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Summary

Microorganisms engage in complex interactions with
other members of the microbial community, higher
organisms as well as their environment. However,
determining the exact nature of these interactions can
be challenging due to the large number of members in
these communities and the manifold of interactions
they can engage in. Various omic data, such as 16S
rRNA gene sequencing, shotgun metagenomics,
metatranscriptomics, metaproteomics and metabolo-
mics, have been deployed to unravel the community
structure, interactions and resulting community
dynamics in situ. Interpretation of these multi-omic
data often requires advanced computational methods.
Modelling approaches are powerful tools to integrate,
contextualize and interpret experimental data, thus
shedding light on the underlying processes shaping
the microbiome. Here, we review current methods and
approaches, both experimental and computational, to
elucidate interactions in microbial communities and
to predict their responses to perturbations.

Introduction

Microorganisms form complex and diverse communities,
which inhabit almost every environment on Earth. These

microbial populations interact with each other in many
different ways, creating complex and intertwined net-
works. The interaction between living cells and their
environment forms the foundation for microbial diversity.
In nature, microbial diversity is often accompanied by
vast metabolic capability reflected in fundamental bio-
geochemical processes (McCalley and Sparks, 2009;
Guidi et al., 2016; Louca et al., 2016). Microorganisms
also interact directly with higher organisms. The recent
boost in studies of host–microbe interactions has shed
light on the crucial role the human microbiome plays in
health and disease. The human microbiota shapes sig-
nificant parts in the host physiology and provides essen-
tial functions, e.g. nutrient catabolism (Flint et al., 2012),
syntheses of vitamins (Degnan et al., 2014) and modula-
tion of the human immune system (Fischbach and
Segre, 2016). Albeit the importance of microorganisms
to human health and evolution, we currently possess lim-
ited knowledge about how microbes interact amongst
each other and with their host and how these interac-
tions contribute to health. Additionally, the response of
microbial communities to perturbations (e.g. nutrient
availability or response to environmental shifts) is poorly
understood, thus limiting our ability to predict the
responses of the microbiome to interventions.
For centuries, most of our knowledge that paved the

way for our understanding of microbial cells has been
gathered through approaches that focused on single
microorganisms, i.e. pure cultures (Fig. 1). Even with the
introduction of advanced molecular biology techniques,
most work has been performed on cultures in isolation,
studying single molecules, such as single genes, tran-
scripts, proteins, metabolites (Fleischmann et al., 1995;
Lander et al., 2001). While pioneers in microbial ecology
described complex microbial systems early on, using e.g.
microscopy and enrichment cultures (Cohn, 1875; Wino-
gradsky, 1887; Beijerinck, 1895; Dobell, 1923), they were
limited by the technical methods available at the time.
Only recently have we been able to apply molecular
methods to study complex microbial systems in situ,
thereby gaining insight into the complexity of microbial
networks (Fig. 1). In sync with the development of new
experimental methods has been the advancement in
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Fig. 1. Milestones in microbiology and computational modelling for the study of microbial communities.
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computational methods, which enables us to contextual-
ize complex data types. Systems biology, the computa-
tional modelling of biological systems deploying a holistic
approach, emerged as an interdisciplinary field that
enables the study of interactions between various com-
ponents of a living cell (Bordbar et al., 2014). While first
applied to single organisms, systems biology approaches
have been expanded to study the microbiome.
The comprehension of microbial communities in the

context of systems biology beyond the description of
individual parts of a living cell is a relatively new concept
(Zengler and Palsson, 2012). In order to help unravel
properties inherent to microbial interactions, systems
biology approaches dynamically and simultaneously
investigate the multiple operational components of the
community. The emergence of culture-independent omic
approaches, e.g. metagenomics, metatranscriptomics,
metaproteomics and metabolomics, has increased our
ability to probe microbial community composition and
function in situ. These multi-omic approaches have
changed our ability to investigate biological systems,
providing essential experimental data to reconstruct and
constrain computational models. At the same time, inte-
grative data analysis methods, fundamental to elucidate
mechanisms beyond individual interactions in microbial
communities, have been developed and deployed
(Embree et al., 2015). Lastly, studying the microbiome
using systems biology tools, such as predictive computa-
tional models, allows generating testable hypothesis on
a community level (Magn�usd�ottir et al., 2016). While sys-
tems biology approaches have successfully been

deployed for single organisms to design and optimize
the production of diverse products such as antibiotics,
alcohols and amino acids, these approaches can poten-
tially be extended to multispecies communities (Perez-
Garcia et al., 2016; von Kamp and Klamt, 2017). In this
review, we discuss the current state of fundamental
mechanisms elucidating and shaping the diversity and
structure of microbial communities. We will highlight rele-
vant biotechnological examples applying model-driven
multi-omic analysis. Furthermore, we will provide an out-
look on the development of predictive models for com-
plex communities combining the use of omic tools in an
iterative design–build–test–learn cycle.

Types of interactions

In nature, organisms rarely exist in isolation. Rather, they
form complex relationships that are developed through
evolution and adaptation to diverse ecosystems (Dunn
et al., 2003; Tan et al., 2015). This complex network of
interactions defines how a community is assembled and
maintained spatially and temporally. Different types of
interactions have been defined based on the benefit for
an organism. Interactions thus can be beneficial, neutral
or disadvantageous for the individual organism (Fig. 2).
The best-studied type of interaction in microbiology is
beneficial mutualism. A prime example for this type of
interaction is syntrophy (Morris et al., 2013), in which all
community members are sustained by the activity of the
other(s). One example of mutualism is the host–bacterial
interaction in the human intestine, where the host gains

Fig. 2. Interactions amongst microorganisms. Within a complex community, the members of the population may engage in multiple interactions
at the same time. 0 refers to neutral interaction, while + and – depicts a positive or a negative outcome of interaction.
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energy from short-chain fatty acids released by the
microbes through fermentation of glycans provided by
the host (Backhed et al., 2005). Another interaction
type, in which one member benefits and the other nei-
ther benefits nor has a disadvantage, is known as com-
mensalism. Examples of commensalism include, for
example, nitrification and methanogenesis (Allison
et al., 1993). Commensalism and mutualism can also
include interactions where one organism consumes
specific metabolites that are inhibitory for another
organism (Dunn et al., 2003). Cross-feeding of inhibitory
metabolites is a variation of mutualism and commensal-
ism where the products of one organism are the sub-
strate for another and the uptakes of those become
beneficial to one member (Germerodt et al., 2016).
Amensalism on the other hand is a relationship in
which one member is disadvantaged and the other nei-
ther benefits nor is harmed. In plant–microbe communi-
ties, amensalism is often referred to as allelopathy and
can involve the natural secretion of secondary metabo-
lites, which inhibits the growth of surrounding microor-
ganisms (Chaparro et al., 2014). When members of a
local environment do not significantly affect each other,
the interaction is termed neutralism (Dunn et al., 2003).
If one population member is disadvantaged and another
benefits, the interaction is termed predator–prey or par-
asitism. This relationship has been extensively studied
throughout all forms of life (i.e. eukaryotes including
plants, bacteria and viruses). Apparently, predator–prey
interactions can stabilize populations by creating a cyc-
lic trend between species as well as preventing the
depletion of resources by fast-growing species (Canale,
1970; Alhumazi and Ajbar, 2005; Chen et al., 2011).
Finally, the interaction type in which all members are
disadvantaged by the presence of others is referred to
as competition (Gause, 1934). A model case of compe-
tition is two populations of autotrophic and heterotrophic
bacteria compete for the oxygen, thus promoting a spa-
tial competition for the attachment to the surface
(Tsuno et al., 2002). Defining these basic forms of
interactions in complex communities can be a challenge
as interactions are prone to change over time due to
changing physiological and physical parameters such
as nutrient availability. Furthermore, interactions can be
dependent on the spatial organization of members of a
community.

Multi-omic approaches to study microbial
communities

Microbiome research has greatly benefited from recent
breakthroughs in sequencing technologies as well as
in improvements in proteomics and metabolomics, and
accompanying data analysis tools (Franzosa et al.,

2015; Jansson and Baker, 2016). Gene amplicon
sequencing, metagenomics and metatranscriptomics
are currently applied to elucidate microbial community
composition and function and to determine potential
interactions (Fig. 3). While these methods promoted
recent advances in microbiome research, they can
only provide limited mechanistic insight (by itself) into
the determination of the mode of interaction. In combi-
nation with computational tools and modelling
approaches, these experimental approaches can be
used to unravel intertwined interactions, provide mech-
anistic knowledge and predict community behaviour. In
this section, we will discuss advantages and disadvan-
tages of different omic approaches for the study of
microbial communities and their potential application
for quantitative analysis by computational modelling.

Gene amplicon sequencing

The first studies interrogating microbial community com-
position emerged decades ago, through the comparative
analysis of ribosomal RNA (Lane et al., 1985; Giovan-
noni et al., 1990; Delong, 1992; Fuhrman et al., 1992;
Fig. 1). Gene amplicon sequencing is currently the
fastest assay to perform taxonomic identification and
phylogenetic profiling of microbial communities. This
technique consists of genomic DNA extraction, followed
by amplification of a conserved genomic region and
sequencing. Phylogenetic classification based on gene
amplicon sequencing of small ribosomal subunits (SSUs)
for bacteria, archaea and eukaryotes (16S or 18S rRNA
gene) or internal transcribed spacer (ITS) region for fungi
are routinely applied to describe operational taxonomic
units (OTUs) in microbial ecology (Walters et al., 2016).
SSUs are highly conserved sequences intercalated by
hypervariable regions that can be used as phylogenetic
marker. In addition, sequencing of hypervariable regions
instead of the full-length gene became very popular for
profiling microbial communities (Yang et al., 2016). This
technique has been successfully employed to investigate
the taxonomic composition and phylogenetic diversity for
very different samples, from geothermal springs (Ward
et al., 2017) and oil reservoirs (Lewin et al., 2014;
Sierra-Garcia et al., 2016) to the human microbiome and
host–microbiome-related diseases (Boguniewicz and
Leung, 2011; Halfvarson et al., 2017). The success and
low cost of amplicon sequencing encouraged major ini-
tiatives, such as the Human Microbiome Project (HMP),
American Gut Project (AGP) and the Earth Microbiome
Project (EMP; Turnbaugh et al., 2007; Gilbert et al.,
2010; McDonald et al., 2015). These large sequencing
efforts have already generated taxonomic profiles for
tens of thousands of samples from different sides of the
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human body, the human gastrointestinal tract, as well as
diverse samples from around the world.
The advantages of gene amplicon-based sequencing

are low cost, easy sample preparation protocols and
broad availability of bioinformatics tools (Caporaso et al.,
2010). Although the gene amplicon sequencing has pro-
vided unprecedented insight into microbiome composi-
tion, this technique can only provide community member
profiling and indirect insights into functionality through
comparison with reference genomes (Brooks et al.,
2015). While universal primers can readily be designed
to cover bacterial and archaeal 16S rRNA genes, 18S
rRNA and ITS regions in eukaryotes are more variable
than 16S rRNA genes in bacteria and archaea, which
makes universal primer design and thus eukaryotic
diversity surveys challenging (Wang et al., 2014). Addi-
tionally, shallow resolution based on amplicon size
makes it difficult to identify closely related species

belonging to the lowest level of the taxonomic classifica-
tion or in some cases to the same genus. While unam-
biguous identification at the strain level is not possible
by 16S rRNA (Brooks et al., 2015), this resolution is
often critical for diagnostic in human health, e.g. to iden-
tify and discriminate a certain pathogen from a commen-
sal strain. The importance of accurate identification at
strain level has been highlighted in model-driven analy-
sis of multiple bacteria strains, such as Staphylococcus
aureus (Bosi et al., 2016) and Escherichia coli (Monk
et al., 2013). These studies found significant differences
in metabolic capabilities amongst different strains, such
as amino acids and vitamin autotrophies, which can be
related to pathogenesis. The correct strain identification
is vital for the systematic understanding of microbial
communities, which is the first step in the iterative cycle
to unravel community interactions and dynamics (see
Fig. 4).

Fig. 3. Overview of different omics techniques. Different experimental approaches and computational strategies are applied for the study of
microbial communities. During gene amplicon analysis, SSUs or ITS sequences are clustered into operational taxonomic units (OTUs) and
the taxonomic identity is assigned for each OTU based on sequence homology against known sequences in a database. The
resulting OTUs are used to calculate the relative abundance of each organism and quantify the population diversity between samples. In
shotgun metagenomics, genomic DNA sequences can either be mapped to a reference database or used for de novo assembly of
genomes. The recovered genomes can be used to assign phylogeny, calculate the relative abundance of the identified genome and
assess the functional capability. In metatranscriptomics, messenger RNA (mRNA) is used to generate complementary DNA libraries that
can either be mapped to reference genomes to generate gene expression profiles. These expression profiles are used to identify active
pathways, genes and organisms. In metaproteomics, mass spectrometry and fragmentation are used to reveal the amino acid sequence of
peptides. The identified peptides are associated with full-length proteins by sequence homology searches against a reference database.
Similar to metatranscriptomic analysis, protein expression profiles can be used to identify active pathways as well as active organisms. In
metabolomics, metabolites are separated using chromatography techniques and identified and quantified using mass spectrometry. Similar
to metaproteomics, the comparison between fragmentation profiles and reference databases is used to annotate the metabolic compound.
Enrichment and clustering analysis can be applied to reveal patterns between sets of samples or to identify condition-dependent com-
pounds.
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Whole-metagenomic shotgun sequencing

Whole-metagenomic shotgun sequencing is a powerful
metagenomics technique to study microbial communities
beyond describing OTU composition of a sample. For this,
genomic DNA from all cells in a community is extracted,
sheared into short fragments and subsequently sequenced.

The short DNA sequences (i.e. reads), usually smaller
than 250 bp, can be used to taxonomic classification by
recovering the reads aligned to taxonomically informative
genomic loci (16S or 18S rRNA, ITS or conserved pro-
teins; Meyer et al., 2008; Truong et al., 2015), to estimate
relative microbial abundance, to generate functional profil-
ing and to reveal genomic content of unknown microbes

Fig. 4. Integration of experimental data and in silico analysis in a community systems biology approach. The first step in the iterative workflow
encompasses the identification of individual community members, followed by the creation and validation of single metabolic networks. Subse-
quently, a predictive community model is constructed and validated. Various experimental and computational methods are interspersed along
the design–build–test–learn cycle to unravel community interactions and predict community dynamics.
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(Abubucker et al., 2012; Hug et al., 2016). The identifica-
tion of unknown microorganisms usually depends on de
novo genome assembling methods that combine overlap-
ping reads to generate contiguous fragments of DNA
sequence (i.e. contigs). Assembling methods can be time-
consuming, require robust computational resources and
deep-sequencing data sets, and rely on differential bin-
ning tools to group contigs into potential genomes (Jans-
son and Baker, 2016). Despite this, de novo genome
assembling is fundamental to create compendium gen-
omes representing not yet cultured microorganisms, to
generate comprehensive organism-specific metabolic
mapping (Sangwan et al., 2016) and to detect larger com-
plex genomic features such as polyketide synthase
(PKS), cluster regulatory interspaced short palindromic
repeats (CRISPR) and non-ribosomal peptide synthase
(NRPS) gene clusters (Vollmers et al., 2017).
Another, less time-consuming analysis method for

metagenomics data is the reference-based mapping
method, which facilitates comparisons amongst multiple
samples (Abubucker et al., 2012). This method usually
involves mapping reads to reference genomes and inter-
preting the mapping results in terms of relative abundance
and functional profiles of the sample. Hence, independent
genome assembly outcomes depend heavily on genome
reference databases and often present high false-positive
rates due to regions of local homology (Carr and Boren-
stein, 2014). Both metagenomic analysis approaches have
been applied to simultaneously investigate the metabolic
requirement of individual members in a microbial commu-
nity and to determine potential microbe–microbe and
microbe–host interactions (Greenblum et al., 2012;
Embree et al., 2015).
De novo genome assembling studies have been used

for downstream community modelling (Biggs et al., 2015;
Embree et al., 2015; Magn�usd�ottir et al., 2016). The
metagenomic results were used as a genome platform
to reconstruct and validate genome-scale metabolic net-
works for these communities. In turn, independent gen-
ome assembly methods have been extensively used to
infer the metabolic repertoire of different microbiomes
(Greenblum et al., 2012; Levy and Borenstein, 2013).
Usually, experimental data is analysed using a metabolic
analysis network, in which the microbiome is treated as
a single ‘independent’ biological system (Abubucker
et al., 2012; Greenblum et al., 2012). This approach
does not take into account the contribution of each
organism in the community, ignoring the boundaries
between cells and compartmentalization of various
metabolites. Although simplified models are subject to
inaccuracies and noises, they can provide valuable
insight into the metabolic potential of the entire system
(Ji and Nielsen, 2015). For example, topological analysis
of metabolic networks, observing changes in connections

and centrality of the nodes (genes or enzymes), can be
helpful to identify genes/functions associated with differ-
ent conditions (Tan et al., 2015; Steffani-Vallejo et al.,
2017).
While metagenomic sequencing can provide relevant

information related to the taxonomic profile and the meta-
bolic capability of a community, the data do not provide
information about viability of the microbial community
members. It can be essential to complement sequencing
with experimental methods that distinguish metabolically
active from inactive cells. Several methods targeting
active microbial cells have been discussed in recent
reviews (Franzosa et al., 2015; Singer et al., 2017). In situ
microbial activity methods can be potentially applied to
study microbial population. These methods can differ
dependent on the target molecule (DNA, RNA, protein
and metabolites) and the biological process to be investi-
gated (DNA replication, cell division, transcription, amino
acid biosynthesis). Most of these techniques such as bro-
modeoxyuridine labelling, DNA-SIP (stable isotope prob-
ing), iREP (index of replication), RNA-SIP, protein-SIP are
usually restricted to samples with low complexity or pro-
vide information about a limited number of community
members. Furthermore, the methods are generally associ-
ated with high cost and require immediate processing of
the sample. In addition, applying these techniques to stud-
ies in human can be challenging (Singer et al., 2017).

Metatranscriptome: transcriptional expression in
microbial communities

Conventional transcriptomic techniques measure messen-
ger RNA (mRNA) levels in a simple biological sample (usu-
ally a single organism exposed to different conditions) and
analyse the activity, i.e. differential expression, under these
scenarios (Fig. 3). Metatranscriptomic approaches are an
extension of this method and are measuring mRNA levels
for all microbes in a given community. Accessing the
expression level of the microbiome allows for determining
its functional profile, inferring the biological role, and thus
helps to decipher the type of interactions microbes are
engaged in and to relate this information to metabolic path-
ways. This technique has been successfully applied to study
diverse microbial communities. For example, metatranscrip-
tomics has been used to determine the relationship between
the oral and the gut community (Franzosa et al., 2014) and to
study human microbiome-related diseases, e.g. periodontitis
(Jorth et al., 2014), colorectal cancer (Dutilh et al., 2013) and
acne vulgaris (Kang et al., 2015).
Transcriptomic data have been used extensity to con-

strain metabolic models of single cultures or co-cultures
and to gain insight into metabolic activity and predict
metabolic fluxes (Bordbar et al., 2014; Zielinski et al.,
2015). These model-driven analyses provided a
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mechanistic interpretation for the better understanding of
the relationships between diet, microbiota and host
(Shoaie et al., 2013). Computational and mathematical
approaches, as transcriptional networks, have emerged
as potential alternative to elucidate microbe–microbe
interaction in complex communities. These approaches
were extended to investigate transcriptional interactions
in the human gut microbiome (Plichta et al., 2016). Com-
munity-wide transcriptional regulation is suggested to be
a mechanism for reducing competition and for niche seg-
regation (Zelezniak et al., 2015). For example, germ-free
mice colonized with two major bacteria of the human dis-
tal gut, Eubacterium rectale and Bacteroides thetaio-
taomicron, were used to demonstrate how these bacteria
change the whole-transcriptional profile to adapt to the
presence of each other (Mahowald et al., 2009). A similar
approach was applied to analyse the metatranscriptomics
data from 233 human faecal samples. Transcriptional
interactions between pairs of coexisting gut microbes
revealed the transcriptional changes, which led to a
reduced expression of orthologous functions between
interacting species pairs. Specific species–species tran-
scriptional interactions were enriched for essential func-
tions, such as butyrate biosynthesis, ATP-binding
cassette (ABC) transporters, flagella assembly and bacte-
rial chemotaxis (Plichta et al., 2016).
Metatranscriptomic approaches are advantageous for

the study of microbial communities in situ. Despite this, the
approach has its pitfalls, one of them being the common
practice to use mRNA expression levels as proxy for levels
of corresponding proteins (Guimaraes et al., 2014). Com-
parisons amongst transcriptional data and proteomics data
from different biological samples showed that the correla-
tion between mRNA levels and protein abundance can vary
dramatically (0.2–0.9; Maier et al., 2009). This nonlinear
relationship can be explained by various reasons, such as
half-life time of RNAs and proteins, post-transcriptional and
translational efficiency and experimental error and noise.
Ribosomal footprint profiling (RFP) approach that uses the
ribosomal machinery genomic occupancy to provide a high-
resolution quantitative profile of translation across the tran-
scriptome can circumvent part of these obstacles (Latif
et al., 2015; Ingolia, 2016). However, up to now this method
has not been applied to any microbiome study.

Metaproteomics: large-scale characterization of the
protein content in microbial communities

Metaproteomics approaches aim to measure protein abun-
dance in all cells in a microbial community. Usually, pro-
teomic methods consist of three main steps: sample
fractionation, protein separation and protein identification/
quantification. Technological advances of molecular sepa-
ration methods coupled with mass spectrometry enabled

the study of the proteome of microbial communities. Such
advances include two-dimensional polyacrylamide gels
coupled with mass spectrometry (2D nano-LC/MS-MS), liq-
uid chromatography coupled with mass spectrometry (LC-
MS/MS) and matrix-assisted laser desorption/ionization
(MALDI) coupled with time-of-flight mass spectrometer
(TOF). Metaproteomics has been applied to examine differ-
ent microbial communities from various environments (Ng
et al., 2010; Zampieri et al., 2016), including the human
gut, small intestine, colon, liver and adipose tissue (Mardi-
noglu et al., 2015; Xiong et al., 2015).
For example, metaproteomics was applied to under-

stand the symbiotic relationship between human cells and
the microbial community in the gastrointestinal tract
(Young et al., 2015). The proteome of human cells and
microbes was simultaneously monitored over time
throughout early development of the preterm infant micro-
biome. This study revealed that in response to early
microbiome colonization, human cells synthesize an
increased amount of proteins responsible for epithelial
barrier function and antimicrobial activity. In addition, neu-
trophil-derived proteins were detected in high abundance,
indicating activation of the human innate immune
response (Young et al., 2015). Similar to transcriptomic
data, proteomic data have been successfully applied to
constraint metabolic models and increase the prediction
accuracy (O’Brien et al., 2014), as well as to reconstruct
tissue-specific models. Twenty-eight metabolic models
were reconstructed for the small intestine, colon, liver and
adipose tissues based on proteomics data. These model-
driven proteomics analyses showed that the gut micro-
biota directly influences host amino acid and glutathione
metabolism in mice (Mardinoglu et al., 2015).
Although recent technological advances in mass spec-

trometry have allowed high-throughput proteome mea-
surement in a fast and cost-effective way, this technique
has technical limitations. One of them is the protein iden-
tification resolution. For example, the estimated number
of unique proteins in human-associated microbiome
samples is in the order of millions, but only a few thou-
sand can be identified using current methods (Erickson
et al., 2012). The assessment of proteins with different
features, e.g. different solubility or trans-membrane
domain, requires specific protocols and multiple sample
preparations to generate a complete proteome map. Var-
ious alternative methods to increase proteome coverage
and resolution have become recently available (Wilmes
et al., 2015; Vincent and Postovit, 2017).

Metabolomics: tapping into the metabolic diversity

Metabolite exchange is often assumed to be a primary
driver shaping microbial communities. While changes in
transcript levels and protein abundances can usually be
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associated with one or a few genes, often changes in
metabolic fluxes and metabolite levels are the final result
of complex interactions (Palsson and Zengler, 2010).
Metabolites produced and secreted by living cells have
tremendous physicochemical diversity, and can usually
differ by multiple orders of magnitude in concentration.
Due to the dynamic nature of these compounds, their
concentrations and compositions can change rapidly,
which makes detection and data analysis a challenging
task (Ponomarova and Patil, 2015). Hence, the detection
of all metabolites in a biological sample requires a com-
bination of several sample preparation methods and
often analysis on multiple platforms. Although thousands
of metabolites can be detected in a single experiment,
<2% of all compounds from an untargeted metabolomics
experiment can currently be annotated (Silva et al.,
2014).
Improved tools to annotate and integrate metabolo-

mics data sets have been recently developed. One of
them is the GNPS (Global Natural Products Social
Molecular Networking) that similar to BLAST (Basic
Local Alignment Search Tool) for nucleotides and amino
acid sequences, assists the storage, analysis and dis-
semination of public MS/MS data, hence contributing in
the identification of known compounds (Wang et al.,
2016). Another tool is XCMS online that provides simpli-
fied metabolomics data processing and analysis (Gowda
et al., 2014) and more recently allows multi-omics analy-
sis by integrating metabolic pathway information with
metabolomics, metatranscriptomics and metaproteomics
data (Huan et al., 2017). Despite some of these limita-
tions and others regarding technical and analytical
requirements, metabolomics is the method of choice for
the discovery of new antibiotics (Nothias et al., 2016)
and to evaluate the effect of bacterial metabolites on
human health (Wang et al., 2011). Host–microbe meta-
bolomics is an emergent area in systems biology with a
high potential impact on the discovery of novel drugs
and biomarkers (Heinken and Thiele, 2015). The use of
metabolomics has been fundamental in identifying new
biomarkers for various human diseases, such as chronic
kidney disease (Hocher and Adamski, 2017), coronary
heart disease (Yao et al., 2017) or Parkinson’s disease
progression (LeWitt et al., 2017).
In addition to an untargeted approach, targeted meta-

bolomics is often used to identify and/or quantify a cer-
tain metabolite of interest. Using targeted metabolomic
approaches to determine metabolism intermediates, e.g.
acetate, ethanol, butyrate, lactate, succinate or amino
acids, are usually applied to validate metabolic model
prediction for single organisms (Shoaie et al., 2015), as
well as for the development of novel constraint-based
metabolic methods (Bordbar et al., 2017). However, in
the context of microbial communities, complex microbe–

microbe or microbe–host interactions can make the task
of tracking the origin of a certain metabolite almost
impossible, requiring pulse–chase labelling experiments.
Thus, even when the metabolite can be identified,
assigning this metabolite to a single organism (microbe
or host) can be challenging. The combination of metabo-
lomics with metagenomics and metatranscriptomics can
contribute towards a comprehensive understanding of
metabolomics data and guide the annotation process.

Community systems biology

The previous sections exemplified current approaches to
elucidate microbial diversity, community composition,
functionality and activity; all focused on unravelling the
interactions that shape the microbiome. Despite all the
recent advances in omics technologies, no single
approach can paint a comprehensive picture of the com-
plex interaction network in a microbial community. There-
fore, interdisciplinary, multi-omic tools and analyses are
necessary for elucidating the role of the different commu-
nity members and to unravel mechanisms and interac-
tions that drive community composition and dynamics. As
it is increasingly easier and more cost-effective to gener-
ate large, multi-omic data sets, data integration and anal-
ysis have become a time-consuming and often
challenging part in the investigation of microbial commu-
nities (Palsson and Zengler, 2010). Although still in its
infancy, systems biology approaches applied to commu-
nities have attracted more and more attention over the
last years (Levy and Borenstein, 2013). At the same time
as systems biology approaches for single bacterial and
eukaryotic microorganisms have matured, e.g. through
the reconstruction of comprehensive predictive models
(Islam et al., 2014; Bosi et al., 2016; Kerkhoven et al.,
2016; Levering et al., 2016; Zu~niga et al., 2016; Bartell
et al., 2017), a Community Systems Biology (CoSy Biol-
ogy) approach has emerged (Zengler and Palsson,
2012). CoSy Biology builds on the success of systems
biology approaches for single organisms. For example,
multi-omic data, as described above, can be used in the
context of computational models to gain insight into com-
munity interactions (Nagarajan et al., 2013; Embree
et al., 2015). It should be noted that these models gener-
ally do not consider biological noise (i.e. variation of indi-
vidual cells and their growth stage) but rather assume
unified growth phenotypes of members within a commu-
nity. In the following sections, we will describe current
efforts in the construction of mathematical models for the
systematic understanding of communities, and the devel-
opment of robust community models guided by multi-
omics data. In analogy to systems biology approaches for
single organisms, we propose an iterative design–build–
test–learn cycle (Nielsen and Olson, 2002; Paddon and
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Keasling, 2014) that would aid the systematic under-
standing of communities by combining experimental and
in silico tools in an iterative fashion (Fig. 4).

Kinetic modelling

High-throughput community studies, either nucleic acid-
based, metabolome-based or phenotypical-based,
greatly outnumber model-based analyses (R€oling et al.,
2010). The absence of robust mathematical tools to sys-
tematically contextualize experimental information has
limited our understanding of community interactions
(Gonzalez et al., 2011). However, significant progress
has recently been made towards predicting various fea-
tures of communities, such as community interactions
and potential spatial organization, in addition to more tra-
ditional abundance predictions. Here, we recapitulate
previous efforts to understand and elucidate the function
of communities using mathematical models.
Since the introduction of the concept of biological

mutualism by Van Beneden one and a half centuries
ago (Beneden, 1876) (Fig. 1), different models emerged
in the 1920s to quantitatively describe community inter-
actions (Lotka, 1925; Volterra, 1926). The most exten-
sively used approach has been kinetic modelling, which
provides a dynamic picture of how the components of a
studied system interact and respond to certain stimuli
over time (Dunn et al., 2003; Xu et al., 2011). Kinetic
models can be classified as unstructured or structured
and stochastic or deterministic depending on their scope,
the parameters considered and the way in which they
are solved. To date, structured and unstructured kinetic
models are the primary choice to simulate inhibition pro-
cesses within communities (Tabi�s et al., 2014). To cre-
ate structured or unstructured models, a well-
characterized community is needed in order to proceed
with model computational analysis, in which often the
favoured interaction modelled is mutualism. The charac-
terization involves accounting for a number of growth-
related parameters such as experimentally determined
yields, substrate uptake rates, and biomass, substrate
and/or product concentrations, as well as reaction satu-
ration and inhibition constants. Mathematically, these
models involve solving a set of ordinary differential equa-
tions or partial differential equations, which represent the
conservation of mass in internal and external cell pro-
cesses like mass conversion or exchange. The experi-
mental and estimated parameters included into the
model will depend on the community complexity. When
experimental measurements of all parameters are not
available, which is often the case for single microorgan-
isms and complex communities, approximation of param-
eters becomes time-consuming and computationally
intensive (Bordbar et al., 2014).

Unstructured kinetic models

Unstructured models simulate dynamics of biomass pro-
duction by treating each individual organism as a ‘black
box’. These models are mainly based on Monod-type
relationships. Unstructured kinetic models vary in com-
plexity, from the simplest representation of a population’s
dynamic behaviour (basic growth principles; Huston and
Smith, 1987; Dunn et al., 2003) to models involving vast
amount of parameters related to environmental condi-
tions, fitness, sensing and adaptation (Cabello et al.,
2014). The most complex models describe the interplay
between physical and chemical properties of the studied
condition, as well as participant-specific biological
parameters such as rates of maintenance, inhibition, bio-
mass formation or cell death (Alhumazi and Ajbar, 2005;
Wade et al., 2016). A number of unstructured growth
models for communities have been produced over the
decades (Faust and Raes, 2012), the majority of which
were applied to microbial ecology questions with empha-
sis on mutualistic systems (Wade et al., 2016).
Unstructured models can be used to simulate various

community interaction types such as inhibitory beha-
viours or cross-feeding. In 2016, Germerodt et al. (2016)
studied the growth of six different Escherichia coli strains
assuming cross-feeding, where each strain differed in its
requirement to obtain certain amino acids. The Cellular
Automaton of Bacterial Cross-feeding (CELL-ABC) tool
was used for simulation purposes, using as input param-
eters growth rates, amino acid concentrations and amino
acid diffusion rates. Over time, the different genotypes in
the community became stable. The simulations allowed
predicting the performance of species over time and the
codependency between them (Germerodt et al., 2016).
Furthermore, community models have also been cre-

ated based on reconstructed devices that represent arti-
ficial organ systems, for example the ‘minigut’, which is
a device that simulates the peristalsis of the human
colon under controlled conditions (Cremer et al., 2016).
The minigut was deployed to study a commensal syn-
thetic community of two E. coli strains, in which one
strain was engineered to produce galactose and the
other to consume this sugar (Fig. 4). Simulations pre-
dicted strain-specific abundances related to the position
in the device over time, suggesting that flow rate and
mixing play a critical role in shaping the microbiota of
the colon.
Another intriguing example for unstructured model is

the recently published model for a co-culture consisting
of Monoraphidium and Chlamydomonas species that
predicts the coexistence or exclusion (by abundance) of
each community member. This work links the modern
coexistence theory and the contemporary niche theory
(Letten et al., 2017). The modern coexistence theory is
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based on the overlap of two mechanisms mediating the
coexistence. The first is equalization in which the fitness
between active species is considered, and the second is
stabilization, which encompasses the environmental con-
ditions surrounding the community. On the other hand,
the contemporary niche theory considers two species
competing for limited resources. The model considers
empirical relationships between supply ratio, impact
niche (weight of certain member on the environment)
and requirement niche (nutrients demand) resulting in
the prediction of the degree of stabilization and equaliza-
tion of the community.

Structured kinetic models

The goal of structured models is to predict population
behaviours based on each organism’s capabilities. In
structured modelling approaches, the biological system
is broken down into specific compartments for each
member of the population. Parameterization of these
models may include such properties as the increase of
an accumulated polymer (polyhydroxyalkanoates, lipids,
etc.; Meeuwse et al., 2012; Volova et al., 2014), the
mass transportation in and out of organelles (Cortassa
et al., 2009), the synthesis of outer membrane vesicles
(Berleman and Auer, 2013) or the metabolite exchange
amongst the community through the shared space
(e.g. culture medium; Wang and Papenguth, 2001;
Mee et al., 2014). Modelling approaches follow basic
principles such as mass and energy conservation
(Resat et al., 2011). In addition, structured models pro-
vide information about specific cellular components,
such as metabolites, cellular structure and its organiza-
tion. Examples of structured models include a model
to simulate plasmid stability in a community containing
wild type and recombinant microorganisms (Zhang
et al., 1997; Dunn et al., 2003).
One of the primary challenges in kinetic modelling (for

unstructured as well as structured kinetic models) of
monocultures and microbial communities is the feasibility
and accuracy of the reaction rate constant measure-
ments such as Michaelis–Menten constant (Km), equilib-
rium constant (Keq) and turnover rate (Kcat) necessary
to build and parameterize these models. Another chal-
lenge is the generalization of a workflow for parameter
estimation (e.g. selection of automatic step size, or
methods). Efforts are underway to address this limitation
using machine learning-based methods to determine
kinetic parameters (McGibbon and Pande, 2013; Du
et al., 2016), to elucidate chemical reactions (Kayala
et al., 2011) or to characterize complex reaction mecha-
nisms (Blurock, 2003). However, these methods have
primarily been applied to monocultures, and at large
have not been expanded to include communities yet in

part due to the challenge to accurately measure required
parameters in a community setting.

Constraint-based models

While simplified constraint-based models exist (e.g. the
E. coli core model; Schellenberger et al., 2011), the
power of these models lies in the scope to represent bio-
chemical and genetic features at genome scale. The
vast majority of constraint-based models are genome-
scale representations of the metabolism of an organism,
rooted in the genome sequence of the organism and
topology of its own metabolic network. There are two
types of genome-scale models. One of which are the
metabolic models (M-models) and the other one type is
a more comprehensive version referred to as the ME-
models. ME-models account for highly detailed protein
synthesis and degradation considering transcription
units, transcription factors, tRNAs and chaperones
needed for translation and protein folding. These ME-
models can also contain ion–metal enzymatic require-
ments for catalysis (Lerman et al., 2012; O’Brien et al.,
2014) as well as translocation (Liu et al., 2014). To date,
ME-models have only been reconstructed for single spe-
cies such as Thermotoga maritima (Lerman et al., 2012)
and E. coli (Liu et al., 2014; O’Brien et al., 2014).
M-models have been built for organisms for almost

two decades (Edwards and Palsson, 2000), and the first
community model was reconstructed a decade ago
(Stolyar et al., 2007). M-models are mathematically
expressed by a numerical matrix of reaction stoichiomet-
ric coefficients assigned to their respective coordinates
by reaction (columns) and involved metabolites (rows).
The reaction stoichiometric coefficients, along with mea-
sured metabolite uptake and secretion rates, become
the system constraints. Each constraint plays a critical
role during simulation and prediction of growth rate
depends on the accuracy of experimental data. High
accuracy is especially important for determination of
uptake and secretion rates, as these parameters are crit-
ical in the modelling. While these data are relatively easy
to obtain for axenic cultures, those constraints are chal-
lenging to determine for individual members within a
community (see Multi-omic approaches to study micro-
bial communities). The lack of accurate measurements
for individual members (e.g. uptake rate) is one of the
greatest challenges in CoSy Biology. The lack of infor-
mation can therefore require multiple assumptions to be
made during the parameterization step. In the case of
constraint-based community modelling, constraints such
as uptake rates and the stoichiometric coefficients in the
biomass reaction are parameters that often have to be
obtained from the literature. The biomass reaction con-
tains all biomass precursors (nucleotides, proteins, lipids,
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carbohydrates), which means that the biomass reaction
of microorganisms in pure culture is assumed to be iden-
tical to the composition of these organisms existing in
communities (Nagarajan et al., 2013). However, it is well
known that different substrates or physical factors, such
as temperature, can influence cellular composition, such
as lipid content. The assumption that the biomass reac-
tion is independent from environmental parameters can
thus be misleading. However, most of the time organ-
isms cannot be obtained as axenic cultures and thus the
biomass reaction has to be obtained from closely related
organisms (Zengler, 2008).
The reconstruction of a highly curated model for a sin-

gle organism is a time-consuming process, while recon-
struction of complex community models containing many
members often relies on automatically generated models
(Henry et al., 2010). Auto-generated models usually con-
tain the constraints and biomass objective function of
E. coli independently of the metabolic features of the
community member and its possible role in the commu-
nity (Freilich et al., 2011; Levy and Borenstein, 2013).
Although auto-generated models represent a valuable
resource, it is important to note that these models lack
the high accuracy of manually curated models. Auto-
generated models are subject of intensive gap-filling (i.e.
adding reactions and metabolites without gene associa-
tions) generating redundant results for community mod-
els. Furthermore, gap-filling reduces representation of
auxotrophies in the model, which have been shown to
be critical for community assembly and maintenance
(Embree et al., 2015).
Once constraints are applied to the model, indepen-

dent of the model reconstruction process, a convex opti-
mization method called flux balance analysis (FBA)
generates an optimal solution representing the flow of
mass through the network. FBA identifies the optimal
solution of a given objective function. Normally, this
objective is the biomass reaction (i.e. growth) which
encompasses all the metabolites necessary to produce
biomass (Schellenberger et al., 2011). FBA is based on
the assumption of a steady state and is solved using lin-
ear programming. Constraint-based models successfully
predict growth rates and gene essentiality, and can
accurately represent the genotype–phenotype relation-
ship.
As these metabolic models (M-models) are recon-

structed at genome scale, they are well suited for the
integration of high-throughput community data (e.g.
metabolomics, metatranscriptomics), thus enabling
organism-specific analysis and interpretation of multi-
omic data sets. Moreover, many microbial communities
maintain relationships based on the exchange of
metabolites, which can be assessed directly using con-
straint-based analysis, as these exchange fluxes are

explicitly modelled under this framework. However, it is
important to note that communities are assembled and
maintained not only on metabolic exchanges alone and
interactions can be manifold and intertwined depending
on environmental conditions (Embree et al., 2014;
Cremer et al., 2016; Hibberd et al., 2017).
The COBRA (Constraint-Based Reconstruction and

Analysis) toolbox (Schellenberger et al., 2011) has been
widely used to generate and solve single species and
community constraint-based models (Bordbar et al.,
2010; Nagarajan et al., 2013; Hamilton et al., 2015).
This tool allows the optimization of multiple objective
functions at the same time, which is critical for communi-
ties that may be adapting to maximize the growth of mul-
tiple community members simultaneously. For example,
direct interspecies electron transfer between two
Geobacter species was simulated by optimizing the
growth rate of both community members (Nagarajan
et al., 2013). In another example of multiple objectives,
the main drivers in the interaction between the bacterium
Syntrophobacter fumaroxidans and the methanogenic
archaeon Methanospirillum hungatei were identified and
attributed to the concurring exchange of H2 and formate
(Hamilton et al., 2015). Embree et al. (2015) used indi-
vidual models to quantify the simultaneous exchange of
several metabolites between the five most abundant
members in a complex methanogenic community and
revealed the existence of an intertwined network of
amino acid auxotrophies.
M-models can be used to predict potential competitive

or cooperative interactions in microbial communities.
Freilich et al. used large sets of auto-generated M-mod-
els and compared the probability of interaction between
microorganisms from different ecosystems. This
approach was based on similar principles of modern
coexistence theory and the contemporary niche theory.
The goal of the study was to use the available genome
and metabolic information annotated for each identified
bacteria to make predictions of community behaviour in
lieu of determining strain-specific kinetic parameters
(Freilich et al., 2011).
Community M-models have also been reconstructed to

gain insight into human host–pathogen interaction and to
determine the effect the microbiome has as an important
component of human health. The first community M-
model describing host–pathogen interaction was the
model of a human macrophage and the bacterium
Mycobacterium tuberculosis. The model was able to rep-
resent three distinct pathological states and gave
insights into the infection development (Bordbar et al.,
2014).
Other modelling efforts around communities for human

health applications have been focused on the human gut
and bacterial interactions. The first such work focused
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on representative strains from the human gut, such as
Bacteroides thetaiotaomicron, Eubacterium rectale and
Methanobrevibacter smithii representing the phyla Bac-
teroidetes, Firmicutes and Euryarchaeota respectively.
The resulting simulations of population densities
amongst the species partially resemble the densities dur-
ing colonization of each microorganism into germ-free
mice in different ecosystems (Shoaie et al., 2013). In a
different approach, coexistence of community members
was estimated by integrating metagenomic data with
auto-generated reconstructions of 154 models of human
gut species. The authors found that control over the
health of the host does not change the observed micro-
bial patterns, indicating that species interactions are not
fully defined by the host (Levy and Borenstein, 2013).
One recent achievement was the reconstruction of pre-
liminary models for 773 human gut bacteria (Magn�usd�ot-
tir et al., 2016). The authors used the AGORA
(Assembly of Gut Organisms through Reconstruction
and Analysis) toolbox to semi-automatically create 773
genome-scale metabolic models of the most representa-
tive microorganisms in the gut microbiome (see Fig. 1).
These models are a resource and are also expected to
facilitate the study of host–microbiome interactions as
their nomenclature and structure are compatible with a
reconstruction of human metabolism, Recon2 (Swainston
et al., 2016). While Recon2 is not a tissue-specific
model and represents all human metabolism together,
tissue-specific models have been reconstructed in the
past and can be utilized for studying specific interactions
of microbial communities in the human body (Ryu et al.,
2015; Schultz and Qutub, 2016).
Recently, various tools to increase the scope of com-

munity M-models have been developed, see for example
a recent review by Biggs et al. (2015). While FBA-based
modelling approaches assume a steady state, most
communities are highly dynamic. To account for this, a
dynamic flux balance analysis (dFBA) has been devel-
oped and extended to microbial communities to predict
time-varying interactions between species and their
effects on microbial composition. This approach is
referred to as dynamic multispecies metabolic modelling
(Zhuang et al., 2011). The CASINO toolbox (Community
And Systems-level INteractive Optimization) was created
as a comprehensive platform to analyse gut microbial
communities (Shoaie et al., 2015). The authors used
experimental data from 45 obese and overweight individ-
uals to validate their predictions. The predictions quanti-
tatively describe exchange of metabolites in response to
diet intervention (Shoaie et al., 2015).
The success of genome-scale models in predicting

community interactions has been empowered by the
high quality of single organism reconstructions used to
generate community M-models. Presently, a challenge in

constraint-based community modelling is the reconstruc-
tion of reliable models from either single-cell sequencing
or from genomes obtained by differential binning of
metagenomics data (Martinez-Garcia et al., 2012). A cur-
rent limitation of this approach is that microorganisms
described solely by omics tools are typically poorly char-
acterized, and thus modelling approaches rely on gen-
ome information only. The continuous contextualization
of omic data will help to improve these models so that
they can accurately predict how a microorganism or a
metabolite benefits human health (see Fig. 4).
A hybrid modelling concept that combines kinetic and

constraint-based modelling is cybernetic modelling
(Dhurjati et al., 1985). Here, the models account for
metabolic regulation as in kinetic models, while consider-
ing a cellular objective function similar to constraint-
based modelling. Cybernetic modelling has been
extended to microbial community modelling in describing
the interaction of the yeasts S. cerevisiae, Pichia stipitis
and Kluyveromyces marxianus (Geng et al., 2012).
Those studies focused on the inference of enzyme
kinetic parameters and reaction thermodynamics for the
production of bioethanol within the metabolic pathways
of interest in each member. Another hybrid model is
known as whole-cell computational model (Karr et al.,
2012), which was used to predict certain stages of inter-
actions between the human host and Mycoplasma geni-
tallium. This model considers the main processes inside
a cell, such as the synthesis of protein, RNA, DNA and
metabolite levels. All processes are explained in the con-
text of cell geometry, external stimulus, time and host–
pathogen interaction (Karr et al., 2012).

Computational tools for data enrichment and
analysis

Both constraint-based and kinetic modelling approaches
rely heavily on experimental data necessary to recon-
struct and constrain these models. Advances in compu-
tational tool development have been going hand in hand
with advances made in molecular biology. The latest
advances in database development, network visualiza-
tion, statistical approaches and other mathematical tools
to produce and analyse high-throughput community data
have played an essential role in CoSy Biology. For
example, large databases including the human and the
earth microbiome projects (Turnbaugh et al., 2007; Gil-
bert et al., 2010; Meth�e et al., 2012) are now available.
Furthermore, expanded metabolic databases such as
KEGG (Kanehisa et al., 2014), MetaCyc (Caspi et al.,
2014), GNPS (Wang et al., 2016) and tools for identifica-
tion and annotation of metabolites using Bayesian
approaches (Silva et al., 2014) became recently
available online. In addition, new software and graphical
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visualization tools have been generated to ease
interpretation and presentation of big data (King et al.,
2015).
In addition to constraint-based and kinetic modelling,

statistical models have also been employed to study
community behaviour. One such variation of unstruc-
tured models is the various correlation approach (e.g.
Pearson’s product–moment coefficient, rank correlation
coefficients, sensitivity and data distribution; Bersanelli
et al., 2016), which has been widely used for the analy-
sis of omic experimental data. The main application of
the correlation approach has been the analyses of spe-
cies co-occurrence, diversity, as well as replication rates
(Roling and van Bodegom, 2014; Brown et al., 2016).
Additionally, statistical correlations and other advanced
statistical analyses (e.g. multivariable analysis) have
been used to estimate community assembly, approxima-
tion of strain and expression abundance, taxa turnover
and phylogenetic structure (Nemergut et al., 2013). One
key issue with the correlation-based approach is to
establish methodologies oriented to avoid computational
artefacts associated with the presence of low abundance
organisms or low expressed genes within specific mem-
bers of a community (Nemergut et al., 2013).
Correlation-based methods require dimension reduc-

tion approaches. These approaches extract the linear
relationships that best explain the correlation across
omic data sets, and data variability including issues such
as batch effects or outliers (Meng et al., 2016). One
example of such a method is the QIIME toolbox for the
analysis of community sequence data. This toolbox
explores data integration using principal component
analysis (Caporaso et al., 2010). A recent study used
16S rRNA gene sequence data analysed with QIIME to
demonstrate the influence of pathogens on the micro-
biota of an arthropod (Abraham et al., 2017). Arthropods
are agents, which trigger human infections, e.g. granulo-
cytic anaplasmosis. The study showed that external
pathogens became active and manipulated the local
environment (in this case, the microbiota of the arthro-
pod) to facilitate pathogen infection.

Potential biotechnological applications

Insights into microbial communities are poised to change
various aspects of our daily life, including human health
care, animal husbandry, agriculture and fermented food
industry (Gilbert et al., 2010; Sekirov et al., 2010; Fouts
et al., 2012; Ivey et al., 2013; Shoaie et al., 2013;
McDonald et al., 2016; Knight et al., 2017). Multi-omic
data generation and subsequent computational mod-
elling are key to our understanding of the microbiome.
The hope is that this knowledge will enable direct or indi-
rect modulation of the microbiome (e.g. in the form of

pro-, post- or prebiotics) to benefit human life, improve
biotechnological application or promote a healthier envi-
ronment. Model-driven data analysis has already associ-
ated host–microbiome features to human wellness and
health and has even been deployed for forensic pur-
poses (Sekirov et al., 2010; Shoaie et al., 2015; Javan
et al., 2016a,b). Additionally, microbiomes of livestock
and plants have also been exploited to promote increase
in agricultural productivity (Andreote and Pereira e Silva,
2017; Thibodeau et al., 2017). It has thus been a long-
standing goal of the biotechnology and medical industry
to understand and control the function of microbial com-
munities. Besides bacteria and fungi, viruses represent
an inherent part of the microbiome. The viral microbiome
not only plays a major role in the environment (Zeigler
Allen et al., 2017) and human health (Cadwell, 2015) but
also is of critical importance for the bioprocess industry
(Marco et al., 2012). Viral contamination of cell-based
fermentations is responsible for hundreds of millions of
dollars in lost revenue per year. Computational modelling
of the virome in context of the microbiome could provide
new strategies to combat viral infections (Maynard et al.,
2010). This section focuses on biotechnological applica-
tions enabled by new insights into microbial communities
and the human microbiome (see Fig. 1).

Data-driven advances in human health

Human individuals have a unique microbiome that has a
profound impact on their health. As such, personalized
medicine has the potential to play an important role in
guiding wellness and providing possible biotherapies
targeting the microbiome (McDonald et al., 2016). Micro-
biome-based therapies (McDonald et al., 2016; Nature-
Biotechnology, 2017) can be classified into the following
categories: prebiotic, probiotic, post-biotic and modula-
tion treatments. However, identification of what consti-
tutes a healthy microbiome, which microorganism is
beneficial for a defined outcome and determining the
causal effects of a manipulated microbiome remain key
challenges for the field.
Prebiotics are composed primarily of non-human

digestible food or ingredients that promote the growth of
beneficial microorganisms inside the host. Recent stud-
ies have shown promising results for the use of prebi-
otics to counter obesity in adults and improve wellness
in infants (Lyon et al., 2011; Koleva et al., 2015; Nature-
Biotechnology, 2017). Probiotics consists of individual
beneficial microorganisms or combinations thereof (Gib-
son et al., 2017). Probiotics can be either consumed or
applied topically and have been shown to confer positive
effects in a variety of areas of human health (Holz et al.,
2017). Natural probiotics have a long history of success
in human gut health and have shown promise in treating
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inflammatory bowel disease, necrotizing enterocolitis,
allergies, urogenital problems and skin imbalances
(Nakatsuji et al., 2017). However, administration of probi-
otics does not necessary re-establish the microbiota to
‘normal’ levels (Petschow et al., 2013; Holz et al., 2017).
Currently, there is still a lack of understanding about the
mode of action and collateral effects of probiotic treat-
ment on human health. Post-biotics consist of metabolic
products of non-live probiotic microorganisms that have
been shown to grant favourable effects onto the host
health (Klemashevich et al., 2014); especially, the short-
chain fatty acids, acetate, propionate and butyrate have
shown encouraging outcomes for the treatment of differ-
ent diseases, such as colitis, arthritis, asthma, gout or
pneumonia (Thomaz et al., 2016).
Finally, microbiome transplants, which can be classi-

fied as modulation methods (Olle, 2013), involve the
administration of live microorganisms from a donor into
a recipient in order to re-establish the healthy micro-
biome of the recipient. These transplants have been
attempted for a variety of different diseases. The first
transplants were used to successfully treat urinary tract
infections by implanting Lactobacillus crispatus (see
Fig. 1), which promoted recolonization of the urinary
tract and eventually led to the restoration of health of
the recipient (Olle, 2013). Skin microbiome transplants
have also shown positive effect for the treatment of ato-
pic dermatitis (Myles et al., 2016; Nakatsuji et al.,
2017). Faecal microbiome transplants have proven to
be useful for the treatment of Clostridium difficile colitis
(Gupta et al., 2016) and various companies are cur-
rently developing probiotics as therapy for C. diff colitis.
Preliminary results have also suggested potential use of
faecal transplants for the treatment of inflammatory
bowel disease, obesity, metabolic syndrome and func-
tional gastrointestinal disorders (Thomaz et al., 2016).
There have been a number of attempts to define meth-
ods and apparatuses for faecal transplant, but robust
and reliable methods are still under development
(Gupta et al., 2016; Kumar et al., 2017). One of the
main limitations of faecal microbiome transplants has
been defining standards for effective microbiome pro-
files and appropriate donors.
There have been a number of other applications tar-

geting the microbiome to improve human health, prolong
wellness and for diagnostic medicine. Two recent micro-
biome studies have made progress towards drafting a
generalized human diet in the context of ageing and
human longevity (Heintz and Mair, 2014; Shoaie et al.,
2015). Additionally, multi-omic tools applied to the
human microbiome have shown promise towards the
discovery of biomarkers, such as saliva-based biomark-
ers useful for the detection of oral cancer, Crohn’s dis-
ease, pancreatic cancer, chronic pancreatitis, periodontal

disease, dental caries and obesity (Yoshizawa et al.,
2013).

Microbiomes in forensic analysis

Multi-omics data of deceased subjects have resulted in
defining the thanatomicrobiome (Javan et al., 2016a), in
which insights into post-mortem microbial colonization
(putrefaction) of external and internal parts of the human
body establish the basis for forensic applications.
Recently, studies have proposed that multi-omic micro-
biome tools may be a valuable resource to generate
markers for deciphering human ante-mortem and post-
mortem events (Javan et al., 2016a,b). A longitudinal
study performed on 12 female and 15 male cadavers
demonstrated significant differences in microbiome colo-
nization by organ (brain, buccal cavity, heart, liver and
spleen) over the course of 240 h after death. The deter-
mination of microbiome profiles in each organ as putre-
faction progresses lays the foundations for estimating
post-mortem interval times (Javan et al., 2016b). In addi-
tion, amplicon sequencing, shotgun metagenomics and
metabolomics were proposed as tools for the contextual-
ization of ante-mortem evidence (Metcalf et al., 2017).
The hope is that the origin of soil samples collected from
cadavers could be geographically located using for
example the Earth Microbiome Project database (Gilbert
et al., 2010). Also, the skin microbiome is highly diverse
and can be perturbed by environmental conditions or by
being in contact with objects before and after death. It
has been hypothesized that skin microbiome features
can provide clues of cohabitation patterns, lifestyle
habits, medication and daily ante-mortem routines of the
subject (Metcalf et al., 2017). Standardized methods and
protocols of the thanatomicrobiome are currently under
development, and these multi-omic data studies could
become a reliable tool in forensic analysis.

Microbiome methods for agriculture and livestock
production

The microbiomes of plants and animals have recently
become a primary interest for the agricultural industry to
improve production. The microbiome of the rhizosphere,
which is the narrow region of soil that is directly influ-
enced by root secretions and the associated microorgan-
isms, as well as different livestock animals, have been
studied to determine inroads for improvement (Brulc
et al., 2009; Berendsen et al., 2012; Isaacson and Kim,
2012). Plant-associated microbiomes vary substantially
depending on species of plant, the location on the plant,
e.g. leaves, branches or roots (Wagner et al., 2016), as
well as on the soil and its condition. Manipulating plant
microbiomes has become a promising strategy for
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agricultural plant growth management through increasing
nutrient-use efficiency, abiotic stress tolerance and dis-
ease resistance in the short term (Gopal et al., 2013;
Busby et al., 2017). Data-driven analysis has been
focused on empowering the growth of plants as an alter-
native to reduce the use of synthetic fertilizers and pesti-
cides. Increased production yields have been obtained
by coating seeds with beneficial microbes (O’Callaghan,
2016). In addition, plant-probiotics supplementation into
the soil has been proven to enhance the production of
crops like soybean, wheat and corn (Rascovan et al.,
2016). Uncovering the nature and significance of micro-
bial–plant interactions remains a serious effort for the
field, and currently, plant–microbiome experimental stud-
ies greatly outnumber modelling studies of plants, due to
the inherent complexity of plant genomes and the result-
ing reconstruction efforts. However, model-driven multi-
omic analysis of plant microbiomes has the potential to
improve agricultural productivity, especially in the face of
human population growth and climate change (Andreote
and Pereira e Silva, 2017).
Analogous to plant improvement efforts, the demand

for efficiency continues to increase also for the livestock
sector (Council, 2015). While health is a determining fac-
tor for livestock as well, efforts for improvement are tar-
geting performance (e.g. weight and growth) as well as
cost/benefit. Modelling and data-driven tools applied to
livestock will likely contribute to the understanding and
control of breeding, nutrition and animal health, in order
to reach sufficient and improved, as well as biosustain-
able production. Multi-omic data analysis has provided
insights into beneficial effects of probiotics on the
chicken gut microbiome. The study showed that chick-
ens fed with a selenium-yeast probiotic were more resis-
tant to the colonization of the pathogen Campylobacter
jejuni (Thibodeau et al., 2017). Understanding the role of
the microbiome in livestock remains a growing area of
research.

Future directions and conclusions

The integration of experimental and computational
approaches is a key driver in obtaining in-depth knowl-
edge of microbial communities and learning about
assembly, and maintenance of communities in order to
predict how microbomes will react to specific perturba-
tions. Generation of longitudinal data has shown to be
highly informative to unravel community dynamics. Incor-
poration of large metadata will further improve our knowl-
edge about what members are playing what roles in
complex associations. Moving forward, it is necessary to
update and advance algorithm and software develop-
ment in order to balance experimental data production
with fast and comprehensive data analysis tools. These

improvements require interdisciplinary research efforts
encompassing different disciplines, such as microbiol-
ogy, medicine, biotechnology, statistics, computer
science and systems biology (Bersanelli et al., 2016;
Meng et al., 2016).
The construction of models to characterize communities

in response to stimuli has been initiated and has already
yielded new insight into microbial interactions. Various
models have been deployed to understand and manipulate
microbial communities. In order to improve the accuracy of
predictive community modelling, methods need to be
developed to better parameterize kinetic models, which
are often hampered by a lack of accurate measurements
necessary to describe the entangled nonlinear biological
processes. In the case of constraint-based modelling, it is
important to improve on automated reconstruction meth-
ods, as well as to conduct well-designed experiments to
determine exchange capabilities, as well as parameterize
and validate these models. The experimental design
should account for controls capturing as many details as
possible, e.g. measurements of free compounds in the cul-
ture medium over time and thus delineate their origin (i.e.
by secretion or lysis). Even though the genome provides
evidence about transport capabilities, physiological and
omic data can help to reveal activity of these transporters.
Furthermore, greater strides need to be made in deter-

mining and predicting the effect of spatial organization of
cells within the community, effect of temperature, pH,
osmolarity and ionic strength. The influence of these
parameters is often not fully understood even for pure
cultures, and as a result, their effects are rarely included
in community models.
Future analysis of host–microbe interactions should be

based on robust and reliable mathematical tools that can
accurately elucidate different types of interactions and
their underlying mechanisms. The first steps have been
taken by adapting Koch’s postulates using the latest
experimental techniques to guide and evaluate the
cause of multimicrobe diseases (see Byrd and Segre,
2016 and highlighted work therein). It is also possible to
better predict drug side effects if host and microbiome
are considered as actively interacting entities. Another
application where knowledge about microbial interactions
becomes crucial is the rational design of synthetic com-
munities to be used in medicine and agriculture.
Advances in the integration of multi-omics data to mathe-
matical modelling will provide unprecedented insight into
microbial communities and will further advance tools on
how to manipulate them.
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