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ABSTRACT The gut microbiome of long-lived people display an increasing abun-
dance of subdominant species, as well as a rearrangement in health-associated bac-
teria, but less is known about microbiome functions. In order to disentangle the
contribution of the gut microbiome to the complex trait of human longevity, we
here describe the metagenomic change of the human gut microbiome along with
aging in subjects with up to extreme longevity, including centenarians (aged 99 to
104 years) and semisupercentenarians (aged 105 to 109 years), i.e, demographically
very uncommon subjects who reach the extreme limit of the human life span. Ac-
cording to our findings, the gut microbiome of centenarians and semisupercentenar-
ians is more suited for xenobiotic degradation and shows a rearrangement in meta-
bolic pathways related to carbohydrate, amino acid, and lipid metabolism.
Collectively, our data go beyond the relationship between intestinal bacteria and
physiological changes that occur with aging by detailing the shifts in the potential
metagenomic functions of the gut microbiome of centenarians and semisupercente-
narians as a response to progressive dietary and lifestyle modifications.

IMPORTANCE The study of longevity may help us understand how human beings
can delay or survive the most frequent age-related diseases and morbidities. In this
scenario, the gut microbiome has been proposed as one of the variables to monitor
and possibly support healthy aging. Indeed, the disruption of host-gut microbiome
homeostasis has been associated with inflammation and intestinal permeability as
well as a general decline in bone and cognitive health. Here, we performed a met-
agenomic assessment of fecal samples from semisupercentenarians, i.e., 105 to
109 years old, in comparison to young adults, the elderly, and centenarians, shed-
ding light on the longest compositional and functional trajectory of the human
gut microbiome with aging. In addition to providing a fine taxonomic resolution
down to the species level, our study emphasizes the progressive age-related in-
crease in degradation pathways of pervasive xenobiotics in Western societies,
possibly as a result of a supportive process within the molecular continuum
characterizing aging.
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ongevity has been described as the result of a complex combination of variables,

deriving from genetics, lifestyle, and environment (1, 2). In this context, the intes-
tinal microbiome has been proposed as a possible mediator of healthy aging that
preserves host-environment homeostasis by counteracting inflammaging (3, 4), intes-
tinal permeability (5), and deterioration of cognitive and bone health (5, 6). Correlations
have been previously found between age-related gut microbiota dysbioses and levels
of proinflammatory cytokines, hospitalization, poor diet, and frailty in the elderly (7).
More recently, the longest human gut microbiota trajectory with aging has been built
by comparing the fecal bacterial taxa from healthy adults and older individuals,
including semisupercentenarians, i.e., people aged 105 to 109 years (8, 9). However, the
functional changes that occur in the gut microbiome along with aging are still largely
unexplored. In an attempt to provide some glimpses in this direction and to advance
our knowledge on whether and how the gut microbiome may support the mainte-
nance of health in extreme aging, we here characterized the fecal microbiome of 62
individuals, with ages ranging from 22 to 109 years, by shotgun metagenomics. Ac-
cording to our findings, aging is characterized by an increased number of genes
involved in xenobiotic degradation, as well as by rearrangements in metabolic path-
ways related to carbohydrate, amino acid, and lipid metabolism. These microbiome
features are boosted even more in semisupercentenarians, probably representing the
result of a lifelong remodeling response to progressive changes in diet and lifestyle.

RESULTS

We previously found considerable age-related variability in fecal microbiota com-
position of 69 people, including centenarians and semisupercentenarians, from the
Emilia Romagna region of Italy and the surrounding area (8). In an attempt to go
further, unraveling the functional and species-level taxonomic links between the gut
microbiome and extreme aging, we applied shotgun metagenomics to a subset of 62
DNA samples derived from the same data set previously analyzed (8). Specifically, we
characterized the gut microbiome from 11 young adults (group Y, 6 females and 5
males, aged 22 to 48 years [mean age, 32.2 years]), 13 younger elderly (group K, 6
females and 7 males, aged 65 to 75 years [mean age, 72.5 years]), 15 centenarians
(group C, 14 females and 1 male, aged 99 to 104 years [mean age, 100.4 years]), and 23
semisupercentenarians (group S, 17 females and 6 males, aged 105 to 109 years [mean
age, 106.3 years)). A total of 1.3 billion sequences were generated, with an average of
20 million reads (=5 million reads standard deviation [SD]) per subject.

We first confirmed that the fecal microbiota in all age groups is dominated by a few
bacterial families (i.e., Bifidobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Rumino-
coccaceae) whose relative abundance decreases with age (mean relative abundance =
SD: group Y, 73% = 3%; group K, 65% = 4%; group C, 62% = 4%; group S, 58% = 6%).
When focusing our attention at the species level, we found that these contributions
were mainly accounted for by 13 bacterial species: Bifidobacterium adolescentis, Bifido-
bacterium longum, Bacteroides uniformis, Faecalibacterium prausnitzii, Ruminococcus
bromii, Subdoligranulum sp., Anaerostipes hadrus, Blautia obeum, Ruminococcus torques,
Coprococcus catus, Coprococcus comes, Dorea longicatena, and Roseburia sp. Bray-Curtis
principal-coordinate analysis (PCoA) of species-level relative abundance profiles pro-
vided evidence of an age-related trajectory (P < 0.05, permutation test with pseudo-F
ratios), involving the establishment of age group-specific topological patterns in the
taxonomic and functional microbiome structure, as shown by network plots (Fig. 1) and
bar plots (see Fig. S1 in the supplemental material). However, the species-level com-
positional structure of the gut microbiota from the younger elderly group overall
matches that from young adults (P = 0.2), suggesting that the physiology of the aging
process may not involve gross changes in gut microbiome species and their relative
abundance. On the other hand, gut microbiota from centenarians and semisupercen-
tenarians feature a distinctive rearrangement in their taxonomic configurations
(Fig. 2A). In particular, compared with younger individuals, long-lived people show a
decreased contribution of B. uniformis, Eubacterium rectale, C. comes, and F. prausnitzii,
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FIG 1 Gut microbiome variation with aging. (Top) Network plots showing the taxonomic and functional configurations of the gut microbiome of four age
groups: 11 young adults (aged 22 to 48 years; group young), 13 younger elderly (aged 65 to 75 years; group elderly), 15 centenarians (aged 99 to 104 years;
group centenarian), and 23 semisupercentenarians (aged 105 to 109 years; group semisupercentenarian). Disc sizes indicate species or functional pathway
overabundances relative to the average abundance of the whole cohort. Lines indicate significant positive correlations between the values of the discs. (Bottom)
PCoA plot of Bray-Curtis dissimilarity between the species-level relative abundance data sets of the four age groups.

along with a progressive increase of Escherichia coli, Methanobrevibacter smithii, Akker-
mansia muciniphila, and Eggerthella lenta (P < 0.05, Kruskal-Wallis test). These trends
have already been reported in previous 16S rRNA gene-based microbiome works in the
same subjects (3, 8), as well as in Chinese centenarians (10), further strengthening that
the observed gut microbiome variations may be part of the extreme aging process,
regardless of environmental variables, such as geographical origin and cultural habits
(i.e., diet and lifestyle) (11).

Interestingly, when we focused our analysis at a functional scale, we found a
progressive age-related increase in the number of reads for genes devoted to xenobi-
otic biodegradation and metabolism, and a simultaneous decrease in genes involved in
carbohydrate metabolism (Fig. 2B and C; Fig. S2). This functional rearrangement is even
more pronounced in the gut microbiome of centenarians and semisupercentenarians,
where we observed a reduced contribution of pathways for starch and sucrose (KEGG
pathway no. ko00500), pentose phosphate (ko00030), and amino sugar and nucleotide
sugar (ko00520) metabolism and a concomitant increase in toluene (ko00623), ethyl-
benzene (ko00642), caprolactam (ko00930), and chlorocyclohexane and chlorobenzene
(ko00361) degradation pathways. While the changes related to carbohydrate metabo-
lism have already been reported in previous studies and suggested to be associated
with age-related changes in dietary habits (7, 9), the increase in genes for xenobiotic
metabolism is reported here for the first time and appears particularly intriguing.

Ethylbenzene, chlorobenzene, chlorocyclohexane, and toluene are pervasive chem-
icals mainly deriving from industrial manufacturing and municipal discharges and are
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FIG 2 Aging-related trajectories of gut microbiome species and functional pathways. (A) Box plots of the normalized relative abundances of bacterial species
differentially represented among the four age groups (Y, young adults; K, younger elderly; C, centenarians; S, semisupercentenarians) (P < 0.05, Kruskal-Wallis
test). (B) Box plots of the normalized abundance (assigned reads per million sequences, i.e., counts per million [CPM]) of KEGG pathways differentially
represented among age groups (P < 0.05, Kruskal-Wallis test). (C) Bar plots at the top show the KEGG pathway-classified metabolic configurations for amino
acid, carbohydrate, lipid, and xenobiotic metabolism as the mean relative contribution of each pathway to the total normalized number of reads assigned to
each specific metabolism. At the bottom of the panel, the average number of normalized reads (CPM = standard error of the mean [SEM error bar]) assigned
to each specific metabolism is shown. Significant differences among age groups are shown on the graphs.

under monitoring all over the world as part of the main environmental contaminants
of the atmosphere, due to their toxic effects (12-14). The primary man-made sources of
these molecules are indeed the emissions from motor and exhaust vehicles, as well as
cigarette smoke. Furthermore, they are known to be generated during the processing
of refined petroleum products, such as plastics, and to be contained in common
consumer products, such as paints and lacquers, thinners, and rubber products (14). As
regards caprolactam, it is the raw material of nylon, used for the production of many
indoor products, such as synthetic fibers, resins, synthetic leather, and plasticizers.
Previous studies have demonstrated the higher indoor burden of these molecules than
in the outdoor environment and emphasized the exceptional importance of indoor
exposure on human health (15, 16). It is a matter of fact that living in environments
under strong anthropic pressures, such as the Emilia Romagna region in Italy (17, 18),
results in the continuous and constant exposure to these pervasive xenobiotic sub-
stances, favoring their maintenance and progressive accumulation in body tissues,
including the gut (19-22). We believe that this could create the appropriate conditions
for the human host to select for gut microbiome components capable of detoxifying
such chemical compounds, with a mutual benefit in terms of microbiome and host
fitness in anthropic environments. Indeed, recent works have shown that the human-
associated microbial communities of urban Western populations are functionally suited
to the degradation of xenobiotic molecules, including caprolactam (23-25). Further
supporting the importance of human microbiomes in providing a response to xeno-
biotic exposure, in another recent work the upper airway microbiome of nonasthmatic
individuals has been found to possess greater ability to metabolize caprolactam than
that of asthmatic people (25). According to the authors, the selection of caprolactam-
degrading microbes in the airway microbiome would decrease host exposure to indoor
air pollutants, providing an ultimate impact on human health.
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FIG 3 The contribution of commensal bacteria to xenobiotic degradation is significantly higher in
long-lived individuals. Box plots show the percentages of bacteria of the human core gut microbiome
that harbor genes for xenobiotic degradation. Members of the core microbiome were defined based on
previous works (26-30).

Centenarians and semisupercentenarians are long-lived individuals who, as such,
may boast an important history of exposure to xenobiotic stressors. Furthermore, as
they have reduced mobility, these subjects tend to spend more time in their own
houses than younger people (Fig. S3), with increased exposure to indoor pollutants. It
is thus tempting to speculate that their microbiome is better equipped for the
degradation of these xenobiotics as a result of a process driven by the more lasting and
assiduous exposure to these chemicals. It is also worth noting that these metabolic
functionalities are possessed by commensal bacteria belonging to the human core
microbiome, i.e., microbial taxa that have been found to be shared by the microbiome
of all human populations sampled to date (26-30) (Fig. 3). This raises important open
questions on the biological mechanisms that lead to the consolidation and enrichment
of xenobiotic-degrading abilities in centenarian and semisupercentenarian gut micro-
biomes. Here, we speculate that the highest contribution to xenobiotic degradation by
commensals in long-lived people might be the result mainly of a top-down selection
process related to the lifestyle habits of these exceptionally old individuals, i.e., stable
and constant living settings within their own homes, together with a longer exposure
and consequent accumulation of these chemicals in the host tissues due to their longer
life.

Besides xenobiotic-degrading genes and those involved in carbohydrate metabo-
lism, we also found age-related differences in other metabolic pathways, including
those associated with lipid metabolism. In particular, centenarians and semisupercen-
tenarians show more reads for alpha-linoleic acid (KEGG pathway no. ko00592) and
glycerolipid (ko00561) metabolism; on the other hand, younger people show a greater
contribution of genes involved in sphingolipid (ko00600) and glycerophospholipid
(ko00564) metabolism. Given that glycerophospholipids and sphingolipids are known
to be more abundant in animal-derived foods (31, 32), while alpha-linoleic acid is
derived mainly from plant foods (33), these profiles may be related to eating habits and,
in particular, to the higher intake of plant-derived fats than animal fats by long-lived
individuals than by younger people (Fig. S4). Moreover, when looking at functional
pathways involved in amino acid metabolism, we found a progressive increase with age
in genes for the metabolism of tryptophan (ko00380), tyrosine (ko00350), glycine,
serine, and threonine (ko00260). On the other hand, genes for alanine, aspartate, and
glutamate metabolism (ko00250) were found to be more abundant in younger indi-
viduals. These evidences are in agreement with our previous study (9), in particular with
regard to the metabolism of tryptophan and tyrosine as an indicator of enhanced
proteolytic metabolism. Furthermore, these findings fit with metabolite measures in the
centenarians of our cohort, i.e, the decrease of the bioavailability of tryptophan in
serum (34), as well as the increased urinary levels of phenolic metabolites, deriving from
the metabolism of tyrosine (35). Finally, we found a progressive increase with aging of
genes for lipopolysaccharide biosynthesis (ko00540), which can be associated with the
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presence of pathobionts (i.e., members of the Enterobacteriaceae family) and the low
levels of chronic inflammation (i.e., inflammaging), as previously demonstrated in
long-lived people (3, 8, 9).

DISCUSSION

Here we described—as far as we know, for the first time—the metagenomic
changes of the human gut microbiota that occur with aging, up to extreme longevity,
by characterizing the microbiome of semisupercentenarians, i.e., demographically very
uncommon subjects who reach the extreme limit of the human life span (>105 years
of age). In addition to confirming the known taxonomic features of an aging microbi-
ota, we extended the definition of the human core gut microbiota down to the species
level and provided an accurate depiction of the functional changes occurring along
with aging. In a sort of continuum line with our previous study, where we demon-
strated that the intestinal microbiome of Italian adults is equipped for the degradation
of xenobiotics, probably as a functional response to exposure to these compounds (24),
we here advance the fascinating hypothesis that aging in Western urban environments
progressively selects for commensal microbiome strains with metabolic abilities toward
specific xenobiotics. We speculate that this could represent an adaptive response of the
human holobiont to the increased exposure to, and accumulation of, xenobiotic
substances along the aging process. As recently discussed (36), future studies should be
aimed at better understanding the complex interplay between xenobiotic exposure
and the human gut microbiome. The individual gut microbiome structure will have to
be matched with the personal exposure level, with the latter being dissected by
monitoring xenobiotics in feces and body fluids. Long-term longitudinal studies must
be conceived, with the aim of highlighting the mechanisms underlying this potential
microbiome adaptive variation, as a result of a top-down selection process of micro-
biome functions for xenobiotic detoxification and the ultimate impact in terms of host
health protection. Given that the xenobiotics that emerged in the present study are
now ubiquitous in modern urban areas, it would also be interesting to assess the
xenobiotic degradation capacity of ancient microbial communities by analyzing sam-
ples from the preindustrial era, in order to fully understand the effects of these
molecules on the evolutionary history of the human holobiont. Studies of this type
would help to shed light on whether the peculiar functional profiles of the gut
microbiome of extremely long-lived hosts, as found in our work, are the result of an
adaptive and remodeling process inherent to the physiology of human aging in
modern urban societies and thus capable of supporting a new homeostasis.

MATERIALS AND METHODS

Subjects and study groups. The study used genomic DNA from 62 fecal samples collected for a
study by Biagi et al. (8). Subjects were enrolled in the Emilia Romagna region (ltaly) and categorized as
follows: 11 young adults (group Y, 6 females and 5 males, aged 22 to 48 years [mean age, 32.2 years]),
13 younger elderly (group K, 6 females and 7 males, aged 65 to 75 years [mean age, 72.5 years]), 15
centenarians (group C, 14 females and 1 male, aged 99 to 104 years [mean age, 100.4 years]), and 23
semisupercentenarians (group S, 17 females and 6 males, aged 105 to 109 years [mean age, 106.3 years]).
See Table S1 in the supplemental material for further information about the cohort. The study protocol
was approved by the Ethics Committee of Sant'Orsola-Malpighi University Hospital (Bologna, Italy) under
EM/26/2014/U (with reference to 22/2007/U/Tess).

Evaluation of the time spent indoors and outdoors by the elderly. Elderly participants signed the
informed consent before undergoing the questionnaires with an interviewer as previously described (37).
The participants were asked how often they left their homes (daily, weekly, monthly, etc.) and based on
seven different answers were assigned a score: those who never went out, the lowest frequency, were
given a score of 1, while those who left their homes “daily,” the highest frequency, were given a score
of 7. The answers, treated as a continuous scale (arbitrary scores of 1 to 7), were used to determine the
frequency of movement outside home (FMOH) score.

Library preparation and shotgun sequencing. DNA libraries were prepared using the QIAseq FX
DNA library kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions. Briefly,
total microbial DNA was quantified by a Qubit fluorometer (Invitrogen, Waltham, MA, USA), and 100 ng
of each sample was fragmented to a 450-bp size, end-repaired, and A-tailed using FX enzyme mix with
the following thermal cycle: 4°C for 1 min, 32°C for 8 min, and 65°C for 30 min. Samples were then
incubated at 20°C for 15 min in the presence of DNA ligase and lllumina adapter barcodes for adapter
ligation. After two purification steps with Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea,

March/April 2020 Volume 5 Issue 2 e00124-20

mSystems’

msystems.asm.org 6


https://msystems.asm.org

Human Gut Microbiome in Extreme Longevity

CA, USA), a 10-cycle PCR amplification and a further step of purification as described above, the final
library was obtained by pooling the samples at equimolar concentrations of 4 nM. Sequencing was
performed on an lllumina NextSeq platform using a 2 X 150-bp paired-end protocol, in accordance with
the manufacturer’s instructions (Illumina, San Diego, CA, USA). High-quality paired-end sequences were
uploaded to the SRA repository.

Bioinformatics and biostatistics. The functional annotation of the sequences deriving from the 62
genomic DNA samples (8) was conducted as previously described (9). In brief, shotgun reads were first
filtered by quality and human sequences. This last step was achieved using the human sequence removal
pipeline and the WGS read processing procedure of the Human Microbiome Project (HMP) (38). The
obtained reads were taxonomically characterized at the species level by MetaPhlAn2 (39) and assigned
for functionality at different levels of the KEGG database (40), using Metagenome Composition Vector
(MetaCV) with default parameters (41). The resulting table consisted of multiple matrices, with sample
identification numbers (IDs) in the columns and annotations at the species level or at different levels of
the KEGG database in the rows.

PCoA analysis was carried out using vegan (https://cran.r-project.org/web/packages/vegan/index
.html) in R. Significance testing and permutation analysis were performed using the R package stats and
vegan. Data separation in the PCoA was tested using a permutation test with pseudo-F ratios (function
adonis in the vegan package). When appropriate, P values were adjusted for multiple comparisons using
the Benjamini-Hochberg correction. A false discovery rate (FDR) of <0.05 was considered statistically
significant.

Network plots were determined as previously described (24). In brief, associations between KEGG
pathway abundances were evaluated by the Kendall correlation test, displayed with hierarchical Ward
linkage clustering based on the Spearman correlation coefficients, and then used to define pathway
groups (circles with the same color). Significant associations were verified for multiple testing using the
g value method (http://www.bioconductor.org/packages/release/bioc/html/qvalue.html) (P < 0.05). Per-
mutational multivariate analysis of variance was used to determine whether the pathway groups were
significantly different from each other. The network plots were created using Cytoscape software (42).
Circle size represents the normalized overabundance of the pathway relative to the background.
Connections between nodes represent significant positive Kendall correlations between KEGG pathways
(FDR < 0.05).

Assignment of functions for xenobiotic degradation to commensal bacteria. Reads with assign-
ment to xenobiotic degradation functions were further inspected for taxonomy. Where present, the
species-level classification of MetaCV (41) was retrieved, and the taxon ID in the NCBI taxonomy database
was obtained using the web interface of the NCBI Taxonomy Browser tool (https://www.ncbi.nlm.nih
.gov/Taxonomy/Taxldentifier/tax_identifier.cgi). In order to retrieve the entire phylogeny of the assign-
ment, we transformed the NCBI taxonomy IDs into the full lineage by using the ETE3 toolkit (43). Hits for
xenobiotic degradation were then split based on their taxonomy and collected in a new table containing
the values for each sample. We finally identified the proportion of functions assigned to commensal
bacteria of the human core gut microbiome, i.e., microbial taxa that have been found to be shared by
all human populations sampled to date (26-30), by specifically looking for their abundance across
samples and visualizing them by box plots using the R software.

Analysis of nutritional data. Dietary information for the elderly subjects of groups K, C, and S were
provided and discussed in our previous publications (1, 8). As regards group Y, the subjects were asked
to compile 24-h dietary recalls to retrieve information on the composition of their diet, as previously
reported by Barone and colleagues (44). Dietary data for semisupercentenarians (8) were converted to a
numeric frequency, in order to infer the daily consumption of each food category. Total daily calorie
intake as well as macro- and micronutrient contributions for individuals in groups Y and S were estimated
through the MetaDieta software version 3.7 (Meteda, Rome, Italy).

Data availability. High-quality paired-end sequences were uploaded to the SRA repository under
BioProject number PRJNA553191.
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