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Purpose. This study aimed to explore whether bone marrow- (BM-) derived endothelial progenitor cells (EPCs) contributing to
monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH) in rats via modulating store-operated Ca?* channels
(SOC). Methods. Sprague Dawley (SD) rats were assigned into MCT group (n = 30) and control group (n = 20). Rats in MCT group
were subcutaneously administered with 60 mg/kg MCT solution, and rats in control group were injected with equal amount of
vehicle. After 3 weeks of treatment, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of
two groups were measured, and BM-derived EPCs were isolated. Inmunochemistry identification and vasculogenesis detection of
EPCs were then performed. [Ca®'] oyt measurement was performed to detect store-operated calcium entry (SOCE) in two groups,
followed by determination of Orai and canonical transient receptor potential (TRPC) channels expression. Results. After 3 weeks of
treatment, there were significant increases in RVSP and RVHI in MCT group compared with control group, indicating that MCT
successfully induced PAH in rats. Moreover, the SOCE ([Ca®] oyt Tise) in BM-derived EPCs of MCT group was lower than that
of control group. Furthermore, the expression levels of Orai3, TRPC1, TRPC3, and TRPC6 in BM-derived EPCs were decreased
in MCT group in comparison with control group. Conclusions. The SOC activities were inhibited in BM-derived EPCs of MCT-
treated rats. These results may be associated with the depressed expression of Orai3, TRPC1, TRPC3, and TRPC6, which are major
mediators of SOC.

1. Introduction

Pulmonary arterial hypertension (PAH) is a fatal disorder
characterized by an increase in pulmonary vascular resistance
[1, 2]. It always leads to right ventricular (RV) failure and
death [3, 4]. Despite advances in therapeutic options, this
disease represents an incurable disease due to progres-
sive clinical deterioration and an unacceptably high early

mortality [5, 6]. Therefore, elucidation of key pathological
mechanism underlying PAH development is still imperative.

Accumulating evidences have confirmed that excessive
pulmonary vascular remodeling is responsible for the ele-
vated pulmonary vascular resistance in PAH [7-9]. In pul-
monary arterial smooth muscle cells (PASMCs), the rise in
cytosolic free Ca®" concentration ([Ca®'] Cyt) is identified as
a key trigger for promoting the proliferation of PASMCs
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and pulmonary vasoconstriction, both leading to pulmonary
vascular remodeling [10-13]. Moreover, the profound pul-
monary vascular remodeling and alterations in Ca®* home-
ostasis in PASMCs may result in the development of PAH
[14]. These findings support the pathogenic role of Ca** sig-
naling in PAH.

Endothelial progenitor cells (EPCs) are considered to be
important in maintaining vascular homeostasis, which can be
mobilized from the bone marrow (BM) and resident locally
in the lung [15]. EPCs are found to have a key role in the
endothelial repair [16, 17]. It is reported that BM-derived
EPCs can repair the monocrotaline- (MCT-) damaged lung
in the rat MCT model of PAH [18]. Moreover, EPCs can
induce neovascularization, suggesting the promising clinical
application of the EPCs cell therapy to PAH [19]. However,
the possible mechanism of EPCs in regulating pulmonary
vascular remodeling during PAH development is largely
unknown.

Notably, store-operated Ca** channels (SOC) is expressed
in human EPCs [20]. Given the pathogenic role of Ca*
signaling in PAH, the present study investigated whether BM-
derived EPCs contributed to PAH in the MCT rat model via
modulating SOC. To study this, we established the MCT rat
model that was widely used to investigate PAH in rodents
[20-22]. Then BM-derived EPCs were isolated. [Ca2+]Cyt
measurement was performed to detect store-operated cal-
cium entry (SOCE) in BM-derived EPCs of MCT rat model
and controls, followed by determination of SOC regulators,
Orai, and canonical transient receptor potential channel
(TRPC) expression. Our findings will provide a new insight
for better understanding of PAH pathogenesis.

2. Materials and Methods

2.1. Animals and Treatment. A total of 50 male Sprague
Dawley (SD) rats (weighing 150-180 g) were obtained from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). Rats were divided into MCT group (n =
30) and control group (n = 20). Rats in MCT group were
subcutaneously administered with 60 mg/kg MCT solution
25 mg/ml diluted in vehicle (1:4 mixture of dehydrated
ethanol-normal saline). Rats in control group were injected
with equal amount of vehicle. This study was approved by
the institutional ethical committee for animal care and use.
During the treatment period, the behavior and general status
were observed daily.

2.2. Measurement of Pulmonary Hemodynamic and Right
Ventricular Hypertrophy. After 3 weeks of treatment, the rats
were intraperitoneally anesthetized with 35mg/kg pentobar-
bital sodium (Abbott Laboratories, Montreal, Canada). Right
ventricular systolic pressure (RVSP) of rats in each group
was measured by inserting a Millar catheter (Millar, Inc., TX,
USA) into RV. Moreover, the RV was separated from the
left ventricle (LV) and septum (S) for further detection of
RV hypertrophy. The right heart hypertrophy index (RVHI)
[RV/(LV+S)] was calculated as the ratio of RV weight to
(LV+S) weight.

BioMed Research International

2.3. Isolation of Rat BM-Derived EPCs. Rats in each group
were sacrificed by exsanguination, and BM was then aspirated
from bilateral femurs and tibias of rats aseptically. Using
density gradient centrifugation Histopaque®-1083 solution
(Sigma-Aldrich, MS, USA), mononuclear cells (MNCs) were
isolated from BM. To produce EPCs, BM-isolated MNCs
were then resuspended in EGM-2 MV medium (Lonza, MD,
USA), seeded into fibronectin (5 pg/cm?) coated six-well
plates at a density of 3 x 10°/cm* and maintained at a 37°C
incubator for 8 days. EGM-2 MV medium was replaced every
two days.

2.4. Immunochemistry Identification. After 8 days of incuba-
tion, the fibronectin-adherent EPCs were identified by incu-
bation with 10 ug/ml of fluorescently labeled acetylated-low-
density lipoprotein (Dil-ac-LDL; Molecular Probes, Eugene,
OR, USA) overnight and 10 pg/ml of fluorescently FITC-
labeled Ulex europaeus agglutinin 1 (UEA-1; Sigma-Aldrich,
MS, USA) for 4 h at room temperature using an immuno-
chemistry method [4, 23]. The images were captured by
Leica-SP5 confocal microscopy (Leica, Germany), and both
FITC-UEA-1 and Dil-ac-LDL positive cells were considered
as EPCs.

2.5. Detection of Vasculogenesis. To mimic vasculogenesis of
EPCs, the vascular network formation was observed. Briefly,
24-well plates were presolidified Matrigel (BD Biosciences,
MA, USA) for 30 minutes. EPCs were seeded into 24-well
plates containing 500 ul EGM-2-MV medium at a density
of 7.5 x 10* cells/2cm? Matrigel. After incubation for 5 h, the
developing vascular network in 10 fields was observed under
a microscope (Nikon, Japan). The length of vascular network
per field was calculated.

2.6. [Ca® Jcy Measurement. According to the protocols des-

cribed previously [24, 25], [Ca2+]cyt, defined as the ratio
of fluorescence intensities of 340 to 380 nm wavelengths
(F340/F380), was monitored using fura-2 acetoxymethyl
ester (Invitrogen-Molecular Probes, Eugene, OR) and then
imaged with NIS Elements 3.2 software (Nikon).

To determine whether the different amplitude of [Ca™ ],
increase between MCT and control groups was caused by
SOCE, 10 uM CPA was extracellularly applied, which is
a sarco/endoplasmic reticulum Ca**-ATPase inhibitor that
induces Ca*" influx. The [Ca*"] oyt Tise (ARatio) of MCT and
control groups was then detected.

2+]

2.7. Real-Time PCR. Total RNA was extracted from EPCs
in MCT and control groups using TRIzol® reagent (Invitro-
gen, Burlington, ON, Canada). The quality and concentration
of total RNA were then determined with a spectrophotometer
(NanoDrop 2000, Thermo Scientific, USA). Reverse trans-
cription into cDNA was conducted using the PrimeScriptTM
RT Master Mix Kit (Takara, Japan). The expression levels
of Orai and TRPC channel were then detected by real-time
PCR on the Applied Biosystems Real-Time PCR System
7500 Fast (Applied Biosystems, Foster City, CA, USA). The
primers (forward and reverse, 5- 3°) for amplification of
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FIGURE 1: Monocrotaline (MCT) induced pulmonary arterial hypertension (PAH) in rats after 4 weeks of MCT treatment. (a) RVSP of rats
in each group. (b) The RVHI of rats in each group. RVSP: right ventricular systolic pressure; RVHI: right ventricular hypertrophy index. * P

< 0.05 and #* P < 0.01 compared with control group.

genes were as follows: Orai I: AAGTTCTTACCGCTCAA-
GAGGCAG and AGCGGTAGAAGTGAACGGCAAAGA;
Orai 2: TGTGGGTCTCATCTTCGTGGTCTT and TGA-
GCTTGTGCAGTTCCTCGATCT; Orai 3: TAGTGCCTG-
CACCACTGTGTTAGT and ATTGTGGATGTTGCTCAC-
GGCTTC; TRPC7: AGACACGGAAGAGGTGGAAGC-
AAT and AGTTAGGGTGGGCAACGAACTTCT; TRPCé:
TCTGGCTGCTCATTGCCAGGAATA and AGAGTG-
GCTGAAGGAGTCATGCTT; TRPC5: AGTTCACAC-
CAGACATCACACCCA and TGAACTGGACACACA-
CTCCACACA; TRPC4: AGTTTATCTGCCACACAGCCT-
CCT and AGTCCGCCATCCCACATCTGTTTA; TRPC3:
TCTTCCTGGGTCTGCTTGTGTTCA and TGTCCATGT-
GAACTGGGTGGTCTT; TRPC2: TCCTGTGAAGAT-
CAGCCATGTGGT and TGTCTGGGTTCAGCAAGT-
TCTCCA; and TRPCl: ACAGAAGATGCAGAGCACAGA-
CCA and AAGTCCGAAAGCCAAGCAAATCCC. Each
sample was analyzed in triplicate. Cycling parameters were
set as follows: 50°C for 2 min and 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s.

2.8. Statistical Analysis. All experiments were independently
repeated three times. All measurement data were presented
as the mean + standard deviation (SD) and analyzed for
significant difference by using an unpaired Student’s t-test

Prism 5 software (GraphPad Software, Inc., La Jolla, CA,
USA). A value of P < 0.05 indicated a statistically significant
result.

3. Results

3.1. The General Status of Animals. During the animal exper-
iment, 2 and 3 rats in MCT group died in the third and
fourth weeks after MCT injection, respectively. As a result, 45
rats were enrolled in this study. After 3 weeks of treatment,
rats in MCT group appeared to obviously have asarcia,
dyspnea, and chest and ascites formation, together with liver
congestion and swelling, heart enlargement, right ventricular
hypertrophy, and other heart failure manifestations. Rats in
control group did not exhibit any abnormities.

3.2. MCT-Induced PAH in Rats. MCT was used to induce
PAH in rats in this study. The results showed that rats in
MCT group developed PAH after 3 weeks of MCT treatment
as reflected by a remarkable increase in RVSP: 59.40 + 8.13
mmHg in MCT rats versus 27.45 + 0.89 mmHg in control
rats (P< 0.05, Figure 1(a)). Moreover, the RVHI in MCT
group (41.69 + 2.00%) was significantly increased compared
with that in the control group (31.00 + 1.00%) (P< 0.01,
Figure 1(b)). These data indicated that MCT successfully
induced PAH in rats.
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FIGURE 2: The morphological changes of bone marrow- (BM-) derived endothelial progenitor cells (EPCs) after culture for 1 (a), 4 (b), 6 (c),

and 8 (d) days in the selective medium.

3.3. Identification of BM-Derived EPCs. The morphological
changes of EPCs were observed after culture for 1, 4, 6, and 8
days in the selective medium. After 1 day of culture, cells were
adhered to the wall, but their morphology was not uniform
and most of these cells were round (Figure 2(a)); some cells
were polygonal or spindle-shaped after 4 days (Figure 2(b));
the majority of cells were polygonal or spindle-shaped after 6
days (Figure 2(c)); spindle-shaped or polygonal cells showed
dominant growth after 8 days, paving stone-like arrangement
and clear cell gaps (Figure 2(d)).

Furthermore, immunochemistry identification was per-
formed after culture for 8 days in the selective medium.
Double stained with FITC-UEA-1 and Dil-ac-LDL, EPCs in
the adherent MNCs were identified (Figure 3(a)). Moreover,
the results showed that 84.40 + 8.06% of adherent MNCs were
identified as double-positive EPCs, confirming that highly
purified BM-derived EPCs were successfully isolated.

3.4. Functional Analysis of BM-Derived EPCs by Detection
of Vasculogenesis. To further confirm the function of BM-
derived EPCs, the vasculogenic potential of EPCs was
detected by the vascular network formation test. EPCs were
seeded onto the Matrigel for incubation for 5 h. The results
showed that the average length of vascular network per field
of view was 9.78 + 0.67 mm (Figure 3(b)).

3.5. MCT Decreased CPA-Induced SOCE in BM-Derived
EPCs. To determine whether MCT could regulate SOC in

BM-derived EPCs, 10 uM CPA was extracellularly applied to
detect the effects of MCT on SOCE. As shown in Figure 4,
the [CaZJ']cyt rise (ARatio) of MCT group (0.60+0.21) was
significantly lower than that in control group (0.91+0.23)
(P< 0.01), indicating that MCT decreased CPA-induced
SOCE.

3.6. The Effects of MCT on the Expression of Orai and TRPC
Channel. To further investigate the regulatory mechanism
of MCT on SOC, we detected the Orai and TRPC channel
expressions, including Orail-3 and TRPCI-7. In comparison
with control group, the expression levels of Orai3, TRPCI,
TRPC3, and TRPC6 in BM-derived EPCs were significantly
downregulated in MCT group (all P < 0.05, Figure5),
indicating that MCT decreased SOCE possible via decreasing
the expression of these channel molecules.

4. Discussion

PAH is a degenerating and devastating disease with limited
treatment options [26]. Elucidation of the key mechanism
underlying PAH will facilitate the development of effective
therapeutic strategy for this disease. In this study, the MCT
rat model of PAH was successfully established as reflected
by a remarkable increase in RVSP and RVHI. Moreover, the
delightful results were obtained that the SOCE ([Ca*"] cyt)
rise in BM-derived EPCs of MCT rat model was signifi-
cantly inhibited. Furthermore, the expression levels of Orai3,
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FIGURE 3: BM-derived EPCs identification with immunochemistry (a), as well as the vascular network formation test (b).
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FIGURE 5: The expression of Orai and TRPC channels, including Orail, Orai2, Orai3, TRPCI1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and
TRPC7, in MCT and control group. * P < 0.05 compared with control group.

TRPCI, TRPC3, and TRPC6 were markedly decreased in BM-
derived EPCs of MCT rat model. These data imply that BM-
derived EPCs could be involved in MCT-induced PAH in rats
via inhibiting SOCE and related channel expression.
Intracellular Ca®* signaling, as an important second mes-
senger for cell proliferation, is found to play an important role

in numerous physiological and pathophysiological processes
in PASMCs, like proliferation and hypertrophy [27]. SOCE
is a ubiquitous Ca** entry pathway that is involved in the
control of various physiological functions in various cell types
[28]. When intracellular Ca®" stores are depleted, SOC can
mediate Ca?" influx and increase [Ca“]Cyt [29]. Moreover,
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TRPC-dependent SOC is confirmed as an important pathway
to mediate the development of MCT-induced PAH [14].
Lin et al. revealed that the enhanced SOCE is responsible
for the chronic hypoxia-induced pulmonary hypertension
in rats [30]. Zhou et al. demonstrated that SOC regulated
endothelial hyperpermeability in severe PAH [31]. These data
confirm the pathological role of SOC in PASMCs during
PAH development. However, SOC may play a dual role in
different cell types. A previous study has shown that SOCE is
an important factor in regulating the functions of EPCs and
the SOCE inhibition reduces the proliferation and migration
of EPCs during atherosclerosis [32]. Wang et al. indicated
that SOC inhibition could prevent H,O,-induced apoptosis,
thus exerting a protective effect on EPCs [33]. Lodola et al.
demonstrated that SOC was remodeled and subsequently
regulated in vitro angiogenesis in EPCs isolated from tumoral
patients [34]. In our study, SOC was inhibited by MCT in BM-
derived EPCs of MCT-treated rats. Given the key role of SOC
in EPCs, we speculate that BM-derived EPCs may prevent
MCT-induced PAH in rats possible via activation of SOC.

Furthermore, both Orai and TRPC proteins are proposed
to form SOC [35]. Increasing evidence has suggested the
important roles of Orai and TRPC channels in PAH. Orail,
Orail2, and Orai3 can promote SOCE in PASMCs and may
serve as potential therapeutic targets for chronic hypoxia-
induced pulmonary hypertension [36]. Dragoni et al. sug-
gested that Orai3 is overexpressed in primary myelofibrosis-
endothelial colony forming cells (ECFCs) that are EPC subset
and thus resulted in the upregulation of SOCE [37]. In this
study, Orai3 expression was markedly decreased in BM-
derived EPCs of MCT rat model. Considering the key role
SOC in PAH, we speculate that inhibition of SOCE due to
the downregulation of Orai3 in BM-derived EPCs may play
a key role in MCT-induced PAH. In addition, TRPCl is a
major constituent of SOCE and overexpression of TRPCI can
promote SOCE-induced vasoconstriction in rat pulmonary
artery [38]. TRPCl deficiency is found to impair the functions
of EPCs on regulating angiogenesis [39]. Moreover, TRPC3
channels are found to be involved in the development of
hypertension and its related complications [40]. Poteser
et al. indicated that TRPC3 could regulate Ca*" signaling
in somatic EPCs [41]. TRPC3-mediated Ca®" signaling in
ECFCs is developed as a promising strategy for improving
therapeutic angiogenesis in failing hearts [42]. Furthermore,
TRPC6 is shown to be critically involved in the disease states
of pulmonary vasculature [43]. Yu et al. revealed that a unique
genetic variant of the TRPC6 gene promoter might result
in pulmonary vascular abnormality in idiopathic PAH by
linking abnormal TRPC6 transcription to nuclear factor-«B
activity [44]. Additionally, functional interaction between
TRPCI and TRPC6 can mediate Ca*" entry in endothelial
cells to promote lung vascular permeability [45]. Blockade
of TRPC3 and TRPC6 could be a promising therapeutic
strategy for PAH treatment [46]. In this study, the expression
of the store-operated TRPC1, TRPC3, and TRPC6 channels
was decreased in BM-derived EPCs of MCT rat model,
suggesting that BM-derived EPCs may be implicated in
MCT-induced PAH via decreasing the expression of these
channel molecules.

In conclusion, The SOC activities were inhibited in
BM-derived EPCs of MCT-treated rats. These results may
be associated with and the depressed expression of Orai3,
TRPCI, TRPC3, and TRPC6, which are major mediators of
SOC. Our findings may provide a physiological basis for the
potential clinical application of the EPCs cell therapy to PAH.

Data Availability

The data used to support the findings of this study are
included within the article.

Additional Points

Highlights. (1) MCT-induced PAH in rats successfully. (2)
SOCE was decreased by MCT in BM-derived EPCs of MCT-
treated rats. (3) The expressions of Orai3 and TRPCI, 3 and 6,
were decreased in EPCs of MCT rats.
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