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A B S T R A C T   

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory 
pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the 
general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of 
SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show 
that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human 
host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the 
codon adaptation index and the effective number of codons, was observed. All together, these findings suggest 
that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less 
pathogenic.   

1. Introduction 

Coronaviruses (CoVs) are members of the Coronaviridae, a highly 
diverse family of enveloped positive-sense single-stranded RNA viruses, 
further divided in the Orthocoronavirinae subfamily, which consists of 
four genera: alphacoronavirus, betacoronavirus, gammacoronavirus and 
deltacoronavirus. Of these, alphacoronavirus and betacoronavirus only 
infect mammalian species, producing respiratory and enteric diseases. 
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the 
seventh coronavirus known to infect humans; HKU1, NL63, OC43 and 
229E viruses cause seasonal respiratory tract infections with usually 
mild clinical symptoms (common cold), while Severe Acute Respiratory 
Syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome 
coronavirus (MERS-CoV) and SARS-CoV-2 can cause severe life- 
threatening respiratory pathologies and lung injuries (Andersen et al., 
2020; Tortorici and Veesler, 2019; V’kovski et al., 2021). Further, 
SARS-CoV-2 can present several extrapulmonary manifestations that 
may affect the urinary, cardiovascular, gastrointestinal, hematological, 
hematopoietic, neurological, or reproductive systems (Chowdhury et al., 
2021; Gavriatopoulou et al., 2020; Ramos-Casals et al., 2021; Shah et al., 
2021; Tabary et al., 2020; K. I. Zheng et al., 2021). 

All seven CoVs have similar genomes consisting of a single-stranded 
RNA molecule of around 27–32 Kb, encoding for a polyprotein, pp1ab 

(ORF1ab), which is further cleaved into 16 non-structural proteins that 
are involved in genome transcription and replication; four structural 
proteins, including spike (S), nucleocapsid (N), envelope (E), and 
membrane (M) proteins; and a variable number of species-specific 
accessory proteins. In particular, SARS-CoV-2 reference genome (NCBI 
Accession NC_045512.2, WHCV) was annotated to possess at least 14 
ORFs predicted on the basis of those of known coronaviruses (A. Wu 
et al., 2020; F. Wu et al., 2020), including ORF1ab, spike (S), envelope 
(E), membrane (M), nucleocapsid (N) and several accessory proteins (3a, 
6, 7a, 7b, 8, and 10). 

Biological beings share a set of 20 amino acids, eighteen of which can 
be encoded by more than one synonymous codon. The codon usage 
frequency is usually not random, and has been related to translation 
efficiency and accuracy, mutational drift, and other selection pressures 
(Bulmer, 1991; Hershberg and Petrov, 2009; Iriarte et al., 2021; Komar, 
2016; Musto, 2016; Novoa et al., 2019; Sharp et al., 2010; Supek, 2016). 
In general, viruses only show a slight codon usage bias (CUB), mainly 
explained by uneven base composition and, hence, by mutation pressure 
(Shackelton et al., 2006). It has been proposed that a low and 
non-optimal codon usage allows viruses to adapt to a wider range of 
hosts with various codon usage preferences (Butt et al., 2019; Carmi 
et al., 2021; Jenkins and Holmes, 2003). In addition, a deficiency in CpG 
and UpA dinucleotides was observed in most single-stranded RNA and 
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small DNA viruses, probably related to the immunostimulatory prop-
erties of unmethylated CpGs (Giallonardo et al., 2017; MacLean et al., 
2021; Shackelton et al., 2006; Ur Rahman et al., 2017; Woo et al., 2010), 
and to a marked cytosine deamination (Woo et al., 2007). In RNA viruses 
such as SARS-CoV and Ebola Zaire (ZEBOV), mutational pressure was 
proposed as the most important cause of patterns of codon usage 
(Cristina et al., 2015; Gu et al., 2004; Jenkins and Holmes, 2003; Tyagi 
et al., 2021). However, it is not completely clear whether this could be 
generalized, since for Zika virus (Butt et al., 2019) and MERS-CoV, only 
a small fraction of the CUB (<16%) could be explained by mutational 
pressure (Hussain et al., 2020). Further, for SARS-CoV-2, different re-
sults were reported, indicating from a main role of mutational pressure, 
to a strict selection pressure (Khattak et al., 2021; Nambou and Anakpa, 
2020; Roy et al., 2021; Tyagi et al., 2021). In the case of human coro-
naviruses, including SARS-CoV, MERS-CoV and SARS-CoV-2, several 
CUB analyses were carried out (Carmi et al., 2021; Das et al., 2021; Das 
and Roy, 2021; Dilucca et al., 2020; Dimonaco et al., 2021; Gu et al., 
2020; Gupta et al., 2021; Hou, 2020; Huang et al., 2021; Hussain et al., 
2020, 2021; Kandeel et al., 2020; Khattak et al., 2021; Nambou and 
Anakpa, 2020; Roy et al., 2021; Tort et al., 2020; Tyagi et al., 2021). As a 
result, some general conclusions could be made: first, all of them 
possessed high AU content and low GC content, with the CpG dinucle-
otide markedly under-represented, and in the case of SARS-CoV-2, a 
preferred use of U-ending codons; codon usage bias and codon pair 
usage were found to be quite different from that of the human host, even 
when particular tissues such as lung and kidneys were analyzed (Kames 
et al., 2020); high Effective Number of Codons (ENC) (Wright, 1990) 
values were found (although lower than those of other coronaviruses), 
suggesting a slight codon usage bias; in comparison to other coronavi-
ruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 presented the highest 
values of the Codon Adaptation Index (CAI) (Sharp and Li, 1987) 
calculated using human proteins as the reference set, suggesting that 
these viruses are more adapted to the human host than other corona-
viruses that present milder clinical symptoms; a relatively high average 
CAI value was found for SARS-CoV-2 (approximately 0.7), however, its 
value was smaller than the average for human genes (approximately 
0.8) (Tort et al., 2020). Moreover, MERS-CoV and SARS-CoV clustered 
closer to human genes in correspondence analyses of Relative Synony-
mous Codon Usage (RSCU), and presented higher CAI values than 
SARS-CoV-2, indicating a relatively lower adaptation of SARS-CoV-2 to 
human cellular systems (Roy et al., 2021). 

The Codon Usage Bias (CUB) of individual proteins from SARS-CoV-2 
was also analyzed, and compared with that from other coronaviruses. In 
the case of Spike (S) protein, the CUB was found to be similar to that of 
other coronaviruses, with preferential use of A/U ending codons, and 
partly governed through the mutational pressure (27.35%) and majorly 
through natural selection and other factors (72.65%). In addition, CAI 
values for the S-gene indicated a relatively better adaptability in 
humans, when compared to other mammals (Malik et al., 2021). The 
same bias was observed for ORF1ab, and it was reported that it was more 
pronounced in SARS-CoV-2 than in SARS-CoV (Li et al., 2021). The 
mutational status of genes N, S, M, RdRP and S revealed that N, RdRP 
and S evolve faster than N and M, accumulating amino acid substitution 
more rapidly and presenting lower ENC values (Dilucca et al., 2020; 
Kandeel et al., 2020). 

Further, it has been reported that introducing rare codons within 
highly expressed genes can affect the translation of other genes, even in 
a proteome-wide manner, by reducing the availability of the corre-
sponding t-RNAs (Frumkin et al., 2018). The same reasoning is valid in 
the case of the introduction of highly expressed foreign genes, which can 
deplete the host cell’s t-RNA pools affecting translation and producing 
deleterious collateral effects, whether rare or optimized codons are used. 
Such is the case of viruses, for which a higher similarity of codon usage 
frequencies with the human tRNA supply was correlated with a more 
severe pathology (Chen et al., 2020; Chen and Yang, 2022; Hussain 
et al., 2020). Besides, it has been reported that during SARS-CoV-2 

infection, the translation of highly expressed human genes sharing the 
codon usage of the virus ORFeome appears to be down-regulated 
(Alonso and Diambra, 2020). A similar approach was used to identify 
human genes that could be potentially deregulated due to the codon 
usage similarities between the host and the viral genes (Maldonado 
et al., 2021). 

Although the codon usage pattern of SARS-CoV-2 has been thor-
oughly described, there are only a few works assessing the adaptation of 
SARS-CoV-2 codon usage since its transfer to human hosts (Huang et al., 
2021; Hussain et al., 2021). It was reported that during the first six 
months of the COVID-19 pandemic, SARS-CoV-2 average ENC 
decreased, principally due to C to U mutations (i.e. 47% of all the mu-
tations) that occurred on the 2nd and 3rd codon positions, resulting in a 
more biased codon usage. Furthermore, the codon usage profile of 
SARS-CoV-2 seems to have moved away from the human optimal. 
Interestingly, the CpG and UpA dinucleotides, which are markedly 
suppressed in many RNA and small DNA viruses, appear to be increasing 
in the SARS-CoV-2 genome over time, and could result in virus attenu-
ation and decreased pathogenicity (Hussain et al., 2021). CAI values for 
most of SARS-CoV-2 coding sequences have also decreased, further 
suggesting that pathogenicity in humans could be decreasing (Huang 
et al., 2021). In this work we provide an updated analysis of the evo-
lution of the pattern of codon usage of SARS-CoV-2, using a time-series 
of complete genome sequences collected since December-2019, 
including the more relevant variants of concern. 

2. Material and Methods 

2.1. Retrieval of genomic sequences 

The betacoronavirus (taxid = 694002) genome and coding sequences 
used on this work were downloaded from NCBI Virus Variation Resource 
(Hatcher et al., 2017) (https://www.ncbi.nlm.nih. 
gov/labs/virus/vssi/#/), filtering for complete genomes (nucleotide 
completeness = complete) with no ambiguous characters. In the case of 
reference genomes, a Refseq genome completeness filter was added. 
SARS-CoV-2 sequences were downloaded using taxid 2697049, and in 
addition to the previously used filters, sequences were manually selected 
to be representative of different geographic locations, PANGOLIN 
(Rambaut et al., 2020) lineage classification, and different collection 
dates (with at least month and year information) from December 2019 to 
July 2021. Both complete genomes and coding sequences (CDS) were 
downloaded and grouped every two weeks. In the case of complete 
SARS-CoV-2 genomes, 2834 sequences were downloaded. CD-HIT server 
(Fu et al., 2012) (http://weizhong-lab.ucsd.edu/cdhit-web-server/) was 
used to remove identical sequences, a total of 2725 sequences remained. 
All the Coding Sequences (CDS) from a total of 209,436 SARS-CoV-2 
genomes were downloaded for the time-series correspondence analysis 
of codon usage frequencies. For the analysis of individual proteins, a 
homemade script was used to separate the sequences by ORF, using the 
annotation in the Fasta file headers. 

For the analysis of variants of concern, a set of sequences was 
downloaded from NCBI Virus Variation Resource using taxid 2697049, 
and in addition to the previous filters, the PANGOLIN lineage prediction 
filter was used to select for variants: Alpha – B.1.1.7, Beta – B.1.351, 
Gamma – P.1 and Delta – B.1.617.2 (https://www.cdc.gov/coronavir 
us/2019-ncov/variants/variant.html). 

The transcripts for all the human genes were downloaded from 
Gencode release 38 (https://www.gencodegenes.org/human/). Highly 
expressed proteins sets from different human tissues were obtained from 
the Human protein atlas (https://www.proteinatlas.org/; Uhlén et al., 
2015) and their coding sequences were extracted from the human 
transcript files using homemade scripts. The horseshoe bat (Rhinolophus 
ferrumequinum) and chinese pangolin (Manis pentadactyla) genome 
coding sequences were downloaded from NCBI genomes (Assembly ac-
cessions GCF_004115265.1 and GCF_014570555.1 respectively). The 

E.G. Mogro et al.                                                                                                                                                                                                                                

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
http://weizhong-lab.ucsd.edu/cdhit-web-server/
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
https://www.gencodegenes.org/human/
https://www.proteinatlas.org/


Virology 568 (2022) 56–71

58

complete list of SARS-CoV-2 sequences used is on Table S1. 

2.2. Phylogenetic analysis 

To construct a phylogenetic tree, a Multiple Sequence Alignment 
(MSA) of the complete genomes of reference beta-coronavirus (Beta- 
CoVs) and SARS-CoV-2 was obtained using MAFFT (Katoh and Standley, 
2013) (https://mafft.cbrc.jp/alignment/software/closelyrelatedviral 
genomes.html; MAFFT v7). First a MSA of all the reference sequences 
was obtained using the Iterative refinement method E-INS-i and default 
parameters. In a second step all the SARS-CoV-2 genome sequences were 

added to the previous MSA following the recommended instructions for 
full-length MSA of closely-related viral genomes (https://mafft.cbrc. 
jp/alignment/server/add_fragments.html?frommanualnov6; Default 
parameters were used). 

A maximum likelihood phylogenetic tree was constructed for the 
first MSA using IQtree (Nguyen et al., 2015) (Galaxy Australia, Version 
2.1.2). The Best-fit model according to BIC (GTR + F + I + G4) and 
ultrafast bootstrap were used as evolutionary model and branch support 
(1000 bootstrap), respectively. For the second alignment, containing all 
2725 SARS-CoV-2 sequences, a maximum likelihood phylogenetic tree 
was constructed with Fasttree (Price et al., 2010) (v2.1.10, at Galaxy 

Fig. 1. Maximum Likelihood Phylogenetic tree of Betacoronavirus. Maximum Likelihood phylogenetic tree constructed using full genomes of betacoronaviruses 
belonging to the subgenuses Sarbecovirus, Nobecovirus, Merbecovirus and Embecovirus. Genomic sequences were downloaded from NCBI Virus database, aligned with 
MAFFT and a ML phylogenetic tree was constructed with IQTree. The most relevant Beta-CoV isolates are highlighted with different colors. Blue: human SARS-CoV-2 
Wuhan 2019 isolate. Purple: Pangolin-CoVs and Bat RaTG13, SL-CoVZC45 and SL-CoVZXC21 isolates. Red: human SARS-CoV Tor2 isolate. Teal: human MERS-CoV 
isolates. Orange: Human CoVs from the Embecovirus subgenus. Numbers represent the bootstrap support for each node. 
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Australia) using the GTR model with four gamma rate categories. 

2.3. Synonymous codon usage analysis 

The codon usage analysis was done using homemade Bash and R 
scripts. First, codon counts, synonymous codon usage frequencies, and 
average codon usage frequencies for each set of genes were calculated 
using either Gary Olsen codon usage scripts (https://www.life.illinois. 
edu/gary/programs/codon_usage.html), or the coRdon R package 
(Elek et al., 2021). Relative synonymous codon usage frequencies 

calculated with G. Olsen codon usage scripts are similar to the 
commonly used RSCU, but normalized to 1 (i.e. the maximum value for 
each codon is 1). Averaged codon usage frequencies were calculated 
from the summed codon counts of all the genes in a multifasta sequence 
file. Codon counts for ENC, and CAI determination were calculated with 
coRdon (Elek et al., 2021), using the concatenated ORFs (or equiva-
lently, the codon count for each ORF were summed) for each 
SARS-CoV-2 genome. CAI was calculated using a homemade R script 
following Sharp’s CAI equations (Sharp and Li, 1987). Highly expressed 
proteins in different human tissues were used as reference sets 

Fig. 2. SARS-CoV-2 Maximum Likelihood phylogenetic tree constructed with Fasttree using full genomes of isolates with different collection dates and 
geographic origins. Genomic sequences were downloaded from NCBI virus database, selecting isolates from different geographic regions, SARS-CoV-2 variants and 
collection dates. Nucleotide sequences were aligned with MAFFT and a ML phylogenetic tree was constructed with Fasttree. A) Leaves colored by time. Different 
colors from red (Dic-2019) to green (Jun-2021). Reference sequences correspond to SARS-CoV-2 isolated from human (Wuhan isolate 2019) and different animals. 
B). Leaves colored by geographic region. C) Leaves colored by SARS-CoV-2 variant. Only Alpha, Beta Gamma, Delta, Mu, Iota and Kappa are shown. 
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(https://www.proteinatlas.org/; Uhlén et al., 2015). For W determina-
tion, all the CDSs in the reference set were concatenated (or equiva-
lently, the codon counts for each CDS were summed) and pseudo-sums 
of 0.01 were added to 0 frequency codons (Wconcat). Alternativelly, a 
Wi was calculated for each gene, and the average W (Wavg) was used for 
CAI calculation. In the case of SARS-CoV-2 genomes, all the CDS were 
concatenated except ORF1a, which overlaps with ORF1ab. 

3. Results 

3.1. Phylogeny of SARS-CoV-2 

In order to analyze the divergence of SARS-CoV-2 since its onset in 
2019, a maximum likelihood phylogenetic analysis of complete genomes 
was made. In a first instance, IQTree was used to construct a phyloge-
netic tree including reference Beta-CoVs from the Merbecovirus, Nobe-
covirus, Embecovirus, and Sarbecovirus subgenuses. As previously 
reported, SARS-CoV-2 clustered together with SARS-CoV and other 
SARS-related coronaviruses found mainly in bats, within the Sarbecovi-
rus subgenus (Fig. 1) (Hu et al., 2020; Huang et al., 2021; Machado et al., 
2021; Woo et al., 2010; A. Wu et al., 2020). Then, a maximum likelihood 
phylogenetic tree including a subset of NCBI public SARS-CoV-2 se-
quences representing the most relevant SARS-CoV-2 variants sampled by 
date and geographic region, was constructed using FastTree (Fig. 2). It 
can be seen that most SARS-CoV-2 sequences clustered by variant rather 
than by geographic location (Fig. 2.B and Fig.2.C). In addition, in 
accordance to previous reports (Simmonds, 2020; van Dorp et al., 2020), 
newly sequenced isolates presented more divergence with respect to the 

Wuhan-2019 reference sequence (i.e. 1 × 10− 3 substitutions per site, or 
about 30 substitutions per genome. Fig. 2), suggesting that they could be 
used to monitor the evolution of SARS-CoV-2 codon usage pattern in 
humans over time. However, since most of the registered single nucle-
otide polymorphisms (SNPs) produced non-synonymous mutations (i.e. 
a ratio of non-synonymous to synonymous substitutions of 1.88, and an 
80% of the recurrent mutations) (van Dorp et al., 2020), we expected to 
observe only a small variation in the codon usage profile. Similar results 
were observed using the Nextstrain web portal, with selected data from 
GISAID and coloring by emerging lineage and date respectively (Fig. S1, 
https://nextstrain.org/ncov/gisaid/global, accessed 2021-09-22) 
(Hadfield et al., 2018). 

3.2. Codon usage analysis 

In order to evaluate the relative synonymous codon usage fre-
quencies either belonging to beta-CoVs or humans we performed a 
Correspondence Analysis (CA), using as input the Average Codon Usage 
Frequencies (ACUF) for different gene sets. We included human tissues 
that can be infected by SARS-CoV-2 including lungs, heart, kidneys, and 
brain among others. Human transcripts were extracted from Gencode 
R38, and highly expressed gene sets were created for each organ using 
tissue specific proteomes from the human protein atlas (Uhlén et al., 
2015). As it can be seen on the CA shown in Fig. 3, SARS-CoV-2 isolates 
clustered together with SARS-related coronaviruses including Bat and 
Pangolin CoVs, and are quite far from the human tissues, and also from 
the genomes of Bat and Pangolin. The phylogenetic and codon usage 
analysis results support that SARS-CoV-Bat-RatG13 is the most closely 

Fig. 3. Correspondence Analysis of Average Codon Usage Frequencies (ACUF) for Betacoronavirus and their hosts: Human, Bat, and Pangolin. Coding 
sequences for SARS-CoV-2 and human genes were downloaded from NCBI and ACUFs were calculated and used in a Correspondence Analysis as described in the 
Material and Methods section. The first two components representing 89% of the total inertia are shown. The Inner plot (light gray shading) corresponds to the 
column variables (codons). Red: Codons with C or G in the third position. Black: Codons with A or T in the third position. 
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related to SARS-CoV-2 reference strain. Besides, SARS-CoV-2 is more 
distant from human tissues that SARS-CoVs or human MERS-CoVs. It is 
also clear that the main axis (C1) of the CA, accumulating 73% of the 
variation, corresponds to the difference in the frequency of A-T or C-G 
terminated codons, while the secondary axis (C2, 15% of the variation) 
is mainly defined by the differences in the Tyr (TAT vs TAC), Leu (TTG vs 
TTA), Arg (CGT, CGA, CGC, and CGG vs AGA), Asp (GAT vs GAC), Ser 
(TCG, AGC and AGT vs TCA), Glu (GAG vs GAA), Phe (TTT vs TTC), Lys 
(AAG vs AAA), Gln (CAG vs CAA), Asn (AAT vs AAC), Ile (ATT, ATA vs 
ATC), Thr (ACG, ACC and ACT vs ACA) and Pro (CCG, CCC vs CCA, CCT) 
codon choice (Fig. 3. Inner light gray shaded plot). Next, in order to 
analyze the time variation of ACUF in SARS-CoV-2, sequences were 
clustered by date in bins of 15 days, and a correspondence analysis was 
done (Fig. 4). The first conclusion that can be drawn from these analyses 
is that in the time that SARS-CoV-2 has been infecting human hosts, only 
a slight variation in the average codon usage has taken place. It also 
appears, that opposite to what it would be required for a higher 
expression of SARS-CoV-2 proteins, the codon usage tends to be slightly 
more distant (C1) from that of the human host in the most recently 
collected samples. Since new SARS-CoV-2 variants appeared over time 
and gained importance, correspondence analysis of sequence sets clus-
tered by variant (i.e. as determined by PANGOLIN on NCBI Virus Vari-
ation Resource, (Hatcher et al., 2017), or by variant and date, were 
made, including the new sequence sets to the previous analysis (i.e. all 
the previous sequences plus the new ones were used in the CA. Fig. 5). 
Remarkably, Delta (D) and Gamma (G) variants could be clearly sepa-
rated based on the CA of ACUF, while Beta (B) and Alpha (A) were 
overlapped with the sequence sets corresponding to the time-series. 
However, no clear time dependence was observed (Fig. S2), possibly 
as an effect of the brief time since the appearance of these variants. To 
try to elucidate which codons presented more variation over time for the 
selected variants, the difference of ACUF with that of the month of 
January 2020 was calculated for each codon and time (Fig. 6, S3 and 

S4). As it was previously reported (Roy et al., 2021), an overall antag-
onistic codon usage pattern to human t-RNA isoacceptors was found 
(Table S2), with a total of 11 amino acids encoded by antagonistic co-
dons, including all the amino acids encoded by two codons. During the 
COVID-19 pandemic, most of the U (T) ending codons increased their 
frequency (AAT, ATT, ACT, CAT, CCT, CGT, CTT, GGT, GTT, TTT, TCT, 
TGT) including some of the antagonistic codons preferred by 
SARS-CoV-2 (AAT, GGT, CAT, GTT, TTT, TGT). Only a few of the 
SARS-CoV-2 antagonistic codons (CAA, TAT) got closer to human fre-
quencies. Also, the results show that several codons presented a higher 
variation, being AAT, AAC (Asn); ACT, ACC (Thr); AGA, AGG, CGA, CGT 
(Arg); ATA, ATC, ATT (Ile); CAA, CAG (Gln); CAT, CAC (His); CCT, CCA 
(Pro); CTT, TTA, TTG (Leu); GAC, GAT (Glu); GAT, GAC (Asp); GCT 
(Ala); GGA, GGC, GGT (Gly); GTT (Val); TAT, TAC (Tyr); TCC, TCT (Ser); 
TGC, TGT (Cys); and TTT, TTC (Phe) the most representative. In addi-
tion, some codons presented more variation between the new variants (i. 
e. AAA/AAG-Lys, AAC/AAT-Asn, AGG/CGA/CGT-Arg, ATA/ATC/AT-
T-Ile, CAT/CAT-His, CCA/CCC/CCG-Pro, GAC/GAC-Asp, GCT-Ala, 
TAC/TAT-Tyr, TGC/TGT-Cys, TTT/TTC-Phe), while others presented a 
steady increase (AAG, CCT, CGA, GCG, GCC, GTT, GAA, TAC, TTG) or 
decrease (AAA, AGA, GCT, GTC, TAT, TTC) on their ACUF (Fig. S4). The 
main codons contributing to differences in SARS-CoV-2 variants were 
AAA-Lys (A < D/G < B), AAG-Lys (B < G/D < A), ACA-Thr (D < A/B <
G), ACC (B/G < A/D), ACG (A/B < D/G), AGG (G < D < A < B), CCA (G 
< D < B < A), CCC (A < B < D < G), CCG (A < B/D < G), CGA (D/B < A 
< G), CGG (B/G/A < D), CTG (D < G/B/A), GAA (ABGD < average), 
GAG (ABDG > average), GCA (BDG < A), GTG (ABD < G), TAC (G <
D/B < A), TAT (A < B/D < G), TCC (A < G < B/D), TGC (A/D < G/B), 
TGT (G/D < A/B), and TTG (ABGD < average). Interestingly, some of 
the codons which presented an increase in the ACUF (although slight) 
contained CG or TA dinucleotides (ATA, ATT, CAT, GCG, and CGA), and 
it was speculated that an increase of CpG and UpA dinucleotides could 
reduce SARS-CoV-2 pathogenicity (Hussain et al., 2021). 

Fig. 4. Correspondence Analysis of Average Codon 
Usage Frequencies (ACUF) for SARS-CoV-2 time- 
series and human tissues. Coding sequences for 
SARS-CoV-2, Human, Bat, and Pangolin genes were 
downloaded from NCBI and ACUFs were calculated 
and used in a Correspondence Analysis as described in 
the Material and Methods section. On this figure, only 
the points corresponding to the concatenated SARS- 
CoV-2 coding sequences binned by date, and human 
genes with elevated expression in different tissues are 
shown. The Inner plot shows an amplification of the 
SARS-CoV-2 region of the graph. Colors represent the 
collection date, from Jan-2020 to Jun-2021.   
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Next, SARS-CoV-2 coding sequences were clustered by open reading 
frame (ORF), averaged by date, and a CA of their ACUF was performed, 
which showed a clear separation by ORF (Fig. 7). Remarkably, S, N, M, 
ORF3a, ORF7a and ORF8 ORFs were located nearest to the human genes 
in the CA, suggesting that they could be more adapted for high expres-
sion. Further, the ACUF for some proteins presented slight or no time 
dependence at all (i.e. S, M, ORF1ab, ORF3a, ORF7a and ORF8), while 
other presented considerable variation (i.e. ORF10, ORF6, E and N) with 
ORF7b presenting the higher variation (Fig. 7 and Fig. S5). In particular, 
N, ORF3a and ORF8 appear to be getting closer to the human genes, 
while ORF1ab is getting apart (Fig. S5). Finally, a CA of Codon Usage 
Frequencies (CUF) calculated for sequence sets clustered by ORF, and 
chosen to represent different dates, geographic regions and variants 
(Fig. 8 and Fig. S6), was made. In this case, only a slight variation in CUF 
was observed, with most ORFs clustering together, and only showing an 
apparent separation by SARS-CoV-2 variant in the case of ORF8, N, 
ORF1ab and S (Fig. 8 and Fig. S6). Also for some isolates of the Alpha 
and Delta variants a greater variation in the CUF for ORFs ORF6, ORF7b, 
ORF8 and ORF10 was observed. 

3.3. Effective number of codons and codon adaptation index 

The variation of the Effective Number of Codons (ENC) with time 
was analyzed. ENC is a measure of the degree of codon usage bias in a 
gene, its values are between 20 and 61, with values near 20 indicating an 
extreme bias, and higher values, approaching 61, indicating that the 
codons are randomly used. It has been previously reported that during 
the first four months of evolution of SARS-CoV-2 in humans, the ENC 
value was decreasing (i.e. more biased codon usage) with time (Huang 
et al., 2021), so an analysis of the variation of ENC with time for 
concatenated SARS-CoV-2 coding sequences collected from January 
2020 to July 2021 was made. First, we evaluated the ENC values for 
different human tissues, all of which presented almost no codon bias (i.e. 

high ENC values, above 50, both for values calculated with the concat-
enated sequences, or for the average of all genes in a determined tissue, 
Fig. S7 A and B respectively), with Eye, Kidney and Skin presenting the 
lower values. In contrast, concatenated SARS-CoV-2 genes presented 
ENC values close to 45.45, indicating a slight codon usage bias. As 
shown in Fig. S8, during the 2020 and the first months of 2021, ENC only 
presented a slight variation (i.e. less than 0.05 units). In the first two 
months, an apparent increase of ENC was observed, however, these 
months presented the smaller number of analyzed genomes (approxi-
mately 180 each), while thereafter at least 2000 genomes per month 
were included. A comparison of the calculated ENC values with those of 
February 2020 revealed significantly slower values, and a steady 
decrease until December 2020. However during 2021, ENC increased 
again, reaching values close to those at the beginning of the COVID-19 
pandemic. This was not expected, since an adaptation to the host 
generally implies a decrease in ENC, and a more biased codon usage. The 
observed results could be related to the emergence and propagation of 
novel SARS-CoV-2 variants presenting higher average ENC values. To 
further test that hypothesis, the ENC values for the concatenated genes 
were calculated for Alpha, Beta, Delta and Gamma SARS-CoV-2 variants 
(Fig. S9). Alpha and Beta variants have shown slightly decreased ENC, 
while Gamma presented a significantly higher ENC when compared to 
those of February 2020 isolates. The observed variation of ENC over 
time (Fig. S8) could be related to the higher relative abundances of 
Alpha, Gamma and Delta variants (i.e. the proportion of those variants 
in the analyzed genomes, for each time sampled), which present the 
lowest and higher ENC values respectively (Fig. S9). 

ENC values were also analyzed for every SARS-CoV-2 ORF (Fig. S10), 
and compared between variants. In that case, a statistically significant 
difference in the ENC values calculated for each ORF between the 
analyzed variants was observed. The Alpha variant, presented a signif-
icantly smaller ENC for ORF1ab and a higher one for S, N, and ORF8. 
Beta, Gamma and Delta presented a higher ENC for ORF3a. In the case of 

Fig. 5. Correspondence Analysis of Average Codon 
Usage Frequencies (ACUF) for SARS-CoV-2 time- 
series and selected variants of interest. Coding se-
quences for SARS-CoV-2 time-series, and for a manual 
selection of genomes representing Alpha (A), Beta (B), 
Gamma (G), and Delta (D) variants were downloaded, 
their ACUFs calculated, and a correspondence analysis 
was performed as described in the Material and 
Methods section. The first two components repre-
senting 91% of the total inertia are shown.   
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Fig. 6. Evolution of the Average Codon Usage Frequency (ACUF) for each codon over time. ACUFs were calculated for concatenated SARS-CoV-2 genes grouped 
by fortnight, and normalized by subtracting the values registered for the first half of January 2020. Black points represent the ACUF for SARS-CoV-2 isolates from the 
time series dataset. Color points correspond to selected SARS-CoV-2 variants of interest: A (Alpha) orange, B (Beta) dark red, D (Delta) light green, and G 
(Gamma) blue. 

Fig. 7. Correspondence analysis of ACUF for each 
SARS-CoV-2 ORF from the time-series dataset 
averaged by month. The coding sequences corre-
sponding to ORF1ab, S, M, N, E, ORF3a, ORF6, 
ORF7a, ORF7b, ORF8, and ORF10 were extracted 
from the SARS-CoV-2 time-series dataset, their ACUF 
were calculated, averaged by month and a CA was 
performed. Shapes indicate the different ORFs. Dark 
to light blue colors indicate dates from Jan-2020 to 
Jun-2021. Human: colors indicate the ACUF for genes 
with elevated expression in different tissues.   
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the Delta variant, a higher ENC was observed for S, while a smaller value 
was observed for N and M. For the Beta variant, a remarkably higher 
ENC value was observed for the E protein. Finally, in the case of the 
Gamma variant smaller ENC values for S and N proteins, and a higher 
ENC value for ORF8 were observed. 

In relation to the Codon Adaptation Index (CAI), Huang et al. (2021) 
also reported a decrease over time during the first four months of the 
COVID-19 pandemic. Here we extended that analysis to 18 months, and 

used highly expressed human proteins in different tissues as reference 
sets for CAI calculation. The reference sets were extracted from tran-
scripts annotated in Gencode R38 (https://www.gencodegenes.org/h 
uman/) using human protein atlas expression profiles (https://www. 
proteinatlas.org/) (Uhlén et al., 2015) to select for highly expressed 
proteins in lungs, spleen, stomach, kidney, skin, heart, brain, eye, in-
testine, urinary bladder, thyroid, adrenal and pituitary glands, and 
different immunity cells like B, T, natural killer, dendritic cells, 

Fig. 8. Correspondence Analysis of Codon Usage 
Frequencies for each SARS-CoV-2 ORF from Alpha, 
Beta, Gamma and Delta variants. The coding se-
quences corresponding to ORF1ab, S, M, N, E, ORF3a, 
ORF6, ORF7a, ORF7b, ORF8, and ORF10 were 
extracted from the genomes of SARS-CoV-2 Alpha (A), 
Beta (B), Gamma (G), and Delta (D) variants, their 
codon usage frequencies were calculated and a CA 
was performed. Shapes indicate the different ORFs. 
Human: colors indicate the ACUF for genes with 
elevated expression in different tissues.   

Fig. 9. Evolution of the Codon Adaptation Index (CAI) over time for SARS-CoV-2 calculated in reference to different human tissues. CAI was calculated for 
the concatenated SARS-CoV-2 genes using elevated proteins on each human tissue as reference set, and averaged by month. The figure shows the difference of CAI for 
each month with the values calculated for Jan-2020 (ΔCAI). Human highly expressed proteins for each tissue were obtained from the human protein atlas. A) CAI 
values obtained using Wavg. B) CAI values obtained using Wconcat. The black line corresponds to CAI values calculated using WLei. 
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monocytes, and granulocytes. The relative adaptiveness (W) for the 
reference sets was obtained in two different ways, either by calculating 
and averaging Wi for every gene in the reference set (Wavg), or directly 
by calculating W for the concatenated genes (Wconcat). In addition, W 
for human ribosomal proteins was extracted from Lei et al. (Lei and 
Zhang, 2020) (WLei). Next, average CAI values were calculated for 
SARS-CoV-2 isolates collected on the first half of February 2020 
(2020/02/01–14). As can be seen in Fig. S11, depending on the method 
used for W calculation the results varied (mainly in their magnitude) 
with CAIs calculated with Wconcat presenting higher values (Fig. S11. 
B1). In both cases, granulocytes, kidneys, heart and the pituitary and 
thyroid glands presented the higher CAI values, which might indicate a 
higher expression of SARS-CoV-2 proteins in those tissues. In contrast, 
skin, stomach, intestine, dendritic cells, monocytes and eyes presented 
the lowest CAI values. Also, SARS-CoV-2 average CAI values were in 
general smaller than the average CAI for human genes, presenting the 
smaller difference in the granulocytes, kidneys, heart, and the pituitary 
and thyroid glands (Fig. S11.A2. And B2.). Moreover, when CAI was 
calculated using Wconcat, SARS-CoV-2 presented the highest CAI values 
in the heart and pituitary gland. The biggest difference was found on 
skin, eye, intestine, dendritic cells, and monocytes, which could indicate 
a lower expression of SARS-CoV-2 proteins in those tissues. 

Then, CAI was calculated for time-series of SARS-CoV-2 isolates and 
averaged by date. Using pairwise Wilcoxon rank-sum test to compare 
each time with the first half of February 2020, significant differences 
could be found that support a variation in the average CAI for SARS- 
CoV-2 over time (Fig. 9 and Fig. S12). In general the behavior of CAI 
was similar for all tissues, presenting an increase in February, a steady 
decrease until July-2020, and another small increase followed by a 
decrease presenting spikes of higher CAI. The major difference between 
tissues was observed between July-2020 and March-2021. In the case of 
CAI values calculated using Wconcat (Fig. 9.B.) the difference was 
bigger, with some tissues presenting higher (e.g., pituitary gland and 
urinary bladder) or smaller (e.g., eye and skin) CAI values. In the first 
half of 2021, CAI values for eye and skin presented a more pronounced 
increase than the rest of the analyzed tissues. In addition, CAI values 
calculated for SARS-CoV-2 with WLei presented a constant and more 
pronounced decrease over time. 

In order to determine if this behavior was related to the spread of 
new SARS-Cov-2 variants, CAI was determined for the Alpha (B.1.1.7), 
Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) variants (Fig. 10. 
A.). In this case, WLei was used. The results show that all the variants 
presented lower CAI values than the SARS-CoV-2 isolates collected in 
the first half of February 2020, with Delta having the lowest CAI. Finally, 
an analysis of CAI for every ORF and variant was made (Fig. 10.B.). In 
accordance with the results of the correspondence analysis, the proteins 
with the higher CAI values were N, S, ORF7a, ORF3a, ORF1ab, M, and 
ORF8. For most ORFs the variation in CAI values was very small (be-
tween 0.001 and 0.005) but statistically significant differences were 
found. In the case of ORF1ab, a clear decrease in CAI was observed in all 
variants, being more pronounced in Delta and Gamma. The Delta variant 
presented the most different CAI profile, with low CAI values for most of 
the ORFs, except for N and ORF7b for which an increase was observed. 
Beta was characterized by presenting the highest CAI for S, high CAI for 
N, and the lowest CAI values for E and ORF3a. Alpha presented the 
lowest CAI for N and ORF8, and high CAI values for ORF3a and ORF1a. 
In this case, for most of the available genomes ORF8 was not annotated, 
or only a truncated version was available (On NCBI Virus resource, of 
193,493 only 55 genomes presented a protein annotated as ORF8. 
Accessed 17-11-2021), thus the observed difference might be artificial, 
representing only a few shorter sequences. Finally, Gamma presented 
the highest CAI for ORF3a, and low CAI values for N and ORF1a. 

3.4. Analysis of SARS-CoV-2 divergence in California, USA 

Based on the previous results, the question of whether the variation 

of CAI and ENC values over time was determined only by the most 
abundant of the circulating variants, and not by a general trend of SARS- 
CoV-2 evolution, was raised. To try to answer this question, an analysis 
of the variation of ENC and CAI over time, considering the relative 
abundance of all the circulating SARS-CoV-2 variants in a determined 
geographic region, was made. First, we looked for the geographic region 
with more SARS-CoV-2 complete genomic sequences, which turned out 
to be California (CA) USA, with a total of 15,468 complete genomes over 
a total of 154,837 sequences (Date accessed, 10/05/2021). It has to be 
noticed that, since only complete genomic sequences were used, the 
results shown below do not accurately represent the real proportion of 
the circulating strains, which since September 2021 has been reported to 
be mainly Delta (https://covid.cdc.gov/covid-data-tracker/#variant-pr 
oportions; https://nextstrain.org/ncov/open/north-america. Accessed 
15/10/2021). Overall, it can be seen that the ENC values for the 
circulating SARS-CoV-2 isolates in California show a similar profile to 
that of the global analysis, although with slightly higher values 
(Fig. S13). In the case of CAI (calculated using WLei) the obtained values 
mimic the global behavior, presenting the higher CAI on February and 
decreasing steadily thereon (Figs. 9, and Fig. 11.A. black curve). The CAI 
spikes on February and April 2020 corresponded to the A.1 variant 
(according to Pangolin lineage classification) which presents the highest 
CAI value (Fig. S14, Table 1S, CA-USA-Variants). Further, the decrease 
in CAI over time since December 2020 correlates with the most abun-
dant variants having lower average CAI than the strains circulating on 
February 2020, with the Alpha (B.1.1.7), Gamma (P.1) and Delta 
(B.1.617.2 and AY.35) variants being the most abundant (Fig. 11, 
Fig. S14, Table S1 – CA-USA-Variants). However, a general decrease in 
CAI values for each variant could not be observed, with most of them 
presenting nearly constant average values (Fig. 11.B, left, and Table S1 
California-USA-Variants). In addition, Fig. S15 shows a monthly com-
parison between the most (Proportion >5%) and the less (Proportion 
<1%) abundant variants, and it can be observed that during 2021, 
although the most abundant variants presented lower CAI values, the 
difference with the less abundant variants is not significant. 

Next, an analysis of CAI for all SARS-CoV-2 ORFs from the California 
dataset was made (Fig. 12, Fig. S16). Most of the variation in average 
CAI values was in the range of 0.001 units, with ORF8, N, ORF3a, ORF7a 
and S showing the biggest difference with time. In the case of ORF8, a 
particular behavior was observed because it was not annotated in the 
Alpha variant genomes, which were the most abundant between 
January and July 2021. In the case of N, most of the variation in average 
CAI values corresponded to the rise and fall of the Alpha variant, which 
presented the lowest CAI value for N (Fig. 12 and Fig. S16). The Delta 
variant presented the lowest CAI values for ORF3a, ORF7a and S, and 
the general decrease observed for CAI since July 2021 (Fig. 11) corre-
sponded to its onset. Remarkably, a steady increase in CAI for the S 
protein of the Delta variant was observed (Fig. S16), which could sug-
gest that an adaptation of S for better expression is taking place. 

3.5. Omicron variant 

On 26 November 2021, WHO designated the variant B.1.1.529 a 
variant of concern, named Omicron (World Health Organization, 2021). 
This variant presents a large number of mutations, some of which are 
concerning (Callaway, 2021a), and the apparent capacity to infect 
people who recovered from COVID-19 caused by Delta and other vari-
ants (Pulliam et al., 2021). Whether Omicron causes milder or more 
severe disease is still unknown, although most of the reports, which had 
occurred in the younger population, presented mild symptoms. Here, we 
downloaded the complete genome of the Omicron variant from NCBI 
Virus (Accession number: OL672836) and calculated the ENC and CAI 
(calculated using WLei) values as a measure of codon adaptation. Our 
results (Table S2, Omicron ENC and CAI) show that Omicron presents an 
ENC value greater than the average for other SARS-CoV-2 isolates (ENC, 
45.51), although not the highest registered in our study. It also has a 
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Fig. 10. Differences in CAI between SARS-CoV-2 variants and their ORFs. CAI values calculated for concatenated SARS-CoV-2 genes using WLei for a selection of 
genomes representing different dates, variants and geographic locations. A) Box plot of CAI values grouped by variant. B) Box plots of CAI values calculated for the 
indicated ORFs and grouped by variant. Horizontal lines represent medians. Bigger dots represent mean values. Asterisks represent significant differences. Alpha (A), 
Beta (B), Gamma (G), and Delta (D) variants. P values were calculated using Wilcoxon rank sum test (* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001). 
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higher CAI, compared to the other variants of concern (CAI, 0.675), but 
lower than the CAI values for SARS-CoV-2 isolates from the first half of 
February 2020. The ENCs for the individual ORFs were also calculated, 
showing that Omicron presents a different profile, with higher ENCs for 
ORF1ab and S, and lower ENCs for E and ORF3a. Particularly low ENC 
values were found for M and ORF7b proteins. In the case of CAI, S and M 
presented some of the higher values, while E, N and ORF7b some of the 
lower, when compared to other SARS-CoV-2 isolates. 

4. Discussion 

The COVID-19 pandemic provided an unprecedented dataset of 
complete genomic sequences, with complete metadata including the 
sample collection date, which made possible the study of codon usage 
bias and its adaptation to the human host in short periods of time. First, 
using both maximum likelihood phylogeny and Correspondence Anal-
ysis (CA) of Average Codon Usage Frequencies (ACUF), we corroborated 
that SARS-CoV-2 is highly related to the SARS-related coronavirus 
RatG13 isolated from Bats, and to Pangolin CoV (Gu et al., 2020; Hou, 
2020), being more distantly related to SARS-CoV and MERS-CoV. In 
addition, the CA showed that SARS-CoV-2 was farther from the human 
tissues than SARS-CoV and MERS-CoV, suggesting that it is less adapted 
than the latter for protein expression in the human host. Previous reports 

indicated that coronaviruses show low substitution rates over time, 
normally in the range of 1 × 10− 4 to 1 × 10− 3 substitutions per site per 
year (van Dorp et al., 2020), with a total of around 5 to 14 nucleotide 
differences between independent SARS-CoV-2 isolates in the first half of 
2020 (Simmonds, 2020; van Dorp et al., 2020). Here approximately 1 ×
10− 3 substitutions per site (i.e. approximately 30 SNPs per genome) 
were observed for the most distant SARS-CoV-2 2021 isolates. This 
indicated that it should be possible to analyze the time dependence of 
codon usage frequencies for SARS-CoV-2 ORFs, although only a small 
variation was expected, as it was previously observed by Hussain et al. 
(2021) and Huang et al. (2021). These authors conducted similar 
time-series analysis, principally of averaged ENC and CAI values, 
showing that in the first months of COVID-19 pandemic both indices 
were slowly decreasing. In the analysis presented here, a dataset of se-
quences representing different geographic locations and SARS-CoV-2 
variants, and moving along to July 2021, was analyzed. A trend in 
codon usage bias variation over time was observed in the CA of ACUF, 
which shows that the distance between SARS-CoV-2 and the highly 
expressed genes in different human tissues is slightly increasing on the 
principal axis (C1) and decreasing on the secondary axis (C2). C1 is 
mostly defined by U/A and C/G terminated codons and accounts for 
73% of the total inertia. These results are in accordance with previous 
reports that showed that +ssRNA viruses possess A rich and C poor 

Fig. 11. Evolution of CAI over time for the California dataset. CAI was calculated for concatenated SARS-CoV-2 genes using WLei and averaged by month. A) CAI 
calculated for the complete dataset. Black line, Evolution of average CAI values over time. Red line, total number of coding sequences (CDS) analyzed for each month. 
B) Left, CAI values for selected variants of interest. Right, percentage of coding sequences belonging to each variant. 
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genomes, with a depletion of CpG and UpA dinucleotides, and third 
codon positions enriched in U (Hussain et al., 2021; Kustin and Stern, 
2021). Such an increase in U ending codons could be caused both by 
selection or mutational biases, which are considered as the main forces 
of RNA virus evolution, due to their large population sizes and high 
mutation rates. Also, it has been shown that mutation is universally 
biased toward A and T in several species (Hershberg and Petrov, 2010; 
Lynch, 2010). In the particular case of +ssRNA viruses, including 
SARS-CoV-2, a mutational bias towards U, which in CoVs was produced 
mainly by C→U mutations, was observed (Hershberg and Petrov, 2010; 
Lynch, 2010). This bias is remarkable in SARS-CoV-2, which was shown 
to present a high proportion of C→U changes relative to other types of 
SNP (van Dorp et al., 2020), with approximately a 4-fold excess of C→U 
substitutions (Simmonds, 2020). It was proposed that asymmetric C→U 
transitions can be explained by cytosine deamination, whether sponta-
neous or mediated by APOBEC3, of the +ssRNA genomic strand (Kustin 
and Stern, 2021; Simmonds, 2020). However, mutations have to be fixed 
in the population, a process that takes time, and may be incomplete in 
SARS-CoV-2 circulating variants. Using the notion of incomplete pur-
ifying selection, it was proposed that in the longer term, selection to-
wards A and against U takes place (Kustin and Stern, 2021). Whether the 
mutations appearing in SARS-CoV-2 circulating variants have been fixed 
is difficult to determine. Neutrality plot results suggested a minor effect 
of mutation bias and major effect of natural selection (Hussain et al., 
2021). Here, using the California dataset, a linear dependence of GC12 
(i.e., GC percentages of codon positions 1 and 2) with GC3 (i.e., GC 
percentages of codon position 3) (R2: 0.2455, p-value: < 2.2e-16) with a 
slope of 0.12370 was observed, suggesting that only 12% of the codon 
usage bias could be attributed to mutational bias. Moreover, a neutrality 
plot was made for sequences clustered by month (Table S2, Neutrality 
plots vs Date), indicating in average less than 20% of mutation bias 
contribution to the codon usage bias. An overall dependence with time 
was not found, however, spikes of lower slope (major contribution of 
selection) were observed on Sep-2020; Jan-2021 and May-2021. In 
those months the prevalent circulating variants were B.1 and B.1.243; 
B.1.2, B.1.427 and B.1.429; and B.1.1.7 (Alpha), respectively (Table S1, 
California-USA-Variants), which could indicate that in those variants a 
more complete selection may have taken place. 

The obtained results are also compatible with previous codon usage 
analyses in SARS-CoV-2, where an antagonistic codon usage pattern 

with the human host was observed (Roy et al., 2021), and it has been 
suggested that it could play a role during the initial phase of the infec-
tion, reducing translation speed, but increasing its precision, and 
yielding accurate and correctly folded viral proteins (Khandia et al., 
2019). Also, a slow viral translation and replication, may help the virus 
to avoid detection by the host immune system (Hussain et al., 2021). 

SARS-CoV-2 has a high average ENC value of around 45, indicating a 
low to moderate codon usage bias, which is lower than the average ENC 
values of human tissues (approximately 55, Fig. S7). It has been sug-
gested that a weak codon usage bias might be an adaptive trait enabling 
viruses to replicate, without competing for the limited t-RNA resources, 
in a broader range of hosts presenting different codon usage patterns 
(Dilucca et al., 2020; Hussain et al., 2021; Roy et al., 2021). Recent 
reports have shown that SARS-CoV-2 ENC values have decreased over 
time in the first half of 2020, here this tendency was reinforced and 
extended to July 2021. A smaller ENC indicates that SARS-CoV-2 codon 
preference has increased, however, it doesn’t mean that it is adapting to 
the human codon usage pattern. In fact, the CA results and the analysis 
of the variation of ACUF over time indicate a greater polarization. 

To test whether this small but significant variation in the codon 
usage bias could enhance the expression of SARS-CoV-2 proteins in 
humans, CAI was calculated using as reference the highly expressed 
proteins in different human tissues. CAI is accepted as an effective index 
of the degree of viral adaptation to a host’s cellular environment (Puigbò 
et al., 2008). That SARS-CoV-2 presents lower CAI values in comparison 
to MERS-CoV and SARS-CoV, has been interpreted as a lower fitness and 
adaptation to human cellular systems, which is also in agreement with 
its milder clinical picture (Roy et al., 2021). Moreover, our results 
indicate that SARS-CoV-2 proteins should present a higher expression in 
granulocytes, kidneys, heart, and the pituitary and thyroid glands; and 
lower expression in the skin, stomach, intestine, dendritic cells, mono-
cytes and eyes. These results are partially in agreement with previous 
reports showing SARS-CoV-2 tropism for lungs, trachea, kidneys, heart, 
pancreas, brain and small intestine, but not for the large intestine, renal 
proximal tubules, and liver (Liu et al., 2021; Puelles et al., 2020); and 
also with the prediction of vulnerable cells types based on the ACE2, 
TMPRSS2 and Furin expression profiles (i.e. lung AT2 cells, macro-
phages, cardiomyocytes, adrenal gland stromal cells, stromal cells in 
testis, ovary and thyroid cells) (Gao and Zhang, 2020; Zhou et al., 2020). 
Further, different types of immune cells can be infected, including 

Fig. 12. Evolution of CAI over time for each SARS-CoV-2 ORF of the California dataset. CAI values were calculated for each SARS-CoV-2 ORF using WLei and 
averaged by month. In the figure, the difference of CAI with respect to Jan-2020 is represented (ΔCAI). Lines for the ORFs with greater variation over time are thicker 
(N, S, ORF3a, ORF7a, and ORF8). 
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granulocytes (Ramos Da Silva et al., 2021) which have been reported to 
be key modulators in SARS-CoV-2 immune response (Lourda et al., 
2021); and also new evidence suggests that SARS-CoV-2 might have a 
great impact on the hypothalamus-pituitary-thyroid endocrine axis (J. 
Zheng et al., 2021). It should be noted that the alteration of the target 
cell (or tissue) normal functions will depend, not only on its suscepti-
bility to SARS-CoV-2 infection, but also on the expression level of all 
SARS-CoV-2 proteins. 

It has been observed, both here and in a previous report by Huang 
et al. (2021), that CAI values for SARS-CoV-2 in humans have decreased 
over time, and it was hypothesized that it was likely that the efficiency of 
gene expression of SARS-CoV-2 in the human host could be decreasing. 
That SARS-CoV-2 CAI values are decreasing raises the question of 
whether MERS-CoV and SARS-CoV higher CAI values are a consequence 
of a larger adaptation time in the human host, or if their CAI values were 
higher since the beginning, and they are actually evolving towards a 
lower CAI. 

An analysis of the variants Alpha, Beta, Gamma and Delta, revealed a 
difference of ACUF with the early 2020 isolates, and a differential codon 
usage bias between Gamma, Delta, and Alpha and Beta isolates which 
were somewhat overlapped. Particularly Delta and Gamma isolates, 
presented a higher ENC, which may explain the increase in the average 
ENC observed in the last months of analysis. With respect to CAI, all the 
analyzed variants presented lower CAI values when compared to 
February 2020 isolates, with Delta and Gamma presenting the lower 
values. 

Finally, an analysis of each SARS-CoV-2 gene was made. It was 
previously reported that ORF1ab, S and N are the proteins accumulating 
most of the mutations (Gupta et al., 2021), however, of these proteins 
only N presented considerable variation on its codon usage bias ac-
cording to the CA results. In the case of M and E, which have been re-
ported to evolve more slowly (Dilucca et al., 2020), only E presented 
some variation in its codon usage bias. Other proteins that showed some 
variation in the CA were ORF6, ORF7b, and ORF10. However this 
variation was not always reflected on the ENC and CAI values. 

As a common trend, the variation of ENC and CAI over time was 
minimal, which was expected due to the small divergence time, and the 
fact that a ratio of non-synonymous to synonymous substitutions of 1.88 
had been previously reported (van Dorp et al., 2020). Nevertheless, 
significant differences were found, especially when Alpha or Delta 
variants became predominant. In particular, N, M, ORF7a and ORF3a 
presented high CAI and ENC values, with values similar to those regis-
tered for human proteins, and which indicated that these proteins may 
be required in higher amounts. A very good accordance of their CAI 
values with the ribosome profiling experiments reported by Finkel et al. 
(2020) was found, being the most actively translated proteins N, M, 
ORF7a, ORF3a, ORF8, ORF6, ORF7b, S and E in descendant order. The 
nucleocapsid phosphoprotein (N), was among the proteins which pre-
sented more variation in the codon usage bias between SARS-CoV-2 
isolates, and also the higher average CAI value. These facts could sug-
gest a particular role of N in the evolution and adaptation of beta-CoVs 
to their mammal hosts. 

In contrast, S, ORF8, ORF7b, and ORF6 presented relatively high CAI 
but lower ENC values. Proteins with a lower ENC use a more restricted 
set of codons, and if those codons are common with those used by highly 
expressed host proteins (i.e. viral proteins with higher CAI), a more 
effective competition for the aminoacilated t-RNA will take place. In 
accordance, Alonso and Diambra (2020) observed a reduced translation 
rate of highly expressed host proteins which shared the codon usage bias 
of the virus, and the same approach was used by Maldonado et al. (2021) 
to identify human genes that could be potentially deregulated due to the 
codon usage similarities between the host and the viral genes. Thus, a 
reduction of CAI over time, as was observed for S and ORF7a, may be 
compatible with a milder pathogenicity. ORF7b has the lowest ENC 
value of about 30, a relatively high CAI of 0.654, and protein levels 
similar to S (Finkel et al., 2020). The particular profile presented by 

ORF7b in the Delta variant, might explain some of the clinical differ-
ences presented by this variant. It was demonstrated that N mutations, 
as the N: R203M contained in the Delta variant, can produce an 
enhanced RNA packaging and replication, an improved fitness, and 
could also explain the increased spread of variants (Syed et al., 2021). 
That N presented the most optimized codon usage profile in Delta could 
contribute to its increased fitness. E presented the lowest CAI, and its 
value remained nearly constant over time, with the observation that the 
Beta variant presented differentially lower CAI and higher ENC values. 
Also, the Beta variant presented high CAI for N and S. A recent report has 
informed that people infected with the Beta SARS-CoV-2 variant were 
more likely to need critical care and to die than are people infected with 
other variants, and it also seems to be more resistant to immunity 
generated by vaccines or previous infections (Callaway, 2021b). The 
particular CAI/ENC profile uniquely shown by the Beta variant, prob-
ably involved in different expression levels of E protein, could be related 
with this variant severity. The Omicron variant appears to be more 
transmissible, and less pathogenic. These features could be related to the 
higher CAI for S, and the lower CAI for ORF7b respectively. ORF7b also 
presents the lowest ENC in the Omicron variant, suggesting a more 
antagonistic, yet restricted, codon usage, which might be related to this 
strain ability to avoid the immune response (Rössler et al., 2021). 

Finally, it has been proposed that the low adaptation of SARS-CoV-2 
to the human codon usage could be a consequence of its recent transit 
from a well-adapted host, or an evolutionary strategy to avoid host de-
fense (Hussain et al., 2021). However, most of the results seem to 
indicate that SARS-CoV-2 codon usage is getting further apart, instead of 
adapting for a higher and faster protein expression. Deoptimization of 
codons and codon pairs has been used as an attenuation strategy for viral 
vaccine development (Roy et al., 2021). That SARS-CoV-2 codon usage 
pattern is getting away from that of the human host, and the decreasing 
CAI and ENC values observed since the onset of the pandemic, could 
indicate that the virus is evolving to be less pathogenic (Hussain et al., 
2021), and might end, with time, being similar to other CoVs causing 
common cold. It must be considered however, that this conclusion is 
only based on the evolutionary trends observed in the codon usage 
profile, and although they could exert a significant effect in SARS-CoV-2 
pathogenicity, the occurrence of novel non-synonymous substitutions as 
the observed in the recent Omicron variant (Callaway, 2021a), will 
present a more direct effect. 
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