
MEDICAL IMAGING AND DIAGNOSTIC RADIOLOGY

Received 9 October 2017; revised 14 December 2017; accepted 9 January 2018.
Date of publication 18 January 2018; date of current version 30 January 2017.

Digital Object Identifier 10.1109/JTEHM.2018.2795022

A Meshfree Representation for Cardiac Medical
Image Computing

HEYE ZHANG1 ,(Member, IEEE), ZHIFAN GAO1 ,(Member, IEEE), LIN XU2, XINGJIAN YU3,
KEN C. L. WONG4, HUAFENG LIU3, LING ZHUANG5, AND PENGCHENG SHI6

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2Department of Cardiology, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510000, China

3State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
4IBM Research - Almaden Research Center, San Jose, CA 95120, USA

5Department of Radiation Oncology, Northwestern Lake forest Hospital, Lake forest, IL 60045, USA
6B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

CORRESPONDING AUTHOR: HUAFENG LIU (liuhf@zju.edu.cn)

This work was supported in part by the National Key Technology Research and Development Program of China under
Grant 2016YFC1300302, Grant 2017YFE0104000, and Grant 2016YFC1301700, in part by the National Natural Science Foundation of
China under Grant 61525106, Grant 61427807, Grant 61701436, and Grant 61771464, in part by the Shenzhen Innovation Funding

under Grant JCYJ20170413114916687 and Grant JCYJ20170306090501763, in part by the Science and the Technology Planning Project
of Guangdong Province under Grant 2014A020212257 and Grant 2013A022100036, in part by the Guangzhou Science and Technology
Planning Project under Grant 201704020079, and in part by the Project funded by China Postdoctoral Science Foundation under Grant

2017M620394.

ABSTRACT The prominent advantage of meshfree method, is the way to build the representation of
computational domain, based on the nodal points without any explicit meshing connectivity. Therefore,
meshfree method can conveniently process the numerical computation inside interested domains with large
deformation or inhomogeneity. In this paper, we adopt the idea of meshfree representation into cardiac
medical image analysis in order to overcome the difficulties caused by large deformation and inhomogeneous
materials of the heart. In our implementation, as element-free Galerkin method can efficiently build a
meshfree representation using its shape function with moving least square fitting, we apply this meshfree
method to handle large deformation or inhomogeneity for solving cardiac segmentation and motion tracking
problems. We evaluate the performance of meshfree representation on a synthetic heart data and an in-vivo
cardiac MRI image sequence. Results showed that the error of our framework against the ground truth was
0.1189 ± 0.0672 while the error of the traditional FEM was 0.1793 ± 0.1166. The proposed framework
has minimal consistency constraints, handling large deformation and material discontinuities are simple and
efficient, and it provides a way to avoid the complicated meshing procedures while preserving the accuracy
with a relatively small number of nodes.

INDEX TERMS Meshfree, segmentation, cardiac motion analysis.

I. INTRODUCTION
The development of cardiac image analysis algorithms to
assess the regional function of the heart constitutes a promis-
ing strategy for evaluating normal and abnormal cardiac
physiology and mechanics [1]–[5]. However, in the presence
of the limitations of the existing imaging techniques such as
image noise, intensity inhomogeneity, etc, the complexity of
the cardiac dynamics and the lack of unambiguous reference
landmarks within the myocardium, it remains challenging
to robustly and reliably solve these problems. To address
these difficulties, methods derived from various energy
minimization formulations in the forms of partial

differential equations (PDEs) have been extensively studied
and widely used, offering a unified framework which com-
bines knowledge from physically/mathematically motivated
regularization, image-based/derived data, representation and
computation theory.

In the past two decades, though there is a rapidly growth
in external model constraints, relatively little attention has
been paid to representation and computation strategy for
cardiac image analysis [6]–[11]. Over decades, finite ele-
ment methods (FEMs), and, to a lesser extent, boundary
element methods (BEMs), are the most commonly com-
putational strategies for cardiac image analysis because
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meshing of analysis domains among discrete points has
become the standard numerical representation. These
two methods both provide numerical solutions through
the discretization of the analysis domains into meshes
with predefined connectivity/ordering between nodes.
For examples, there are a large number of mesh-
based computational strategies in the past, including
cardiac image segmentation [12]–[19], material prop-
erties estimation [20]–[24], motion and deformation
analysis [25]–[33], and cardiac image registration [34]–[36].

A. FINITE ELEMENT METHODS
The first step of FEMmesh representation is to approximate a
continuous function f (x) by subdividing the analysis domain
into a finite number of smaller and simple elements, such
as triangle. Then, FEM methods use variational methods to
approximate analytic solution by assembling these simple
interpolation equations from the meshing element into a
larger system of algebraic equations with enforced image-
derived boundary conditions.

Although subdivision of the analysis domain into a finite
number of elements has been proven really ingenious and
well-suited for many cardiac image analysis works, mesh
generation of irregular cardiac geometry is always difficult
and time consuming [20], [21]. Furthermore, the explicit
connectivity of mesh brings a great difficult to handle the
large deformation, and material and/or kinematics disconti-
nuities, especially in three-dimensional (3D) cardiac image
analysis [22]–[24]. For example, in cardiac segmentation and
motion analysis, because of the large deformation of cardiac
motion, the skewed or compressed shape of FEM mesh dras-
tically damage the numerical accuracy of FEM computation.
Thus, re-meshing or adaptive node refinement along with the
discontinuities is always required in FEM implementation
to restore the shape of mesh [37], in order to increase the
numerical accuracy [38]. However, remeshing or adaptive
node refinement along with the discontinuities is a computa-
tional intense procedure [38]. Moreover, field variables need
to be properly passed over between two successive meshes.
As the cardiac motion is one periodic and large deformation,
it is become burdensome to do re-mesh at each step in 3D
cardiac image analysis.

B. MESHFREE METHODS
Different meshfree methods have been developed in compu-
tational mechanics analysis, such as the partitions of unity
methods, the diffuse element methods, the reproducing kernel
particle methods, the smooth particle hydrodynamics meth-
ods, and the element free Galerkin methods. These meshfree
methods provide another choice to handle the challenging
problems confronted by the FEMs. Furthermore, one text-
book has also extensively explained the benefit and efficiency
of these meshfree methods in numerical computation over
complex domain [39].

In FFMs, the interpolating shape function is explicitly
enforced into its mesh structure, which means that shape

functionwill not change over the same FEMmesh. Therefore,
a number of predefined shape functions are developed for
different numerical analysis. However, large deformation of
problem domain can easily destroy these predefined shape
functions because of distortion of FEM mesh structure. The
meshfree representation of problem domain uses a limited
number of nodal points without explicit mesh connectivity.
Moreover, the specific pairwise characterization of the nodal
interrelationship is no longer needed in this meshfree repre-
sentation [40]. Therefore, it is convenient to approximate the
field function f (x) using nodal points inside a particular point
of interest (POI) with different particle-derived interpolating
shape functions. Because the size of POI is adaptive, the com-
putation of meshfree shape function can be done all the time
through the numerical analysis.

Because of adaptive POI for shape reconstruction,
meshfree methods can efficiently handle the changes of
problem domain, including free surfaces and large deforma-
tions [39], [41]. This advantage of meshfress method allows it
to simplify spatial adaptivity (nodal addition or elimination)
and shape function polynomial order adaptivity (approxi-
mation/interpolation types), and handle moving boundaries
and material/kinematics discontinuities. Recently, a number
of works proposed to incorporate the wavelet based basis
function into meshfree method for solving the problems
involving widely varying scales [42], [43], which indicates
that meshfree methods can be used in scale-space computer
vision research.

C. CONTRIBUTIONS
We developed a meshfree computation framework to han-
dle continuous object deformation over its meshfree parti-
cle representation. The performance of this framework was
validated in a serial of cardiac image analysis tasks. Com-
paring to the traditional finite element methods, this mesh-
free framework require no explicit connectivity between its
nodes. Therefore, our meshfree framework can better handle
the discontinuity and large deformation efficiently without
re-mesh operation. Moreover, high numerical accuracy of our
meshfree framework can be achieved through adaptive node
and polynomial shape function refinement.

In the following sections, the details of our meshfree
framework using element-free Galerkin method will dis-
cussed, including the construction of shape function using
moving least square approximation, the penalty enforcement
of boundary conditions, andGalerkin weak form formulation.
Eventually, the performance of our framework is validated
in different cardiac motion tracking applications in two- and
three-dimensional spaces separately.

II. MATERIAL AND METHODS
A. SHAPE REPRESENTATION AND SHAPE FUNCTION
CONSTRUCTION WITH MESHFREE FRAMEWORK
There are a number of implementations of meshfree meth-
ods [40], [41], and the common feature of these methods
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is that no explicit nodal connectivity is required. However,
We use the element-free Galerkin method (EFGM) in this
work for demonstrate the efficiency of meshfree method
because EFGM is a relatively well developed and robust
method [44]. The performance of EFGM in handling mov-
ing boundaries has been widely verified in many other
fields [39].

Like all other meshfree method, EFGM use a limited
number of nodes without explicit connectivity to present the
entire analysis domain. In EFGM implementation, its shape
function is constructed using the moving least square (MLS)
approximations inside local influence domain of interested
location. Though the assembling system matrices in EFGM
from Galerkin weak form over the analysis domain still
requires background cells, this process can be easily created
in practice [44]. Furthermore, the enforcement of boundary
conditions in EFGM can be done by Lagrange multipli-
ers [44] or penalty methods [45]. Therefore, after translating
the cardiac segmentation and motion tracking problems into
evolution and domain mapping problems respectively using
elastic continuum mechanical model constraint, we demon-
strate that EGGM can be one powerful computational tools
for cardiac image analysis.

1) MESHFREE REPRESENTATION
Typically, ECG-gated cardiac image sequences are acquired
over the heart cycle, which are in 16 - 20 frames consist-
ing of 10 - 16 slices each. The endocardial and epicardial
boundaries of cardiac image at first frame are segmented
using existing framework. After in-between contours at the
desired distance are generated, the endocardial and epicardial
surfaces are then reconstructed using Delaunay triangulation
and smoothed using the non-shrinking algorithm.

The analysis domain bounded by endocardial and
epicardial surfaces is discretized using a limited number of
sampling nodes. The density of the nodal distribution is usu-
ally determined by desired numerical accuracy and available
computational hardware. In particular areas with sharp shape
variation or larger field variable gradient, a denser distribu-
tion of sampling nodes can be applied. Because there is no
explicit connectivity between sampling nodes, the density
of nodal distribution can be adaptively adjusted during the
computational process [39].

Many studies have provded that 70% of myocardium con-
sist of myocytes, which are connected together by collagen
to form muscle [46], [47]. These studies also show that the
physical properties along and cross the myocardial fiber are
different [48]. By taking advantaging of EFGM, we can effi-
ciently construct the representation of anisotropic myocardial
fibers by defining different local fiber orientation in each
sampling node according its location inside myocardium
(See Fig. 1 for examples).
Influence domain: In the implementation of EFGM, every

node will come with a domain of influence. Similar to FEM,
neighboring nodes in that area can be used to approximate
the current nodal values through shape function. That area

FIGURE 1. Top row: meshfree representations of the left ventricle (front
view and top view), Bottom row: the fiber model of the left ventricle
(front view and top view).

is usually called the influence domain, with typically circu-
lar or rectangular shapes in 2D.

2) CONSTRUCTION OF EFGM SHAPE FUNCTION
Just like the shape function in FEMs, the shape function
of EFGM is used to generate approximation of the field
variables using the values at sampling nodes inside the local
influence domain. In FEMs, the shape functions are con-
structed using the mesh of elements. But in EFGM, the shape
functions need to be constructed from sampling nodes with-
out any predefined nodal connectivity. Furthermore, the fol-
lowing criteria should be obeyed during the construction of
EFGMshape function: 1) Kronecker delta function: for easier
imposing of essential boundary conditions; 2) compatibility:
the approximated solution field is smooth and continuous in
the entire problem domain; and 3) consistency: the ability
of the approximated solution field to exactly represent the
polynomial with desired order [39]. In EFGM, the moving
least squares (MLS) approximation is applied to construct
the shape function because it can be implemented easily with
proper compatibility and consistency properties [49], [50].

a: MLS approximation
MLS approximation is mathematical method that can turn
finite series representation of field variable into a local regres-
sion problem. The details of MLS approximation has been
extensively explained in [7], [39], and [44]. One attractive
feature of EFGM is that its shape function is continuous with
first k derivatives if weight functions w(x − xI ) is continu-
ous with first k derivatives [49]. Furthermore, the numerical
scheme for shape and its derivatives construction can be
accelerated using more efficient [51].

b: Choice of basis and weight functions
The main purpose of basis functions is to enforce the consis-
tency and accuracy of numerical results using special terms
such as singularity functions. The basis functions in EFGM
is always monomials of the lowest orders for minimum com-
pleteness [7], [39], [44]. In order to generate solution with
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special features, such as singularity, a singular enhancement
function can be added into the basis function for the MLS
approximation [49]. The weight functions is another impor-
tant part to generate EFGM shape functions. Here are the
properties of weight functions used in EFGM: The weight
functions should be positive for a unique solution. In order
to maintain a proper local neighbor influence, the magnitude
of weight functions should be decreased when the distance
increases. In order to satisfy the compatibility condition of
the Hamilton’s principle, nodes should leave or enter the
local influence domains defined by the weight functions
in a smooth manner. In our implementation, the size of
influence domain can be settle down after enough neighbor
nodes are found to calculate the shape function. This notion
is similar to the scale-space concept in vision. Moreover,
it can facilitate the node distribution adaptively as well. The
cubic spline function is used in the following cardiac image
analysis works. In the demonstration of two-dimensional
cardiac image analysis, we use tensor product concepts to
establish the influence domains and calculate the weighting
functions [52], [53].

The EFGM shape functions do not satisfy the Kronecker
delta criterion, which results in that it actually approximates,
rather than interpolate, the field variables. The approximation
of field variables is determined by the parameters of all the
nodes within the influence domain of node. Therefore, it is
more difficult to enforce essential boundary conditions in
EFGM than FEMs. Different techniques, such as penalty
method or modified interpolatingMLS approximations have
been developed in order to remove this difficulty [54].

FIGURE 2. Comparison of fiber fitting results between FEM and EFGM. Top
left: A composite object formed by two materials with different fibreous
components, with the blue line indicating the interface (the ground truth).
Top right: The 8 nodes (yellow) with fiber orientations (cyan) used for
FEM interpolation or EFGM approximation. Bottom left: Fiber fitting result
of EFGM, using the 8 nodes (yellow) meshfree representation. Bottom
right: Fiber fitting result of FEM, using the 8 nodes (yellow) mesh (red).

c: Modelling material discontinuities
Fig. 2 shows that even only a few nodes are used, meshfree
gives very good fiber fitting results, while FEM gives a much
poor result for the same number of nodes. Meshfree result
was obtained with linear basis functions using the same mesh
points as FEM and the circular influence domain for each
node. Given a point px and a real number r > 0, an influ-
ence domain was defined based on an ordering of all points

according to Euclidean distance to the point px , in which we
were given a point q and must return some point px ∈ P
such that ‖px − q‖ ≤ r , if such a point existed. In FEM,
linear triangular elements were used. This result is illustrated
in Fig. 2 (bottom left) that the approximated fiber orientations
are almost the same as the ground truth in Fig. 2 (top left),
while in Fig. 2 (bottom right) the fiber orientations in the
elements which comprised by nodes with different material
properties deviate a lot form the ground truth. In FEM, a point
inside one element need to use all the nodes of this for inter-
polation, even if the material properties are different inside
this element. In the case of meshfree representation, since the
points are not bounded by meshes and the influence domain
size is adaptively determined, they can choose only the nodes
with the same properties for approximation, as long as they
get enough nodes so that the A matrix is invertible.

Remeshing is a spatial subsampling strategy in FEM
for achieving better approximation of field variables,
i.e., because the order of polynomial interpolation function
is determined by the elements used in the FEM mesh, more
elements in the refined mesh can produce better discretiza-
tion accuracy. However, the degrees of complication and
implementation difficulty might greatly increase after the
number of elements increased sharply with remesh. As a
result, the efficiency and accuracy of FEM are largely deter-
mined by the remeshing method. Furthermore, because of
complexity and large deformation of cardiac geometry, mesh-
ing or remshing method cannot be an automatic procedure,
which means that it is a time consuming and labor-intensive
procedure.

B. MESHFREE FORMULATION
In this section, a meshfree computation strategy for cardiac
image segmentation and cardiac motion analysis. A proper
mathematical model of deformation and correlative solution
algorithm are derived by using a defined shape function
approximation about the deformation as mentioned above
part. They together allow computationally efficiently handle
large deformation and discontinuities with ease.

1) MESHFREE REPRESENTATION OF DEFORMATION FIELD
As discussed above, the cardiac geometry is first discretized
by using a number of nodes whose displacements will com-
pletely define the shape’s deformation. After determining N
nodes xI inside the influence domain of interested location,
φI shape functions, the deformation vI , and the deformed
cardiac geometry can be defined using Eq. (1):

v(x) =
n∑
I

φI (x)vI (1)

Because EFGM uses a MLS shape functions constructed
from the nodes inside the influence domain only, meshfree
method for cardiac image analysis should find enough nodal
displacement vectors vI to approximate continuous field v(x).
In the following we will define these goal properties and
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show how vI can be solved using an energy minimization
procedure. Because the EFGM shape funcition’s continuity is
determined by the continuity of the weighting functions used
in the MLS approximation, our meshfree method can have
higher-order continuous approximation using a lower order
polynomial basis p(x) for cardiac image analysis. Thus, after
applying our meshfree method for cardiac motion analysis,
we can directly calculate stress and strain fields without post-
process like FEMs.

2) CONSTRUCTION OF WEAK FORM IN MESHFREE
In order to obtain numerical solution, a Galerkinweak form of
our meshfree method needs to be built over analysis domain
in an integral sense [55]. For an elastic body of a given shape,
its potential energy is defined as the energy of the deformation
of the body (the strain energy) minus the work done on the
body by the external forces.

Since a linear elastic material property under the Hamil-
ton?s principle of work is used here [55], we can use material
constitutive equation σ = cε to describe the relation between
stress tensor σ and strain tensor ε with a material matrix c.
The strain tensor is either infinitesimal or finite type in this
work. Therefore, strain tensor ε can be calculated from the
displacement v through equation ε = D v where D is a
differential operator matrix dependent on the strain types.
Moreover, the strain energy Es can calculated from the strain
and stress tensors in a linear elastic material property:

Es =
∫
�

(Dv)T c(Dv) d� (2)

where� is the problem domain. The work done by the exter-
nal forces, including the body forces b, the surface traction t
and the concentrated forces f

G =
∫
�

vTb d�+
∫
0t

vT t d0 +
∫
�

vT f d� (3)

Therefore, we have equilibrium through variational deriva-
tive [7], [39], [44]

δEs − δG = 0 (4)∫
�

δ(Dv)T c(Dv) d�−
∫
�

δvTb d�−
∫
0t

δvT t d0

−

∫
�

δvT f d� = 0 (5)

In this application of left ventricle, the body forces b consist
of gravity, surface traction t and concentrated forces f include
pressures caused by intra-ventricular blood flow and the reac-
tion forces caused by neighboring organs such as the lung.

Additionally, the inertia and damping forces are also con-
sidered as another part of the body forces, we obtain∫

�

δ(Dv)T c(Dv) d�−
∫
�

δvT f d�−
∫
0t

δvT t d0

−

∫
�

δvTbb d�+
∫
�

ρδvT v̈ d�

+

∫
�

κδvT v̇ d� = 0 (6)

Here, bb no longer includes inertia and damping forces, ρ is
mass density of the myocardium, and κ is the damping ratio.

3) ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS
Because the shape function of EFGM is contrasted fromMLS
approximation, it has no Kronecker delta function property
like the FEM shape functions. Therefore, essential boundary
conditions of displacement or kinematics can?t be directly
enforced into problem domain. Thus, we add a penalty func-
tion into the Galerkin weak form formulation of Equation 6
to enforce essential boundary conditions.

We transform the enforcement of essential boundary con-
dition into an optimization problem by minimizing the cost
function5 with respect to unknown variable v with essential
boundary conditions C(v) = 0 in problem domain �. There-
fore, a penalty function α is added into 5:

2 = 5+
1
2

∫
�

CT (v)αC(v) d� (7)

Then the modified Galerkin weak form can be obtained as:∫
�

δ(Dv)T c(Dv) d�−
∫
�

δvT f d�−
∫
0t

δvT t d0

−

∫
�

δ
1
2
C(v)TαC(v) d�−

∫
�

δvTbb d�

+

∫
�

ρδvT v̈ d�+
∫
�

κδvT v̇ d� = 0 (8)

We use Dirichlet boundary condition as one example to
enforce essential boundary condition here: if displacement
v = v̄ is prescribed on the boundary 0F , we will add
C(v) = v− v̄ into Equation 8 as a penalty function. The value
of penalty factor α should be probably adjusted in different
applications. Too small or too large values of penalty factor α
will result in an improper boundary condition or numerical
instability. We have used the general rule of taking α to be
of order of h−

2po+1
3 as suggested in [56], with consistency of

order po and characteristic distance h between nodal points
in a meshfree method (The EFGM method is with bilinear
consistency and po = 3.2h). We will demonstrate the perfor-
mance of imposing boundary conditions using this penalty
method with a FEM approach in the following experimental
section.

4) ASSEMBLE OF GOVERNING SYSTEM EQUATIONS
a: System equations
Taking Equation 2 into Equation 8, we can obtain a governing
system equations under the principles of minimumwork [55]:

MV̈+ CV̇ + [K + K b]V = R+ Rb (9)

whereM , C , and K are the mass matrix, the damping matrix,
and the stiffness matrix respectively; V = [v1, v2, . . . , vnt ]

T

is the displacement vector with nt nodes; R is the external
force including bb, t and f; K b is the boundary condition
penalty matrix; Rb is the boundary condition force. All these
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vectors and matrices can be defined as:

MI ,J =

∫
�

ρ8T
I 8J d� (10)

KI ,J =
∫
�

STI cSJ d� (11)

CI ,J = λ1 MI ,J + λ2 KI ,J (Rayleigh Damping) (12)

K b
I ,J =

∫
0u

8T
I α8J d0 (13)

RbI =
∫
0u

8T
I αv̄ d0 (14)

with in 2D

8I =

[
φI 0
0 φI

]
, SI = D8I =

φI ,x 0
0 φI ,y
φI ,y φI ,x

 (15)

where φI ,x and φI ,y are the derivatives of the EFGM shape
functions with respect to x and y respectively. In 3D case,
with

8I =

φI 0 0
0 φI 0
0 0 φI

 (16)

SI = D8I =


φI ,x 0 0
0 φI ,y 0
0 0 φI ,z
φI ,y φI ,x 0
0 φI ,z φI ,y
φI ,z 0 φI ,x

 (17)

where φI ,x ,φI ,y, and φI ,z are the derivatives of EFGM shape
function with respect to x, y, and z respectively.

b: Integrals on background cells
In order to assemble the system matrices, we need to inte-
grate the Galerkin weak form over the problem domain.
This process can be achieved using a number of numeri-
cal techniques including Gauss quadrature [55]. In EFGM,
the Gauss quadrature of Galerkin weak form is applied using
a mesh of non-overlapping cells, called the background mesh.
Obviously, the background mesh is not used for interpola-
tion or approximation of field variable like EFGM shape
function [44]. The popular background mesh of EFGM is
regular-grid cell structure. However, there will be such a cell
that only a portion belongs to the problem domain. We use
a visibility scheme to separate the portion of cell that lies
outside the problem domain. The density of regular-grid cell,
i.e. mctimesmc cells, is determined by the total number of
nodes (nt ) inside the problem domain using the following
principle mc =

√
(nt ) [44]. Since we use Gauss quadrature

over the background mesh, the number of quadrature points
is also determined by the number of nodes inside each cell, i.e.
nQ × nQ quadrature points are used in two-dimensional cell
where nQ =

√
m+ 2 and m is the number of nodes in a cell.

In three-dimensional cell, we use mc ×mc ×mc cells, where
mc =

√
nt as defined above. In each cell, we use nQ×nQ×nQ

quadrature points.

III. EXPERIMENTS AND RESULTS
In this section, we will apply EFGM framework to cardiac
image segmentation and non-rigid cardiac motion analysis.

A. HANDLING LARGE DEFORMATION IN SEGMENTATION
We solve the cardiac segmentation problem using an active
deformable model with the bio-mechanical constraint. In this
bio-mechanical constraint, an external image force defined by
the EFGM-derived PDEs is used to evolve the boundary like
classical Snakes model [57].

FIGURE 3. FEM (left) and EFGM (right) solutions of the annulus-shaped
elastic solid model segmentation for synthetic image: initialization (top)
and final results (bottom).

For annulus-shape object (such as shown in Fig. 3),
we integrate an elastic solid mechanical model as a
bio-mechanical constraint for imaging segmentation. In a
meshfree formulation, the object is defined by the two bound-
aries and scattered particles in-between, so that the snake
is divided into ‘‘snaxels’’. Field variables in each point can
be represented smoothly using EFGM shape function 8 and
neighboring nodal variables Ve. Then, the field variables of
all the points are assembled respectively into the snake nodal
variable vector V, and thus Equation (9) can be defined as:

KV = F (18)

where external image force can be defined as Fi =
∫
0
φTi td0,

and t is the image force.
We consider the external image force as one kind of image

gradient vector flow (GVF). We compare the performance
of standard linear FEM and meshfree method to solve equi-
librium state using similar strategy in [13] in the following
experiments. We integrate equation (20) using an explicit
Euler procedure with time step τ . Specifically, this evolution
process can be defined as:

(I + τK )V t
= (Vt−1

+ τF t−1) (19)

and therefore,

V t
= (I + τK )−1(Vt−1

+ τF t−1) (20)

where V t and V t−1 are the displacement at step t and
t − 1 respectively, I is an identity matrix, and F t−1 is the
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force vector at step t − 1. The evolution will stop if the
external force F becomes smaller and/or when the displace-
ment difference between iterations ‖V t

− V t−1
‖ is below

certain threshold. In our implementation, step t and t − 1
are used to indicate two successive cardiac frames in the
sequence.

1) EXPERIMENTS ON SYNTHETIC DATA
Large deformation issues is always encountered in cardiac
segmentation because of cardiac contraction. Fig. 3 shows
the results of annulus-shaped elastic solid model-constrained
segmentation using linear standard FEM (without adaptive
remeshing) and EFGM on synthetic image. Because the ele-
mental shape function is used to build interpolation of filed
variables of nodes, it is necessary to construct an approxima-
tion of field variable within the element using all the nodes of
this element. On the contrary, because there is no explicit ele-
mental connectivity in EFGM method, the relations between
nodes are approximated by the field variable of nodes inside
influence domains. The number of Gauss points and sizes
of influence domains can be adjusted to achieve the desired
accuracy. As the demonstration, linear FEM method without
adaptive remeshing is unable to handle large geometrical
changes, while meshfree framework ensure the snake moves
much more smoothly over the image to capture the object
boundary efficiently.

FIGURE 4. Top row: MR images at frames #1, #4, #7, #10 and #13;
Bottom row: corresponding segmentation results.

In the next experiment, we apply both FEM and meshfree
framework to detect and track 3D myocardial boundary from
a synthetic data set. The canine heart model provided by
University of Auckland with both the in vitro geometry and
fibrous-sheet architecture of 79,860 points, was adopted to
generate the synthetic data [47]. A representation of this
heart model over 1746 nodes was built from this canine heart
model with neglecting apex elements, as shown in Fig. 4.
The Young’s moduli was set to be 75kPa. The Poisson’s ratio
had been set to be 0.47 to simulate incompressibility. We use
this heart model as geometrical definition, and simulate the
heart motion as the ground truth using one physiome platform
from [58]. 50 frames of the whole cardiac cycle in 450 ms
were obtained, and these motion data were then converted
into a gray scale as an image sequence of 50 frames with
image size 75×75×16, space resolution 1.27×1.27×4.86.
We also added 5dB SNR noises into these generated synthetic
images.

The original canine heart model was used to track the
boundary of the heart through the synthetic image sequence
for both FEM (linear tetrahedra elements, without refine-
ment) and meshfree framework (linear bases, without refine-
ment). Fig. 3 shows the results under FEM framework and
provides the meshfree solution results with quantitative eval-
uation of average positional errors compiled across all time
frames for the complete 3D geometry. The positional error
is defined as the distance between the estimated boundary
point and ground truth. The positional error of each data is
shown by the mean ± standard deviation. Overall, results
obtained with meshfree representation tends to stick to true
object boundary. It has been proved that the segmented shape
of the whole heart with meshfree representation is more close
to the boundary defined in the image. It is concluded refine-
ment is necessary for the FEMs to handle large geometrical
changes even with accurate snake initialization. Furthermore,
meshfree representation even without refinement can tolerate
more large geometrical changes.

FIGURE 5. Top row: Tagging images at frames #1, #4, #7, #10, and #13;
Bottom row: segmentation results at frames #1, #4, #7, #10, and #13;.

2) EXPERIMENTS ON MRI DATA
As shown in Fig.4, the proposed meshfree framework is
capable of segmenting the myocardial boundaries in an MRI
image sequence. In Fig. 5, we show the results of segmen-
tation of left ventricle from a tagging MRI image sequence.
Note that, because of blurred tagging lines and inhomogene-
ity of intensity, meshfree method encounters difficulties to
give better results. This problem can be overcome by using
more complicated external forces. To test the ability of the
new representation and computation strategy in segmenting
3D object, we also use the proposed method to the segmenta-
tion of left ventricle on a human MRI image data. The results
in Fig. 6 look promising. However, the FEMusing linear basis
fails to process these kinds of data because the distortion of
mesh caused by large deformation

B. HANDLING DISCONTINUITIES IN CARDIAC MOTION
ANALYSIS
Cardiac motion analysis is still one hot topic in our research-
ing community. Please note there is a discontinuity in fiber
angle because of the merging of right ventricular wall and
left ventricular wall in septum. Moreover, myocardial fibers
are placed in connected layers or sheets and there is sub-
stantial discontinuity between each layer. How to handle this
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FIGURE 6. Experimental results at frames #3, #6, #9, #12, and #16 using
meshfree framework. Top: selected volume segmentation results. Bottom:
segmentation results (blue contours) overlaid on the original image.

discontinuity usually associated with large deformation for
the heart in computation environment is an important issue,
because this affects the numerical accuracy, computational
feasibility and implementation difficulty. In order to over-
come these difficulties, we use meshfree method to extract
left ventricular motion with a bio-mechanical constraint
through a state-space scheme that can generate optimal multi-
frame estimation using Kalman filter [7].

If a linear time-invariant stochastic system is assumed [7],
the system dynamics described by Equation 9 can converted
into a discrete-time state-space representation. Then, we can
define the system dynamics and measurement y(t) using the
following discrete-time equations:

x(t + 1) = Ax(t)+ Bw(t)+ µ(t) (21)

y(t) = Dx(t)+ e(t) (22)

where A = eAc1T and B = A−1c (eAc1T − I )Bc, with

x(t) =
[
V(t)
V̇(t)

]
, w(t) =

[
0

R+ Rb

]
(23)

Ac =
[

0 I
−M−1(K + K b) −M−1C

]
(24)

Bc =
[
0 0
0 M−1

]
(25)

Where D is the measurement matrix, µ(t) is the white pro-
cess (E[µ(t)] = 0, E[µ(t)µ(s)′] = Qµ(t)δts), e(t) is the white
measurement noise (E[e(t)] = 0, E[e(t)e(s)′] = Re(t)δts),
and 1T is the constant time interval. A Kalman fil-
tering processing is then executed to generate optimal
estimation [7].

In general, the myocardium has complicated, anisotropic
mechanical properties in terms of its realistic constitutive
laws ( [2]). For computational feasibility, we adopt the linear
elastic model in this paper to illustrate the potentials of our
framework. For such material, the stress (σ ) and strain (ε)
relationship (the constitutive law) obeys Hooker’s law, which
states that the stress tensor is linearly proportional to the stain
tensor:

σ = cε (26)

where the material matrix c composes a fourth-rank tensor
and reduce to 6× 6 matrix for an anisotropic material.

Because of varying fiber orientations inside myocardium,
the anisotropic biomechanical model should be used to
describe the intrinsic behavior of the myocardium. Thus,
the relation of stress and strain at different locations can
be different under the same coordinates system, and c is
changing at different location. Fig. 1 shows the fiber structure
of the canine data.

Let us define c0 as the material matrix with 0o (along
x-axis) fiber orientation:

c0 =



1
Ef

−

υ

Ef
−

υ

Ef
0 0 0

−

1
Ef

1
Ecf

−

υ

Ecf
0 0 0

−

1
Ef

−

υ

Ecf

1
Ecf

0 0 0

0 0 0
1
G

0 0

0 0 0 0
1
G

0

0 0 0 0 0
2(1+ υ)
Ecf



−1

(27)

Here, Ef and Ecf are the along fiber and across fiber Young’s
modulus respectively. υ is Poisson’s ratio, which is a mea-
sure of incompressibility. G = Ef /(2(1 + υ)) describes the
shearing property.

The stress-strain relationship in Equation (27) is defined
in a material coordinate with respect to local fiber direction
because the fiber direction changes largely from epicardium
and endocardium [47]. In order to assemble the system
matrix, we will transform stress-strain tensors from amaterial
coordinate to a global coordinate in EFGM. Assuming the
local coordinate system has θ degrees horizontal angle and
φ degrees vertical angle apart from the global coordinate
system, then the corresponding stiffness matrix in the global
coordinate can be given as:

c = T−1c0RTR−1 (28)

T is a combination transformation matrix of Tvert
and Thori:

T = TvertThori (29)

with:

Tvert =


cos2φ 0 sin2φ 0 2sinφcosφ 0
0 1 0 0 0 0

sin2φ 0 cos2φ 0 −2sinφcosφ 0
0 0 0 cosφ 0 sinφ

−sinφcosφ 0 sinφcosφ 0 cos2φ−sin2φ 0
0 0 0 −sinφ 0 cosφ


(30)

Thori =


cos2θ sin2θ 0 2sinθcosθ 0 0
sin2θ cos2θ 0 −2sinθcosθ 0 0
0 0 1 0 0 0

−sinθcosθ sinθcosθ 0 cos2θ−sin2θ 0 0
0 0 0 0 cosθ sinθ
0 0 0 0 −sinθ cosθ

 (31)
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TABLE 1. Comparison of results obtained with the penalty method for the imposing of boundary conditions in EFGM method and a FEM approach. Each
data cell represents mean and standard deviation of the position differences between the ground truth and corresponding algorithms. The total mean
and standard deviation for each algorithm are calculated using all the nodal differences of the sixteen frames. EFGM: total mean: 0.2298, total s.d.:
0.1878. FEM: total mean: 0.2279, total s.d.: 0.1936.

R is a matrix responsible for the transformation between
strain and engineering strain:

R =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (32)

1) EXPERIMENTS ON SYNTHETIC DATA
A 2D deformable object formed by two pieces of materials
with the same fibrousmaterial property (c0) but different fiber
orientations has been used.

The fiber orientations of the left part are −450, while the
right part are 450.We set theYoung’smoduli along the fiber to
75kPa and cross the fiber to 25kPa separately. The Poisson’s
ratio has been set to be 0.47. The object has 66 nodes in total
and forces are applied outwards and horizontally to the six
nodes on the left edge and the six nodes on the right edge to
make it deform cyclically, and there have been sixteen frames
capturing one whole cycle of the deformation (Fig.7(a)). The
resulting displacements on the left and right edges have been
set to be the boundary displacements as input, and noises
(SNR = 2.912dB) have been added on them to simulate the
measurement errors (Fig.7(b)). The displacement fields were
recovered by the Kalman filter approach with meshfree and
FEM representation.

In the first experiment, we compare the penalty method for
the imposing of boundary conditions in EFGM method with
the linear triangular standard finite element approach, where
both of them employ the isotropic material model constraints.
In this example, the distance between nodal points is h = 1

7 ,
thus the penalty parameter α = 104 can be determined.
Table 1 summarizes the means and standard deviations of
the nodal position differences between the results of the two
algorithms and the ground truth. Under the same boundary
displacements and the same isotropic material model, very
similar results are obtained.

In the second experiment, the same condition as described
above has been used, except that an anisotropic material
model taking into account fiber orientations is employed.
From Table 2, it can be seen that the displacement fields
estimated using meshfree representation are better. This is

FIGURE 7. (a). The sixteen frames of the motion cycle of the ground truth
(left to right, up to down). The yellow lines indicate the locations of
applying forces, and the cyan lines indicate the fiber orientations. (b). The
noise added boundaries of the sixteen frames serve as the noisy
observations (SNR = 2.912dB).

mainly because the meshfree representation can naturally
handle fiber discontinuous and has the nature to avoid the
problem caused by element skewing.

2) EXPERIMENTS ON MRI DATA
Wehave implemented the algorithm on normal canine cardiac
MRI data set. The in-plane image resolution is 1.64mm/pixel.
The inter-plane image resolution is 5 mm/pixel. The temporal
resolution is 40 msec/frame. 2D contours of the first frame’s
image data are extracted using level set method. Then a set
of sample points are allocated in the myocardium domain
bounded by endo- and epicardial boundaries. We register
the fiber orientations from the Cardiac Mechanics Research
Group at UCSD1 into our cardiac MRI data using the

1 http://cmrg.ucsd.edu
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TABLE 2. Comparison of results between EFGM (linear bases) and linear triangular finite element approach. Each data cell represents mean and standard
deviation of the position differences between the ground truth and corresponding algorithms. The total mean and standard deviation for each algorithm
are calculated using all the nodal differences of the sixteen frames. EFGM: total mean: 0.1189, total s.d.: 0.0672. FEM: total mean: 0.1793, total s.d.: 0.1166.

principle warps, as shown in Fig. 1. Because we treat the
myocardium as an anisotropic linear elastic material, ee set
the Young’s moduli along the fiber to 75kPa and cross
the fiber to 25kPa separately. The Poisson’s ratio has been
set to be 0.47 [59], [60]. Following the procedures estab-
lished in [61], endocardial and epicardial boundaries, and the
boundary point displacements between consecutive frames
are extracted. Then, given these partial, image-derived mea-
surements on the cardiac kinematics, the meshfree estimation
framework described above and the traditional standard FEM
method are employed to recover the dense displacement field
over the entire cardiac cycle. Details on these procedures can
be found in our papers [7], [30].

FIGURE 8. Left: complete trajectories of selected points over the cardiac
cycle (sixteen temporal frames) shown against the endocardial surface at
ES obtained by EFGM method. Right: closeup which illustrates a trajectory
of one point.

The EFGM estimated complete trajectories of subsampled
points over the cardiac cycle (16 temporal frames) super-
imposed onto the rendered endocardial surfaces at end of
systole (ES) are shown in Fig. 8. Evidently, the trajectories
of all the points are almost a complete loop, meaning the
points move back to where they begin. Also these points
move outside during the contraction phase (end of diastole
(ED) to ES) and they move inside during the expansion
phase (ES to ED).

The top view of the strain maps of certain frames are shown
in Fig. 9 (EFGMmethod) and Fig. 10 (FEMmethod). For the
EFGM results, we find that the average value of the radial
strain is large at ES, the longitudinal strain is small, and
the circumferential strain reaches minimum at ES. Compar-
ing with linear FEM results, the strains obtained by EFGM
method are much consistent over the cardiac cycle.

Because of linear interpolation used in linear FEM ele-
ment, the displacement field and fiber orientation can only

FIGURE 9. EFGM framework estimated strain maps overlaid the
corresponding deformed heart with respect to end-diastole (canine MR
images, frames #3, #9, #14 (left to right)): radial strains (top),
circumferential strains (middle), and longitudinal strains (bottom).

FIGURE 10. FEM method estimated strain maps overlaid the
corresponding deformed heart with respect to end-diastole (canine MR
images, frames #3, #9, #14 (left to right)): radial strains (top),
circumferential strains (middle), and longitudinal strains (bottom).

be described by a linear shape function. However, our EFGM
framework has a good hp-adaptivity, where h and p are
the sizes of influence domains and the order of polynomial
respectively. The p-adaptivity of EFGM can ensure a higher
order continuity using polynomial bases p(x) with more
nodes. In our FEGM framework, more nodes can be conve-
niently acquired by simply increase the size of the influence
domains. In the contrary, FEMs need to change the element
type to introduce higher order polynomial.Moreover, element
with higher order polynomial bases will increase the com-
plexity of mesh, which lead to more labor-intensive meshing
procedure. Therefore, the EFGM framework can efficiently
process cardiac image because of meshfree methods’ flexible
node distribution. Furthermore, our EFGM framework can
better approximate myocardial fiber orientation using a cubic
spline weight function with fewer nodes.
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Additionally, different patients’ data require different
meshes, and even for the same patient, different mesh might
be required for different image modalities. Therefore, we do
not recommend FEM to process a large volume of cardiac
image analysis because of great meshing difficulty. In this
sense, meshfree representation presents an effective, sim-
ple way to represent the complicated architecture of the
heart.

IV. CONCLUSION AND PERSPECTIVES
In this paper, we use a meshfree particle computational
method for cardiac image analysis with the energy minimiza-
tion formulations in the Lagrangian sense to solve the funda-
mental problem about the optimal mathematical description
in cardiac image analysis on a digital computer. This mesh-
free method only uses the nodal points to discretize problem
domain without any pre-defined meshing structure. In our
experiments, the performance of this meshfree is verified
in cardiac image segmentation and cardiac motion analysis.
Sincemeshfree representation haveminimal consistency con-
straints, handling large deformation and material discontinu-
ities are simple and efficient.

It should be noted that the computationally complexity of
meshfree is higher than FEM for the same number of nodes.
However, as above demonstration the meshfree method with
linear base providesmore accurate results than linear standard
FEM when using the same number of nodes. In other words,
the meshfree method with fewer nodes can achieve the same
accuracy as the FEM with more nodes. In a conclusion,
the efficiency of meshfree method is better than FEM using
the same numerical accuracy requirement. As a result, mesh-
free methods provide a way to avoid the complicatedmeshing
procedures while preserving the accuracy with a relatively
small number of nodes.

However, there are notable efforts aimed at develop-
ing fast, automatic meshing algorithms for high order ele-
ments [62]. With the further development of the meshing
strategy, the other interesting directions for future research
are improving the implementation efficiency of meshfree
methods.
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