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Abstract

Almost every ecosystem on this planet is teeming with microbial communities made of diverse bacterial species. At a reductionist 
view, many of these bacteria form pairwise interactions, but, as the field of view expands, the neighboring organisms and the 
abiotic environment can play a crucial role in shaping the interactions between species. Over the years, a strong foundation of 
knowledge has been built on isolated pairwise interactions between bacteria, but now the field is advancing toward understanding 
how cohabitating bacteria and natural surroundings affect these interactions. Use of bottom-up approaches, piecing communities 
together, and top-down approaches that deconstruct communities are providing insight on how different species interact. In 
this review, we highlight how studies are incorporating more complex communities, mimicking the natural environment, and 
recurring findings such as the importance of cooperation for stability in harsh environments and the impact of bacteria-induced 
environmental pH shifts. Additionally, we will discuss how omics are being used as a top-down approach to identify previously 
unknown interspecies bacterial interactions and the challenges of these types of studies for microbial ecology.
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Introduction
Over the past several decades, it has become clear that  
microbial interactions have a profound impact in the fields 
of human health (e.g. oral health1), environmental nutrient  
cycling2,3, and bioremediation (i.e. breakdown of industrial  
waste4). The foundation of interspecies interactions research 
focuses on pairs of species, whose actions have a bidirectional 
or unidirectional influence on each other5. Although there are 
likely many unknown forms of bacterial interaction, a major-
ity of those described fall within two categories, competitive or  
cooperative. Competitive interactions occur between species  
that desire the same nutrients or spatial location. Competing  
bacteria utilize several mechanisms to outperform their 
competitor(s), including use of superior resource acquisi-
tion mechanisms, rapid nutrient utilization, coordinated social  
behavior among related individuals, increased motility toward 
a resource, or impairment/killing of their competitor(s)6,7.  
Cooperation benefits the interacting partners and includes  
metabolic exchange of a species’ waste or public goods (i.e. 
cross-feeding and syntrophy), protection, and environmental  
detoxification8–10. More recently, habitat modification has 
emerged as a major means of competitive and cooperative inter-
actions by shifting environmental parameters (e.g. pH, nutrient  
concentration) to suboptimal ranges or by stabilizing them11,12. 
Both competition and cooperation can lead to the emergence or  
decline of species; however, when and where the various types 
of interaction occur depend on the particular circumstances.  
In this review, we will focus on the interactions that play a role 
in the establishment and maintenance of a core functional  
community as opposed to random interactions that occur  
outside the context of a community.

In order to investigate how bacterial species in a society  
interact either physically or chemically, scientific studies must 
rationally recapitulate some aspect of the community. To date,  
most interspecies studies have been carried out in laboratory  
conditions that lack many aspects of the natural environment. 
These studies have been instrumental in establishing mechanisms  
of interspecies interactions and the fundamental capacity of 
bacteria to interact. More recent work has aimed to confirm  
and expand on these results by using conditions that more 
closely mimic those of the natural environment1,12–16. Using  
these experimental systems, researchers are revisiting general  
ecological questions such as the following: how does the  
surrounding community or physical environment (e.g. nutrients, 
spatial structure) affect an interaction between two species? At 
what spatial scale should experiments be carried out? How close  
do bacteria have to be to interact? And can omics methods tell 
us which bacteria are interacting? These questions have not 
fully been answered, but the studies detailed in this review are  
beginning to shed light on the emerging methods and trends in  
the study of diverse communities and dynamic environments.

Mimicking nature’s complexity
Having gained considerable insight into how different species  
interact, the next question to ask is how these interactions 

are affected in a native environment. To more closely mimic  
natural habitats, scientists are adding naturally cohabitating  
bacteria and using media that resemble the bacteria’s native 
habitats. Incorporating these techniques has shown that both 
“who” and “what” are around can impact the extent of bacterial  
relations.

There is bacteria all around
To date, most methods of community incorporation have relied 
on sequencing studies14,17,18 to identify commonly co-occurring  
organisms that are then selectively added to generate a smaller  
community called a “microcosm”. Community member selec-
tions may be biased by ease, interest, scale19, inability to culture  
community members20, exclusion of low-abundance but  
high-impact bacteria21, or misleading sequencing data22. To  
address the issue of biased data, several initiatives have  
generated standardized controls for metagenomic studies, which 
we support for the validation of existing and new protocols. 
An alternative to bottom-up methods, which piece together a 
microbial community, are systems using membrane-separated  
compartments15,23 or dialysis tubing24 that allow for experiments 
to be carried out with the natural consortia. Regardless of the  
community incorporation technique used, there are several  
implications of having additional species in an experimental  
environment. More species increase the possibility for horizon-
tal transfer of genetic materials25, altered spatial organization26, 
overall habitat modification27, and even altered evolutionary  
trajectories28. Additionally, not only are bacterial species 
being added but so are the bacteriophages they carry and the  
membrane vesicles they generate29,30. These changes all can  
affect interactions, which has led researchers to examine if  
and when pairwise interactions are scalable.

Microcosm experiments have found that individual pairwise  
interactions are often consistent across community complexity,  
indicating that bottom-up approaches incorporating progres-
sively more community members are largely, but not always,  
valid12–14,18 (Figure 1). Three-organism experiments are shed-
ding light on why some interactions are not scalable. Addition  
of a third-party organism to a two-membered community has 
shown that 1) the strength of pairwise interactions can be  
affected13,31–33, 2) the interactions can be modified to form 
a multi-way relationship31,32, and 3) environmental changes  
indirectly change bacterial behavior or the abundance of  
participating species13,14,33. Because the presence and strength of 
an interaction can have a broad effect on a community, studies 
using a complex community provide insight on the importance of  
an interaction in an ecosystem. This does not mean pairwise  
interaction studies are less valuable because they allow us to 
understand the fundamental capacity of bacteria to interact. Pair-
wise studies also aid in identifying features such as the genes  
responsible for interactions, metabolites made or consumed, 
and proximity requirements for an interaction. The knowl-
edge gained in pairwise interaction can then be leveraged in  
bottom-up studies to interrogate the role in complex communi-
ties. Reciprocally, the increased use of more complex studies is  
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advancing our knowledge of bacterial interaction networks that 
can fuel new avenues of investigation to be studied at smaller  
scales (Figure 1).

The environment impacts bacterial interaction
Unlike multicellular organisms, which have mechanisms to 
maintain their homeostasis in a changing environment, microbe 

physiology is more context specific and so are their  
interactions4,34–36. Many studies have found that the media used 
in an experiment affects interactions13,33,37, highlighting the 
need to recapitulate not only the community but also the abiotic  
environment. Furthermore, using transcriptomes, several studies 
have shown that bacterial behavior in the laboratory is not  
consistent with the behavior in a natural in situ environment38,39.  

Figure 1. Interspecies interaction knowledge fuels bidirectional studies across scales.
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Aiming to more accurately replicate native environments,  
several new model systems have been developed, including artifi-
cial urine media40 for an investigation into polymicrobial urinary  
tract infections, complex skin organoids for skin-community 
colonization41, the inclusion of food-grade fibers in a gut  
model42, as well as several systems facilitating cultivation in 
native environments15,16. These models, based on researcher  
rationale, are likely superior models, but without validation it 
is unclear how they compare to the native environment. Studies 
comparing bacterial gene expression in a model to environmental  
samples offer an opportunity to iteratively improve model  
components like nutrient levels, pH, and amino acid presence, 
allowing for more accurate recapitulation of interactions that  
occur in nature39,43,44. This point also highlights a lack of ration-
ale for the use of general laboratory media when trying to draw  
conclusions about the natural environment. Media selection  
justification should not be a biased topic and not restricted to  
new models. Often studies focused on basic bacterial physiol-
ogy do not provide justification even if the media was rationally  
selected for a defined reason (i.e. to support fast growth). We 
employ that justification for media selection, and the limitations  
introduced by media should be clearly stated, especially if they 
are not chemically consistent (e.g. contains yeast extract or  
tryptone which vary between batches).

Environmental components are important to consider because  
both nutrient level13 and the type of nutrients present4 can play 
a large role in dictating social interactions. In some exam-
ples, increased nutrient availability strongly promoted bacterial  
competition, causing changes in the overall biodiversity13,37.  
When an eight-species soil community was given high levels 
of nutrients, extensive growth led to more environmental modi-
fication, increased negative interspecies interactions, and loss 
of biodiversity in the community13. Similar results were found 
with a four-species community used in bioremediation. These 
microbes showed only positive or neutral interactions in a stressful 
environment; however, upon nutrient addition or reduction 
of toxicity, competition increased37. The correlation between  
stress and cooperation is consistent with the stress-gradient 
hypothesis originally described in 1997 noting that “positive 
interactions may be common, predictable, and pervasive forces 
in natural communities and in physically harsh environments in  
particular”45. Regardless of whether an interaction is coop-
erative or competitive, most of the known forms of interactions  
are mediated through environmental chemical modification by  
bacteria and are dependent on the environment used in an  
experiment.

Habitat modification is a growing field
In bacterial ecology, there is a growing interest in the milieu 
of a community. Along with the long-standing study of  
cross-feeding, pH is gaining interest as more studies find that 
it plays a major role in community composition and stability. 
Both metabolite usage and pH range are increasingly becom-
ing reliable predictors of interactions, as we will discuss in  
this section.

Feeding your neighbors
Nutrient cross-feeding refers to the catabolism of a bacterium’s 
secreted products by another bacterium. Microbial cross-feeding 
is a widespread phenomenon46 that can alter community  
composition17, structure4,26, evolution47,48, virulence49,50, and anti-
biotic susceptibility27,51,52. Because cross-feeding often fulfills 
a metabolic requirement, genomic data are increasingly being 
used to identify the basic metabolic needs of a species and  
to predict social interactions33,53,54. For example, co-abundance  
and metabolic requirements were extrapolated to reveal that oral 
interactions were predominately cooperative53. One issue faced 
with predictive models is the lack of knowledge on metabo-
lite preference in communities and hierarchal use of nutrients,  
which is addressed by Bajic and Sanchez55.

Aside from the growing use in predictive models, cross-feeding  
has been shown to promote community member survival under 
antibiotic exposure27,51. Cross-feeding also leads to the death 
of community members when metabolic dependencies are  
present and cooperative interactions are lost owing to antibi-
otic killing of the most susceptible member51,56. Consistent with 
the findings detailed above showing cooperative interactions in 
harsh environments, a study showed that cross-feeding led to  
stabilization of the species when in low-nutrient environments 
in vitro and in the gnotobiotic mouse gut57. Together, these  
findings highlight a recurrent paradigm that low nutrients can 
promote cooperative interspecies cross-feeding, resulting in  
community stabilization. Upon the addition of nutrients, some 
cooperative relationships are lost, and the community composi-
tion changes based on fitness levels and environmental modifica-
tion (i.e. pH). In these events, it is likely that not all cross-feeding  
interactions are lost unless all metabolic requirements are  
alleviated or organisms change their metabolic preference upon 
the addition of nutrients.

The impact of pH
The role of environmental pH shifts is a prominent topic in 
the study of interspecies interactions. The summation of pH 
changes by the community dictates the fate of community  
members33. For example, opposing pH shifts by bacteria can be  
considered a positive interaction because the resulting pH  
stabilization promotes community synergy11, while pH manip-
ulation by a transient invader can influence the stable state 
of a competing two-member system12. Shifts in pH can also  
modulate the antimicrobial tolerance of cohabitating species27.  
Environmental pH can affect not only the bacteria but also  
chemicals as well. It is still unclear if the change in the  
chemical affects chemical–microbe interaction or the interaction  
is a result of the change in bacterial behavior alone.

Outside of the laboratory, pH has been shown to be a major  
driver of community composition58 and diversity59 in natural 
soil samples. One of the many explanations for the strong role 
of pH is that it affects energy yields of microbial respiration,  
giving rise to pH limitations on community membership60.  
Using a species’ metabolic properties, pH preferences, and 
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strength of environmental modifications, interspecies interactions,  
community membership, and community stability have been  
shown to be predictable33. The next question is if other factors 
such as oxygen, metabolite concentrations, or broad environ-
mental parameters like precipitation/wetness in soil communities 
can just as easily be predictable parameters for community 
composition and interspecies interaction. Additionally, a  
parameter that should be strongly considered in future studies is  
the scale at which these parameters are predictive, as interactions 
can vary across the spatial-temporal landscape.

Spatial structure
A long-standing question is how close bacteria have to be to  
interact. Overall, the literature shows that interactions occur 
in short ranges with neighbors61,62. Some types of interactions 
are intimate and require cell-to-cell contact, while diffusible  
chemicals have larger ranges, which increase based on their  
physiochemical properties (e.g. volatility). A possible mechanism 
of long-range interaction is extracellular electron transfer, where  
bacteria can donate or accept electrons from the environment 
at distances up to 1 cm via surface-attached pili or environ-
mental conductive materials63,64. Extracellular electron transfer 
may serve as a novel mechanism of interspecies interaction;  
however, more work is needed in this area of research. Using the  
information gained on distance requirements for specific types 
of interactions, mechanisms of interspecies interactions can be  
speculated by knowing the average distance between two  
species. It is also possible that a ripple effect of multiple  
interacting species can dictate spatial organization.

Because different types of interaction occur at different scales 
and distances, the use of multiple techniques is often necessary  
to investigate interspecies interactions. For example, the use 
of micro-scale bioprinting of microbial colonies demonstrates  
that metabolite sharing between species is distance dependent 
and adding a competitor adjacent to or in the path of metabolite  
diffusion can curtail metabolite cross-feeding65. Perturbations 
in microsite colonization correlated to changes in metatran-
scriptomics have been used to identify distinct competition and  
cooperation interactions occurring during spatial organization 
that facilitate biomass expansion26. Use of electron topography 
and fluorescence transmission electron microscopy proved that  
Clostridium ljungdahlii and Clostridium acetobutylicum in 
close proximity can undergo interaction that involves cell wall  
fusion, allowing for large-scale protein and RNA exchange66.

As you might expect, adding just one species to a system or  
altering the environment (i.e. oxygen) can markedly change  
the community’s spatial architecture likely as a result of adapta-
tion to newly developed niches67,68. These studies indicated that 
model systems can be improved through an iterative process  
by comparing community organization in the lab to a real-world 
community. Further insight into natural community arrange-
ment has been afforded by advances in imaging, particularly  
combinatorial labeling fluorescence in situ hybridization tech-
niques coupled with microscopy69–73. One of the technical  
gaps in spatial ecology is connecting visual observations with 
mechanisms. Two newer avenues that can be used to address  

this knowledge gap are Raman spectroscopy and imaging mass 
spectrometry, which allow for visualization of cells and cor-
responding assessment of the chemical topography at high  
resolution69,74. Additionally, next-generation approaches have 
been proposed that combine phenotype probing and observation  
before endpoint assays such as omics to allow for mechanistic 
insights into the spatial organization of a community75.

The continuing rise of omics
The use of omics techniques has played a critical role in  
understanding bacterial interactions, and, as the technologies 
continue to improve and costs decrease, we anticipate these  
techniques will factor more prominently. The most frequently  
used omics approaches provide an assessment of who is present 
in a community (ribosomal RNA gene amplicon sequencing,  
metagenomics, and metatranscriptomics), what they can do 
(metagenomics76), and what they are doing (metatranscriptomics34, 
metaproteomics4, and metabolomics67). Beyond these techniques, 
transposon-insertion sequencing (Tn-seq) has been shown  
to be a high-throughput method to study interactions between  
species77,78. When carried out on wound and oral communi-
ties, Tn-seq found that previously non-essential genes become 
essential when an organism is co-cultured with another  
species77,78.

The use of omics has been particularly helpful in complex  
communities where multiple interactions are taking place. As 
a top-down method, omics are being used to infer interactions  
between species through network analyses. Often used for  
human social and protein interactions, network methods rely 
on the probability of bacterial species co-occurring to infer  
cooperation via positive correlation and competition via nega-
tive correlation40,53 (Figure 2A). Network analysis is also being  
expanded to include metabolite transport and usage79–81 or 
gene expression from multiple species82 to aid in mechanism  
identification (Figure 2B). Although these methods are proving to 
be very useful, more work is needed to address varied accuracy 
between available data analysis tools, difficulty inferring some 
interaction types, particularly complex oscillating interactions 
(e.g. predator versus prey), and limited use for low-abundance 
organisms that have a strong impact in the community21,83. 
Owing to the correlative nature of network interaction, the  
complexity and non-linear dynamics of communities inferring 
interactions from covariance should be viewed with skepticism 
until coupling with empirical data to prove interactions (i.e. colo-
calization, stable isotope labeling, and co-culturing assays)84,85. 
This is illustrated by recent papers incorporating  known metabo-
lite transport, usage, and production with species co-occurrence 
into a network and finding both known and yet-to-be-confirmed  
interactions (Figure 2C)80,81. Although there is skepticism in 
interpreting novel network data and necessary improvements in  
microbial ecology analysis techniques are necessary, network 
methodologies are allowing scientists to better understand  
complex multispecies communities.

More frequently, studies are using a multi-omics approach  
that incorporates data on factors such as bacterial abundance, 
transcriptomics, proteomics, or metabolomics to elucidate 
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Figure 2. Flavors of network analyses used to infer bacteria interaction. Depending on the analysis, (A) one or (B) more types of nodes 
may be incorporated (i.e. bacteria, metabolites, genes, etc.). Edges represent the correlation, which is calculated between each node.  
(A) Often a threshold is used, and only significant co-occurrences are made visible to reduce complexity. Alternatively, all edges are shown 
(B), but with more complex networks the image becomes hard to interpret. (C) To illustrate the complexity and information gained from 
a network, work by Sung et al. is provided showing species abundance, metabolite export, and import80. This figure incorporates known 
degradation reactions and utilization with co-occurring microbes to identify interactions between species as they digest lignocellulose in 
the termite gut (reprinted under the Creative Commons Attribution 4.0 International License)81. Amycolatopsis pretoriensis, Anaerotruncus 
colihominis, Bacillus cereus, Bacteroides fragilis, Bacteroides luti, Burkholderia pseudomallei, Calidifontibacter indicus, Chitinispirillum 
alkaliphilum, Clostridium difficile, Clostridium termitidis, Cnodalon viride, Desulfotomaculum ruminis, Desulfovibrio cuneatus, Desulfovibrio 
desulfuricans, Desulfovibrio piger, Dysgonomonas macrotermitis, Ethanoligenens harbinense, Escherichia coli, Enterococcus faecalis, 
Faecalibacterium prausnitzii, Fibrobacter succinogenes, Flexilinea flocculi, Kluyvera ascorbata, Lactococcus garvieae, Lactococcus lactis, 
Mesorhizobium plurifarium, Methanobrevibacter arboriphilus, Methanobrevibacter curvatus, Methanosarcina acetivorans, Methanospirillum 
hungatei, Mycobacterium rhodesiae, Oxobacter pfennigii, Pilibacter termitis, Pseudomonas aeruginosa, Salinispora pacifica, Salmonella 
enterica, Shewanella decolorationis, Spirochaeta africana, Spirochaeta coccoides, Tannerella forsythia, Tessaracoccus flavus, Treponema 
azotonutricium, Treponema bryantii, Treponema caldarium, Treponema denticola, Treponema vicentii, Tritrichomonas foetus, Vibrio anguillarum, 
Youngiibacter fragilis.
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multi-species interaction networks and the mechanisms of  
interactions4,76. For example, metagenomics, metatranscriptom-
ics, and targeted metabolite analysis led to the identification  
of interspecies interactions involved in the environmental  
biodegradation of bisphenol A76. Combinations of multi-omics 
approaches and experimental validation are paving the 
way for the next generation of interspecies interaction  
discoveries.

Discussion
Similar to other fields in biological sciences, adapting experi-
ments to mimic the natural world is gaining traction in microbial  
ecology. Approaches mimicking complex bacterial habitats 
are showing that cohabitants and environmental factors affect 
bacterial interactions; thus, experimental data interpretation  
is limited by study design. By working with more complex  
communities, more interspecies interactions are being included,  
making it difficult to untangle the network of actions and reac-
tions by different species. The data that can be gleaned based on 
scale is a pertinent topic because the outcomes of a single inter-
action can lead to larger consequences such as microbiome  
dysbiosis and diseases such as gingivitis86, gastrointestinal  
diseases, and obesity87. The scale used in a study dictates the 
inclusion of the community, the abiotic environment, and what  
questions can be asked19,88. Several studies show that bottom-up 
approaches are useful to answer many questions12–14,18; however, 
they have several limitations and therefore community studies 
are needed before assuming that a pairwise interaction occurs 
across scales13. Reciprocally, top-down methods that rely 
on omics lack conclusive proof of an interaction and must  
be validated by small-scale studies. Likewise, the environmen-
tal system can impact interactions4,34–36,38,39,43; therefore, new 
model systems need to be validated39,43,89 and old model systems  
need to be rationalized if used.

Investigations of bacterial interactions at the community level  
have highlighted the importance of cooperative interactions and 
the role of environmental nutrients in influencing interactions  

and community stability. Competitive interactions are more often 
studied, but hopefully these recent findings will inspire more  
interest in cooperative mechanisms between species. Additionally, 
as more relevant and sophisticated experiments are performed, 
new questions arise, including the following: can metabolite  
concentrations or oxygen levels be used as predictable param-
eters of interspecies interactions? Within a community, what are 
the distinct niches and what interactions govern niche establish-
ment? Many of these questions will likely be answered with the  
help of omics-level data analysis coupled with carefully  
designed experimental systems. A significant challenge is still  
tracking the origin of interaction, particularly with chemical  
signatures. Progress in metabolomics offers more advanced and  
holistic methods for examining environmental modification 
and cross-feeding, including mass spectroscopy imaging and  
Raman methods, which have the potential to begin to indicate 
metabolite origins.

Intercalation of data from multiple omics datasets is provid-
ing an increasingly granular view of known interactions and is  
identifying unknown community-based interspecies interactions 
for further study. With this new frontier, appropriate data use  
is critical, and analysis will often need collaboration between 
subject matter experts, modelers, bioinformaticians, and  
computer scientists. Omics data can be leveraged not only by 
the originating lab but also by others, yet one out of every five 
metagenomic studies since 2016 has not been deposited into a  
repository90. The lack of commitment for open access omics 
data is stifling progress, and so we want to close by stressing  
the importance of making raw omics data open access for the  
betterment of the field.
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