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Abstract

Objectives: Blood–brain barrier (BBB) disruption is a critical pathological pro-

cess involved in neuromyelitis optica spectrum disorder (NMOSD). Here, we

characterized the profile of five cell adhesion molecules in patients with

NMOSD. Methods: We measured levels of cell adhesion molecules, including

ICAM-1, ICAM-2, VCAM-1, PECAM-1, and NCAM-1, in the serum of 28

patients with NMOSD, 24 patients with multiple sclerosis (MS), and 25 healthy

controls (HCs). Results: ICAM-2 levels (median: 394.8 ng/mL) were increased

in patients with NMOSD compared with MS (267.1 ng/mL, P = 0.005) and

HCs (257.4 ng/mL, P = 0.007), and VCAM-1 and ICAM-1 levels were higher

in patients with NMOSD (641.9 ng/mL and 212.7 ng/mL, respectively) com-

pared with HCs (465 ng/mL [P = 0.013] and 141.8 ng/mL [P = 0.002], respec-

tively). However, serum PECAM-1 levels were lower in patients with NMOSD

(89.62 ng/mL) compared with MS (106.9 ng/mL, P = 0.015) and HCs

(107.2 ng/mL, P = 0.007). Receiver operating characteristic curve analysis

revealed that PECAM-1 (area under the curve (AUC): 0.729) and ICAM-2

(AUC: 0.747) had adequate abilities to distinguish NMOSD from MS, and

VCAM-1 (AUC: 0.719), PECAM-1 (area under the curve: 0.743), ICAM-1

(AUC: 0.778), and ICAM-2 (AUC: 0.749) exhibited potential to differentiate

NMOSD and HCs. Serum levels of PECAM-1 also demonstrated a negative cor-

relation with Kurtzke Expanded Disability Status Scale scores in patients with

NMOSD. Interpretation: Our results reveal possible BBB breakdown signals

specifically observed in NMOSD and highlight the potential role of cell adhe-

sion molecules as biomarkers of this disease.

Introduction

Neuromyelitis optica spectrum disorder (NMOSD) and

multiple sclerosis (MS) are immune-mediated neuroin-

flammatory diseases of the central nervous system

(CNS). Clinically differentiating these two diseases is

critical because their therapeutic regimens vary and a

few medications for MS may exacerbate NMOSD.1 Fol-

lowing the discovery of anti–aquaporin 4 antibody

(AQP4-IgG) in patients with NMOSD, clinicians now

consider these two diseases to be distinct entities with

potentially different pathomechanisms.2-4 AQP4 is a

water channel protein primarily expressed in astrocyte

foot processes, which form the glia limitans of the

blood–brain barrier (BBB).5 Circulating AQP4-IgGs

enter the brain through BBB leakage and initiate com-

plement- and antibody-dependent cytotoxic cascades by

binding to AQP4, which leads to profound infiltration

of lymphocytes, macrophages, and eosinophils as well

as extensive destruction in the diencephalon,

periependymal regions, area postrema, and spinal cords

in patients with NMOSD.6,7 AQP4-IgG is considered a

highly specific biomarker for NMOSD5; however, 20–
30% of patients with NMOSD do not exhibit AQP4-

IgGs, which hampers efforts to distinguish NMOSD

from MS in these patients. Therefore, other biomarkers
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are required for discriminating between NMOSD and

MS.

BBB disruption is a hallmark of NMOSD that has

been demonstrated in magnetic resonance imaging

(MRI) with gadolinium contrast-enhanced lesions, par-

ticularly in the acute stage of NMOSD.6,8,9 BBB

destruction is essential for AQP4-IgGs to enter the

CNS.9-11 BBB breakdown regulates the expression of

endothelial cell adhesion molecules that tightly mediate

immune cell extravasation and trafficking into the CNS

as well as contribute to modulation of vascular integ-

rity.12,13 Endothelial cell adhesion molecules such as

vascular cell adhesion molecule-1 (VCAM1), intracellu-

lar adhesion molecule-1 (ICAM1), intracellular adhesion

molecule-2 (ICAM2), platelet endothelial cell adhesion

molecule-1 (PECAM1), and neural cell adhesion mole-

cule-1 (NCAM1) belong to the immunoglobulin super-

family.14 Studies have suggested that VCAM1, ICAM1,

and PECAM1 are instrumental in BBB disruption for

transmigration of activated peripheral lymphocytic cells

to the CNS.6,12,13,15

In MRI, NMOSD is characterized by longitudinally

extensive gadolinium contrast-enhanced lesions at the

spinal cord and/or optic nerves, whereas periventricular

plaques with partial ring enhancement are frequently

observed in MS.16 The differences in patterns and distri-

butions of contrast-enhanced lesions suggest these two

diseases generate different BBB breakdown patterns. The

discovery of BBB-reactive antibodies, such as GRP78 anti-

bodies in NMOSD and galactin-3 antibodies in MS, fur-

ther implies that the BBB breakdown mechanisms differ

between these two neuroinflammatory diseases.6,16

Although the exact role of BBB breakdown in the patho-

genesis of NMOSD remains elusive, cell adhesion mole-

cules may represent BBB function and serve as disease

activity biomarkers for many neuroinflammatory diseases

of the CNS.5,9,17 Therefore, we evaluated the profile of

five cell adhesion molecules, ICAM1, ICAM2, VCAM1,

PECAM1, and NCAM1, in patients with NMOSD. The

levels of these molecules were subsequently compared

with those in patients with MS and healthy controls

(HCs).

Materials and methods

Ethics approval and consent to participate

The collection of venous blood from enrolled patients

was approved by the Institutional Review Board of

Chang Gung Memorial Hospital (ethical license No:

201302260A3D001 and 201701423B0). Informed con-

sents were obtained from all participants in this

study.

Patient recruitment

This is a cross-sectional study from 1 January 2014, to 31

December 2019, in Chang Gung Memorial Hospital-Lin-

kou Medical Center in Taiwan. Patients from the neurology

ward diagnosed with NMOSD or MS by two experienced

specialists in neuroimmunology (LS Ro and KH Chang)

according to the international consensus diagnostic criteria

for NMOSD18 and the McDonald criteria,19 respectively,

were recruited. Both AQP-4 IgG positive and negative were

eligible for the study. No participant had systemic infec-

tion, chronic renal failure, cardiac or liver dysfunction,

malignancies, or autoimmune diseases other than NMOSD

and MS. Healthy controls were recruited from neurology

outpatient clinics by a convenience sample of individuals

seen at the time of recruitment, and were frequency

matched for sex and age of patients.

Sample collection

Venipunctures were performed on all participants. Blood

samples of the patients with NMOSD and MS were collected

within 2 weeks after symptom onset or acute relapses of the

disease. All samples were obtained before treatment with

corticosteroids, intravenous immunoglobulins, or plasma-

pheresis. Blood samples were maintained at room tempera-

ture for 30 min and then centrifuged at 1000–2000 g for

10 min. Serum was carefully collected from the supernatant,

aliquoted, frozen at �80°C, and stored until analysis.

The neurological disability of the patients at the time

of venipuncture was assessed using the Kurtzke Expanded

Disability Status Scale (EDSS).20

Enzyme-linked immunosorbent assays for
quantification of cell adhesion molecule
expression in serum

We used enzyme-linked immunosorbent assay kits to

evaluate the serum levels of VCAM1 (R&D), PECAM1

(R&D), NCAM1 (RayBio), ICAM1 (R&D), and ICAM2

(MyBioSource). Each assay was measured in duplicate for

each sample at the same time.

Statistical analysis

Prism 8 (GraphPad) was used for statistical analyses. The

D’Agostino–Pearson test21,22 revealed that ICAM1,

ICAM2, VCAM1, PECAM1, and NCAM1 levels were not

normally distributed. Therefore, the Kruskal–Wallis test

(nonparametric test to compare unmatched groups) was

applied to compare the differences in these noncategorical

variables among the NMOSD, MS, and HC groups. For

the variables with significant differences among NMOSD,
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MS, and HCs, namely ICAM1, ICAM2, VCAM1, and

PECAM1, Spearman correlation was applied to evaluate

the relationship between their levels and the EDSS at the

time of sample collection. Data are expressed as median,

interquartile range (IQR), and 95% confidence interval

(CI). All P values were two-tailed, and P < 0.05 was con-

sidered significant. Variables with significant differences

among NMOSD, MS, and HCs were further analyzed

using receiver operating characteristic (ROC) curves. Area

under the ROC curve (AUC) analysis was applied for

these four molecules to measure their usefulness for dis-

tinguishing those with NMOSD from those with MS and

those with NMOSD from HCs. An AUC value ≥0.7 was

considered suitable to distinguish groups.

Results

The demographic data of all groups were summarized

(Table 1). We recruited 28 patients with NMOSD (23

women, 5 men) and 24 patients with MS (16 women, 8

men), as well as 25 sex- and age-matched HCs (17 women,

8 men). Among those with NMOSD, 26 patients were

AQP4-IgG positive and two were negative. Patients with

NMOSD exhibited significantly higher EDSS scores

(4.27 � 1.90) than did those with MS (3.31 � 1.43,

P = 0.040). In total, 20 (72.43%) patients with NMOSD

presented relapses of longitudinally extensive spinal cord

lesions, and optic neuritis and area postrema syndrome

were observed in six (21.43%) and two (7.14%) patients,

respectively. ICAM1 levels in serum were significantly

higher in patients with NMOSD (median: 212.7 ng/mL,

IQR: 154.2–299.9 ng/mL, 95% CI: 192.3–270.5, Fig. 1A)

than in HCs (median 141.8 ng/mL, IQR: 118.4–187.5 ng/

mL, 95% CI: 116–163.8, P = 0.002) but not different from

those with MS (median 154.3 ng/mL, IQR: 121.6–217 ng/

mL, 95% CI: 142–189.9). Patients with NMOSD exhibited

higher serum levels of ICAM2 (median: 394.8 ng/mL, IQR:

286.5–551 ng/mL, 95% CI: 360.4–495.6, Fig. 1B) than did

those with MS (median: 267.1 ng/mL, IQR: 176.3–
411.3 ng/mL, 95% CI: 230.6–337.1, P = 0.005) and HCs

(median: 257.4 ng/mL, IQR: 215.2–397.7 ng/mL, 95% CI:

237.4–337.6, P = 0.007). Patients with NMOSD exhibited

higher serum levels of VCAM1 (median: 641.9 ng/mL,

IQR: 433.5–1326 ng/mL, 95% CI: 702.4–1303, Fig. 1C)

than did those with MS (median: 499 ng/mL, IQR: 392.3–
605.5 ng/mL, 95% CI: 454.3–567.1, P = 0.161) and HCs

(median: 465 ng/mL, IQR: 399.3–538.6 ng/mL, 95% CI:

430.4–506.4, P = 0.013). Serum levels of PECAM1 in

patients with NMOSD (median: 89.62 ng/mL, IQR: 74.26–
111.2 ng/mL, 95% CI: 82.4–99.62, Fig. 1D) were signifi-

cantly lower than in those with MS (median: 106.9 ng/mL,

IQR: 91.61–133.9 ng/mL, 95% CI: 103–130.3, P = 0.015)

and HCs (median: 107.2 ng/mL, IQR: 98.41–122.8 ng/mL,

95% CI: 102.9–124.6, P = 0.007). Serum NCAM1 levels

were similar between patients with NMOSD, patients with

MS, and HCs (Fig. 1E).

AUC analysis revealed that ICAM2 (AUC = 0.747, 95%

CI: 0.615–0.88, P = 0.02, Fig. 2C) and PECAM1

(AUC = 0.729, 95% CI: 0.595–0.864, P = 0.005, Fig. 2G)

have strong abilities to distinguish patients with NMOSD

from those with MS, and ICAM1 (AUC = 0.777, 95% CI:

0.654–0.901, P = 0.001, Fig. 2B), ICAM2 (AUC = 0.749,

95% CI: 0.617–0.88, P = 0.002, Fig. 2D), VCAM1

(AUC = 0.719, 95% CI: 0.578–0.859, P = 0.006, Fig. 2F)

and PECAM1 (AUC = 0.743, 95% CI: 0.608–0.878,
P = 0.003, Fig. 2H) demonstrated adequate potential to

distinguish patients with NMOSD from HCs. We further

analyzed the correlation between the serum levels of

ICAM1, ICAM2, VCAM1, or PECAM1 and disease severity,

which was evaluated using the EDSS at sample collection

(Fig. 3). The results revealed a significant correlation

between serum levels of PECAM1 and EDSS score in

patients with NMOSD (r = �0.569, P = 0.002, Fig. 3D).

However, serum levels of ICAM1 (r = �0.088, Fig. 3A),

ICAM2 (r = �0.016, Fig. 3B), and VCAM1 (r = �0.045,

Fig. 3C) did not demonstrate correlations with EDSS score.

Discussion

The immunoglobulin superfamily of cell adhesion mole-

cules, including ICAM1, ICAM2, VCAM1, PECAM1, and

Table 1. Clinical characteristics of the patients with NMOSD, MS,

and HCs

Parameter

NMOSD

(n = 28)

MS

(n = 24)

HC

(n = 25)

Sex (female/male) 23/5 16/8 17/8

Age (years) 47.86 � 15.16 39.96 � 14.51 47.96 � 14.09

Age at onset (years) 45.82 � 13.59 37.83 � 13.81

EDSS 4.27 � 1.90* 3.31 � 1.43

LESCL (%) 20 (72.43) 0 (0)

ON (%) 6 (21.43) 2 (8.33)

APS (%) 2 (7.14) 0 (0)

AQP4-IgG (%) 26 (92.86) 0 (0)

Lesion(s) with

gadolinium

enhancement (%)

23 (82.14) 19 (79.17)

All blood samples were collected from patients with NMOSD and MS

within 2 weeks after symptom onset or acute relapse of disease and

before their treatment with corticosteroids, intravenous immunoglob-

ulins, or plasmapheresis.

APS: area postrema syndrome; AQP4-IgG: antiaquaporin 4 antibody;

EDSS: Kurtzke Expanded Disability Status Scale; HC: healthy control;

LESCL: longitudinally extensive spinal cord lesion; MS: multiple sclero-

sis; NMOSD: neuromyelitis optica spectrum disorder; ON: optic neuritis.

*Statistically significant difference compared with MS, P < 0.05.
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NCAM1, are constitutional proteins expressed on endothe-

lial cells, leukocytes, epithelial cells, and fibroblasts when

the BBB is intact.12,17 These cell adhesion molecules, which

are upregulated by proinflammatory factors,6,12,13 play

essential roles in leukocyte–endothelial interaction and reg-

ulation of the neuroinflammatory cascade of immune-me-

diated CNS diseases by modulating vascular permeability

and BBB integrity.23 Increases of cell adhesion molecules

in cerebrospinal fluid (CSF) or shedding into serum may

be associated with BBB damage.13 The dysregulation of cell

adhesion molecules and disruption of the BBB lead to pen-

etration of inflammatory cells and immunoglobulins into

the CNS.6,12,24 Patients with NMOSD exhibited a signifi-

cant increase in serum ICAM2 compared with those with

MS and HCs, an increase in serum VCAM1 and ICAM1

compared with HCs, but a significant decrease in serum

PECAM1, with a negative correlation to disease severity.

These markers also demonstrated potential for discrimi-

nating NMOSD from MS and HCs, suggesting these mole-

cules might be candidate biomarkers for NMOSD.

Increased expression of blood ICAM1 in patients with

NMOSD was reported by Uzawa et al.9 However,

alterations in PECAM1 and ICAM2 levels in NMOSD

have not been reported. PECAM1 in blood is expressed

on platelets, neutrophils, monocytes, and selected lym-

phocyte subsets and abundantly in the endothelial cells of

intercellular junctions.25 PECAM1 regulates BBB perme-

ability, immune cell trafficking, and vascular remodel-

ing.23,25-27 It also exhibits pleiotropic action in both pro-

and anti-inflammatory signaling pathways.23 PECAM1

facilitates leukocyte transendothelial migration28,29 and

transduces mechanical signals in endothelial cells

responding to fluid shear stress change by activating the

proinflammatory transcription factor NF-jB.23,30 How-

ever, PECAM1 also increases the threshold of leukocyte

activation by recruiting inhibitory phosphatases to

immunoreceptor tyrosine-based inhibitory motifs,31-33

diminishes production of proinflammatory cytokines fol-

lowing exposures to endotoxins, and maintains vascular

barrier integrity.34,35 Studies have reported that PECAM1

is involved in the pathogenesis of MS, with higher

PECAM1 levels observed in those with MS.25,36-38 In our

study, the low PECAM1 level in patients with NMOSD

contrasted with the levels of ICAM1, ICAM2, and

Figure 1. Serum levels of (A) ICAM1, (B) ICAM2, (C) VCAM1, (D) PECAM1, and (E) NCAM in patients with neuromyelitis optica spectrum

disorder (NMOSD, n = 28), multiple sclerosis (MS, n = 24), and healthy controls (HCs, n = 25). Box-whisker plots depict the median and

interquartile range (IQR) of each group. Error bars represent 95% confidence intervals. Statistically significant differences between two groups:

*P < 0.05, **P < 0.01, ***P < 0.001
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VCAM1, suggesting that PECAM1 plays a different role

from other cell adhesion molecules in NMOSD. The neg-

ative correlation between PECAM1 levels and EDSS fur-

ther suggests the protective role of PECAM1 in the

pathogenesis of NMOSD. ICAM2 is highly expressed on

endothelial cells, platelets, and various leukocytes.39,40

Endothelial ICAM2 is involved in the maturation of

endothelial junctions and adhesion of leukocytes to the

endothelium.41 ICAM2 also contributes to neutrophil

crawling and the initiation of paracellular diapedesis.41,42

Figure 2. Receiver operating characteristic (ROC) curve for serum levels of ICAM1 (A-B), ICAM2 (C-D), VCAM1 (E-F), and PECAM1 (G-H) to

distinguish patients with neuromyelitis optica spectrum disorder (NMOSD) from those with multiple sclerosis (MS) and healthy controls (HCs).

AUC: area under the ROC curve

Figure 3. Correlations between serum levels of (A) ICAM1, (B) ICAM2, (C) VCAM1, or (D) PECAM1, and Kurtzke Expanded Disability Status Scale

(EDSS) score in patients with neuromyelitis optica spectrum disorder (NMOSD). r: spearman correlation coefficient
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Neutrophil binding to endothelial ICAM2 increases vascu-

lar permeability during acute neuroinflammatory pro-

cesses.43 The high level of ICAM2 in NMOSD suggests its

role in BBB breakdown in NMOSD. The different levels

of PECAM1 and ICAM2 evident between NMOSD and

MS further indicate distinct immunopathogenesis of these

two diseases.

By binding to a4 integrin/very late antigen-4 and

leukocyte function–associated antigen 1, VCAM1 and

ICAM1 promote transendothelial recruitment of immune

cells and the subsequent neuroinflammatory cascade.9,17,24

Uzawa et al. revealed that patients with NMOSD exhibit

significantly higher CSF levels of ICAM1 and VCAM1

than do patients with MS.9 Our results further revealed

increased ICAM1 and VCAM1 serum levels in those with

NMOSD compared with HCs. Consistent with Uzawa’s

findings,9 serum levels of ICAM1 and VCAM1 in our

study were not different between those with MS and HCs,

implying that MS exhibits different mechanisms of BBB

disruption and neuroinflammatory pathogenesis from

NMOSD.

Studies have suggested that the involvement of NCAM1

in cell–cell adhesion, axonal fasciculation and outgrowth,

synaptic plasticity, myelination, and remyelination has a

role in the reparative mechanisms of myelin in MS.44,45

An elevated NCAM1 level was also reported in MS.45

However, none of the data were related to NMOSD. In

the current study, we did not find significant changes of

NCAM1 levels between patients with NMOSD, MS, and

HCs. Studies have revealed that serum VCAM1, ICAM1,

and PECAM1 levels are elevated in MS and correlate with

gadolinium-enhanced MRI lesions.36,37,46,47 By contrast,

lower serum VCAM1 and PECAM1 levels in patients with

optic neuritis who tend to develop MS were reported by

Kalinowska-Lyszczarz et al.17 We did not find significant

differences in VCAM1, PECAM1, ICAM1, ICAM2, and

NCAM1 levels between those with MS and HCs.

A possible explanation for the variable serum levels of

these cell adhesion molecules among those with NMOSD,

MS, and HCs is that these molecules might have different

pro- or anti-inflammatory roles23 in maintaining and reg-

ulating the vascular integrity of the BBB during neuroin-

flammatory processes. Another potential reason is that

the immunopathogenesis of NMOSD and MS is distinct,

leading to the involvement of different adhesion-induced

signaling and BBB-reactive autoantibodies.6,14

This study had some limitations. The evolving diagnos-

tic criteria for NMOSD and MS may explain the differ-

ence between our results and those of previous reports.

Our sample size was also relatively small. The low num-

ber of AQP4-IgG-negative patients also limits the general-

ization of our results to this subpopulation of patients

with NMOSD. Although not significantly different, the

younger age in patients with MS in our study may have

affected adhesion molecule levels. The CSF levels of these

adhesion molecules were not available, and the details of

their pathogenesis in NMOSD remained unknown. Nev-

ertheless, our findings still highlight a new avenue in bio-

marker research in NMOSD.

Conclusions

In conclusion, our study demonstrated significantly

higher levels of ICAM1, ICAM2, and VCAM1 and a lower

level of PECAM1 in the serum of patients with NMOSD.

These cell adhesion molecules could be potential

biomarkers for distinguishing patients with NMOSD from

those with MS and HCs. Furthermore, PECAM1 serum

level could reflect clinical severity with a significantly neg-

ative correlation. These observations demonstrate a

unique regulatory pattern of cell adhesion molecules in

NMOSD.
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