0.1, 100 : 0.25, 100 : 0.5, 100 : 0.75, 100 : 1, and
100 : 1.25. To make comparisons, we conducted recognition
analysis in the off-line mode, and the off-line results combined

with real-time recognition accuracy can be seen in Figure 9. Real-
time recognition based original signals without added noise was
97.18% (as mentioned above). The off-line recognition results
with added noise were 97.06, 97.07, 96.96, 96.13, 88.74, and
70.83%, corresponding to different signal noise ratios (100 : 0.1,
100 : 0.25, 100 : 0.5, 100 : 0.75, 100 : 1, and 100 : 1.25, respectively).
When the signal noise ratio was no <100 : 0.75, the recognition
accuracy was more than 96.0%.

4. DISCUSSION

Most of the current locomotion modes recognition is based
on off-line trained model. Off-line training will bring other
devices (e.g., a computer) to the training model, which is not
convenient to integrate with robotic prosthesis. In addition to
the off-line problem, some multi-type sensors fusion method
for improving locomotion mode accuracy may bring wearing
and integration difficulties. In this paper, on-board training and
real-time locomotion modes recognition has been conducted
using two IMUs of robotic transtibial prostheses. We have
design an interactive interface to execute the on-board training
and recognition.

4.1. The Repeatability of Signals
The repeatability of signals can reflect gait features, and it is
affected by a lot of factors, such as sensor types, movement
regularity of different subjects, and so on (Hwang et al., 2003;
Godiyal et al., 2018). Compared with forcemyography and sEMG
signals (Hwang et al., 2003; Godiyal et al., 2018), the shank
angle (IMU signals) of prosthesis relative to perpendicular to
the ground are used to evaluate the repeatability of lower-limb
movement. Figure 5 and Table 1 show how all the locomotion
modes show good repeatability (VR is no more than 0.051),
which is comparable to (and even better than) the other research
(Godiyal et al., 2018). The repeatability of signal waveforms is
important for training and recognition. Good repeatability of
signals may reduce the amount of training data and provide
supports for locomotion recognition or gait prediction.
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FIGURE 8 | ROC curves for the subjects (S1, S2, and S3) based on QDA. The color of solid line denotes locomotion mode as the legend shows.

TABLE 4 | The AUC for each locomotion mode and each subject based on QDA.

Subjects LG SA SD RA RD

S1 0.9957 0.9865 0.9915 0.9991 0.9996

S2 0.9985 0.9933 0.9974 0.9980 0.9935

S3 0.9982 0.9996 0.9961 1.0 0.9969

4.2. Training and Recognition Time for
Different Algorithms
The on-board training time and recognition decision time are
affected by the performances of hardware, algorithm, and so
on. In this study, we conducted the experiment to analyze the
performances of different algorithms (SVM, QDA, and LDA)
based the same on-board hardware system and experimental
training and test data. The time performance can reflect
the computation efficiency of system and the complexity of
algorithms. The training time in our study are 89 s for SVM,
25 s for QDA, and 10 s for LDA. For SVM, model training
requires continuous iterative optimization, which is very time
consuming. Training with SVM requires more time than QDA
and LDA due to its complexity. For QDA, the mean vector and
covariance matrix of training data are evaluated, and the inverse
matrix and determinant of covariancematrix are computed in the
training process. Training with LDA need less time for its lower
algorithm complexity compare with QDA, as shown in Equations
(11) and (12). The recognition decision process was comprised
of collection of the data, preparation of the feature vector and
the recognition process. It took <1 µs for data collection and
0.146 ms for preparation of the feature vector each time. Data
collection time and preparation time of feature vector were same
for SVM, QDA, and LDA. The recognition process time are 13.4,
5.36, and 0.067 ms, corresponding to SVM, QDA, and LDA.
For locomotion mode recognition, the recognition process time

should be less than sliding window increment (Englehart and
Hudgins, 2003), which can void data collision and leave time
for subsequent process. In our experiments, the sliding window
increment is 10 ms, which means the recognition decision must
be finished within 10 ms, and QDA and LDA are thus better than
SVM.Our previous study has used QDA taking count of accuracy
and recognition time performance (Xu et al., 2018). In this study,
we also use QDA in recognition study.

4.3. Recognition Accuracy Based on QDA
The real-time recognition accuracy (based on QDA) and the
off-line recognition accuracy (based on LDA and SVM) are
conducted. The results show that we can get high accuracy (more
than 97%) when using QDA and SVM. While using LDA, the
accuracy is no more than 90%. The mean real-time recognition
accuracies for each locomotion mode are more than 95% and
the standard error of mistakes are no more than 2%, as seen
in Table 3, which is comparable with current online recognition
studies (Zhang et al., 2015; Spanias et al., 2018; Xu et al., 2018).
Besides, the high accuracy and low standard error of mistake
show the feasibility of this study.

From the Table 3, LG is mistakenly recognized as RD with
1.87% error, and RA is mistakenly recognized as LG with 2.64%
error, which shows some confusion trends among the three
locomotion modes (LG, RA, and RD). As is known, level ground
and ramps are even terrains, and the similarities between the
terrains may cause confusion when it comes to recognizing the
three locomotion modes (LG, RA, and RD) (Spanias et al., 2018).
We also note that SA is mistakenly recognized as SD with 3.64%
error because of the similarity between the terrains (stairs). In
Table 3, it also shows SD is recognized as RD with 1.05% error,
and RD is recognized as SD with 1.34% error. As we know, the
subject is in downward ambulation direction no matter he is
in SD or RD, so there are some recognition errors between SD
and RD. Spanias et al. (2018) conducted model updating on an
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FIGURE 9 | Robustness analysis (off-line) of recognition for locomotion modes. The horizontal axis denotes the signal noise ratio, which represents the noise added

by manual into original data. Here, “Original” denotes the original data without added noise. The text in this figure denotes the recognition accuracy.

embedded micro-controller based on a mechanical sensor and
sEMG, and they view LG and SA as one class. Compare with the
study, we made progress in terms of integration and recognition
accuracy. In this study, just two IMUs are adopted, because IMU
is more easily integrated with prosthesis. Besides, our study can
discriminate LG and SA and also achieve comparable effect with
some other studies (Zhang et al., 2015; Xu et al., 2018).

We have used ROC and AUC to check the quality of QDA
classification algorithm. Each ROC curve (in Figure 8) hugs
the left and top edges of the plot and the AUCs (in Table 4)
for each subject and each locomotion mode are more than
0.98. The ROC and the AUC reflect the good quality of QDA
classifier. Robustness analysis of recognition is also conducted by
adding some white noise artificially to the data and running the
experiments in off-linemode. The recognition accuracy decreases
when added noise into original data. When the signal noise ratio
is no <100 : 0.75, the recognition accuracy is more than 96.0%,
which is compared with real-time recognition with original
data and without added noise. In conclusion, the recognition
has robustness, when there is some noise (signal noise ratio
> 100 : 0.75), according to this study. The contributions of
the study are as follows. (1) In terms of a sensor, using just
IMUs not multi-type sensors (for example sEMG andMechanical
sensor) fusion improves the integration and wearing convenience
and maintain comparable recognition accuracy with multi-type
sensors fusion at the same time. (2) On-board training solves
algorithm integration problem with prosthetics. In addition, on-
board training of model will lay a preliminary foundation for the
model updating automatically which will make preparation for
future recognition adaptation study.

4.4. Limitations
This study still need improvements in the further study.
First, the on-board training time and recognition time are
affected by the hardware performance and algorithm complexity.
Higher performance processor, hardware acceleration, and new
algorithms can be effective ways to decrease the training time
and improve efficiency. Secondly, the recognition accuracy for

locomotion modes still needs much improvement. This study
focused more on the on-board training for real-time recognition,
and we therefore have not conducted a transition study.
Recognition delay for transition between various locomotion
modes is an important parameter, and this was the subject of
our previous study (Xu et al., 2018). In addition, this study is
conducted in structured environment, which make good gait
repeatability of prosthesis users. We need to explore whether and
how the accuracy would be affected if the repeatability decreases.
We should also combine the recognition with the prosthesis
control to realize the better assistance for amputee in different
locomotion modes in the future.

5. CONCLUSION

The paper puts forward an on-board training based on
robotic transtibial prosthesis and develops the real-time human
locomotion mode recognition based on the trained model. An
interaction interface is designed for the study to collect sensor
data, train models, and conduct recognition. The IMUs signals
shows good gait repeatability. The on-board training time and
recognition process time of three algorithms (SVM, QDA, and
LDA) are used to evaluate the time performance. The real-time
recognition accuracy based on QDA are 97.19 ± 0.36%. The
study also achieves more than 95% recognition accuracy for
each locomotion mode. The results show the on-board training
is feasible and effective to recognize the amputee’s locomotion
mode with robotic transtibial prosthesis. Our study improves the
integration and wearing convenience by just IMUs andmaintains
comparable recognition accuracy with multi-type sensors fusion
at the same time and also solves algorithm integration problem
with prosthetics.
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