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Abstract

Protein Domain Co-occurrence Network (DCN) is a biological network that has not been fully-studied. We analyzed the
properties of the DCNs of H. sapiens, S. cerevisiae, C. elegans, D. melanogaster, and 15 plant genomes. These DCNs have the
hallmark features of scale-free networks. We investigated the possibility of using DCNs to predict protein and domain
functions. Based on our experiment conducted on 66 randomly selected proteins, the best of top 3 predictions made by our
DCN-based aggregated neighbor-counting method achieved a semantic similarity score of 0.81 to the actual Gene Ontology
terms of the proteins. Moreover, the top 3 predictions using neighbor-counting, x2, and a SVM-based method achieved an
accuracy of 66%, 59%, and 61%, respectively, when used to predict specific Gene Ontology terms of human target domains.
These predictions on average had a semantic similarity score of 0.82, 0.80, and 0.79 to the actual Gene Ontology terms,
respectively. We also used DCNs to predict whether a domain is an enzyme domain, and our SVM-based and neighbor-
inference method correctly classified 79% and 77% of the target domains, respectively. When using DCNs to classify a target
domain into one of the six enzyme classes, we found that, as long as there is one EC number available in the neighboring
domains, our SVM-based and neighboring-counting method correctly classified 92.4% and 91.9% of the target domains,
respectively. Furthermore, we benchmarked the performance of using DCNs to infer species phylogenies on six different
combinations of 398 single-chromosome prokaryotic genomes. The phylogenetic tree of 54 prokaryotic taxa generated by
our DCNs-alignment-based method achieved a 93.45% similarity score compared to the Bergey’s taxonomy. In summary,
our studies show that genome-wide DCNs contain rich information that can be effectively used to decipher protein function
and reveal the evolutionary relationship among species.
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Introduction

Biological systems, such as living cells, are composed of a large

number of individual components (e.g., proteins, DNA, RNA, and

small molecules). These molecules interact and form networks to

carry out biological functions. Departing from the traditional

reductionist approach of studying single targets, systems biology

aims to identify the cellular molecular components and their

interactions and analyze cellular responses at a large scale using

high-throughput experimental techniques (e.g., genome sequenc-

ing, DNA microarrays, yeast two-hybrid experiments, proteomics,

and metabolomics) and computational methods [1–7]. One

promising approach to analyze the complex interactions among

molecules is network biology – studying the structure, dynamics, and

function of biological networks at the system level [8].

Currently, network biology primarily focuses on metabolic, gene

regulatory, and/or protein-protein interaction networks [9–20].

Since proteins and their interactions play central roles in almost all

biological processes, protein interaction networks have been a

major target of network biology. Experimental techniques, such as

yeast two-hybrid [21] and many computational methods have

been developed to construct protein-protein interaction networks.

The network approach to the study of protein interactions has

shed light not only on the general principles that govern the

evolution and functions of the proteins in a species (i.e. proteome)

as a whole, but also the function and roles of a particular protein of

interest. For instance, protein interaction networks can be used to

identify hub proteins having critical biological functions, to predict

biological pathways, and to infer the function of a protein

according to its interactions with other proteins with known

functions [22–24].

Despite many successful applications, the study of protein

interaction networks is hindered by two serious problems [14,25].

First, protein interaction networks constructed from high-through-
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put experimental techniques, such as yeast two-hybrid (Y2H), have

a high level of false positives [14]. It was estimated that more than

half of the protein interactions in an Y2H protein interaction

network may be false positives [25]. Protein interactions predicted

by computational methods are even noisier. Second, current

protein interaction networks constructed for most species are far

from complete. For instance, estimates suggest that only about

10% of the protein interactions in the human genome have been

elucidated to date [14]. Thus, inferring protein function,

interaction, and evolution from protein interaction networks

might not be accurate and reliable.

Here, we propose to use protein domain co-occurrence networks

(DCN) [26,27] to study the function and interaction of proteins at

the proteome level. These networks make use of the co-

occurrences of various protein domains in given proteins. A

protein domain, usually a segment of continuous sequence within

a protein, is considered the structural, functional, and evolutionary

unit of proteins. One protein is generally composed of one or more

domains (i.e. building blocks) that each might fold independently

into a stable structure. Each domain often has a distinct

biochemical function. Domains that are similar in sequence,

structure, and function are grouped together in families/types.

The proteome (i.e. the collection of all the proteins) of a species

usually has representatives of thousands of domain types. These

domains can exist as single-domain proteins or are combined

together to form multi-domain proteins. Hence, in addition to

sequential divergence, domain combination is another major

mechanism of increasing the complexity of a proteome [28].

Nature tends to reuse and recombine existing building blocks to

create new proteins, rather than to invent them de novo [29].

Domain combination represents a strong, permanent and

definite interaction between domains, which can be captured by

domain co-occurrence networks (DCN). A DCN is a graph consisting of

all the protein domain types of a species as nodes. Two domain

types (i.e. nodes) are connected by an edge if they co-exist in one

protein [26]. Figure 1 shows the domain architecture (i.e., a series

of domain types) of two multi-domain proteins in Arabidopsis and

a DCN derived from the two proteins. Previous studies showed

that DCNs of the yeast and human were scale-free and small-

world networks [26], like other networks such as web hyper-link

networks, social networks, and protein interaction networks.

However, to date, the features and properties of DCNs have not

been well explored, and they have not been used to study the

functions and evolution of proteins. Compared to the well-studied

protein-protein interaction networks, DCN has the following

advantages, making it a very promising tool for studying

proteomes at the system level: (1) Accurate and reliable.

Domain co-existence (or combination) relationship constructed

from sequential analysis is almost 100% accurate, which is much

more reliable than protein interactions predicted from experi-

mental approaches (e.g., yeast two-hybrid). (2) Higher coverage.

A DCN constructed from homologous sequence analysis usually

can recall about 70% of domain co-existence relationships [30],

compared to the very low coverage of protein interaction networks

of most species. Thus, the inference based on DCNs is often more

reliable. (3) Easy to construct. It is much easier to construct the

DCN of a genome by comparing its protein sequences against

known protein domain databases, such as Pfam [31] and ProDom

[32], compared to building protein interaction networks through

either experimental or other computational methods.

In addition, DCNs also have two other distinct features. First,

each node represents a domain type instead of an instance (i.e.

sequence). Since DCNs of differing species share a large number of

common domain types, DCNs can be more readily compared or

aligned across species than sequence-based networks, such as

protein-protein interaction networks. Second, an edge in a DCN

represents a permanent combination relationship that is stronger

than the relationship defined in protein-protein interaction

networks, which is often intangible. Therefore, DCNs can provide

richer information about the functional relationship between

connected domains. Therefore, DCN is a very valuable target for

biological network research and a useful tool for studying the

evolution, function, and interaction of proteins.

In this study, we constructed the DCNs for H. sapiens, S. cerevisiae,

C. elegans, D. melanogaster, and 15 plant genomes and performed

statistical analysis and attack simulations. A ‘‘domain’’ used in our

study is a Pfam entry, corresponding to a Pfam domain ‘‘family’’,

such as ‘‘Pkinase_Tyr (PF07714)’’ and ‘‘Helicase_C (PF00271)’’ [33].

The Pfam domains are often more like protein function units than

structural ones. We utilized DCNs to predict domain functions,

including GO terms or enzyme classes, and inferred prokaryotic

species phylogenies for the first time. Our large-scale studies of

DCNs on this diverse set of species demonstrate that DCNs can be

readily and reliably constructed from a genome or a list of proteins

of an organism, and, in conjunction with graph neighboring

methods, can be used to effectively predict protein functions and

accurately infer species phylogenies.

Results and Discussion

Statistical Properties of Domain Co-occurrence Networks
We analyzed the statistical properties of the DCNs of 15 plant

species, yeast, and human, and found that they share several

common features. Figure 2 (A) depicts the node-degree

distribution of four example species, Arabidopsis thaliana (Arabi-

dopsis), Chlamydomonas reinhardtii (green alga), Zea mays (maize), and

Physcomitrella patens (moss). Supplementary Figure S1 shows the

node-degree distributions of H. sapiens, S. cerevisiae, C. elegans,

D. melanogaster, and 15 plant genomes. This log-log plot shows that

the number of nodes with a specific degree value (degree is the

number of edges linked to a node) mathematically follows a power

law distribution, because the logarithmic relationship between two

variables approximates a linear relationship. This property shows

that the DCNs are scale-free networks

P kð Þ*k{c

where P(k) is the probability of having a node with k edges linking

to it, and c is a species-specific constant.

Figure 2 (B) plots another property of scale-free networks, the

small-word phenomenon. Figure 2 (B) shows the frequency of

node pairs whose shortest path has a specific value k (k = 1, 2, 3…).

Supplementary Figure S2 shows the shortest path length

distributions of H. sapiens, S. cerevisiae, C. elegans, D. melanogaster,

and 15 plant genomes. The majority of the node pairs have a path

shorter than 5, indicating that most of node pairs can be reached

within five steps.

Average clustering coefficient is another important property of

scale-free networks. For un-directed networks, the clustering

coefficient of a node n is calculated by:

Cn~
2en

kn(kn{1)

Where en is the number of connected node pairs among immediate

(one edge away) neighboring nodes of the central node n, and kn is

the number of immediate neighboring nodes of the central node n

[8,34]. Clustering coefficient indicates the degree of the nodes to
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be clustered. The average clustering coefficient of the whole

network is calculated by taking the average of all nodes’ clustering

coefficients. Figure 2 (C) plots the relationship between average

clustering coefficient and node degrees. This log-log plot shows

that the clustering coefficient distribution of DCNs also follows a

power law. Supplementary Figure S3 shows the average

clustering coefficient distributions of H. sapiens, S. cerevisiae,

C. elegans, D. melanogaster, and 15 plant genomes. Figure 2 (B)

and (C) illustrate that in DCNs, the nodes with a small degree

value, usually tend to form a complete graph (clique), or very

dense sub-graph (i.e. with higher average clustering coefficient),

and one dense sub-graph is connected with other dense sub-graphs

by hub nodes, i.e. popular nodes with high degree, which are

similar to politicians and celebrities in human social networks.

This indicates that a DCN is a hierarchical network composed of

densely connected modules [35].

Experiments conducted on yeast and human DCNs show that

they follow the same properties (data not shown). Therefore, they

share the same characteristics as other scale-free networks, such as

social networks, the World-Wide Web, and some biological

networks, including protein-protein interaction networks and

metabolic networks.

Figure 1. A small DCN consisting of two Arabidopsis proteins. Left: Protein ubiquinone oxidoreductase, which contains four Pfam domains.
Right: Protein xanthine dehydrogenase, which has six Pfam domains. The two proteins share the same domain Fer2. An edge is drawn between
domains co-occurring in the same protein. A fully connected sub-graph (clique) in the DCN corresponds to a protein.
doi:10.1371/journal.pone.0017906.g001

Figure 2. Statistical properties of DCNs of four representative species. (A) The degree distribution plots (scale-free); (B) the distributions of
lengths of the shortest paths (small-world); (C) the log-log plots of clustering coefficients against degrees (hierarchical modularity).
doi:10.1371/journal.pone.0017906.g002
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Error and attack robustness of DCNs
Scale-free networks are usually very recalcitrant (remains un-

fragmented, i.e., every node is connected, by some paths, to the

others) to random removal of nodes, named as ‘‘failure’’, but very

vulnerable to ‘‘attack’’, in which the nodes with highest degree are

removed first [36–38]. We simulated both perturbations on DCNs.

The Average Shortest Path (ASP) of a network is the average of

all the shortest paths between all pairs of nodes. A smaller ASP

means the network has a better interconnectivity. If a network is

fragmented, i.e., containing several independent sub-graph(s)

whose nodes have no connections to the other sub-graphs, the

path between these un-connected nodes become infinity, so does

the ASP of the entire networks. As mentioned in the ‘‘Materials
and Methods’’, the DCN for a given species usually contains

several disconnected sub-graphs, with one main graph containing

approximately .80% of all the domains. Therefore, it only makes

sense to study the changes of ASP under the two perturbations

(‘‘failure’’ and ‘‘attack’’) on the main network. According to our

criteria, the simulations were terminated and the network was

considered fragmented even if one node became fragmented. This

is probably a too stringent criteria compared with the study

performed on yeast protein-protein interaction networks [36],

where the shortest path between disconnected nodes were treated

a large number instead of infinity. That criteria allows calculating

the interconnectivity of a network after some nodes are

fragmented.

We performed simulations on the DCNs of yeast, Arabidopsis,

maize, soybean, and human. Taking the main network of

Arabidopsis as an example, after removing the node with the

highest degree, domain Helicase_C, the ASP of the network went to

infinity, indicating that this attack behavior caused at least one

node to be disconnected with the remaining network (i.e. network

fragmented). Compared with ‘‘attack’’, scale-free networks are

usually less vulnerable to ‘‘failure’’, in which nodes are removed

randomly, because the probability of randomly selecting a node

with high degree value is very low, according to the power law

distribution. This trend is also found true in DCNs, but to a lesser

extent. We performed 10 rounds of failure simulations on the

DCNs of human, yeast, and Arabidopsis, and the average number

of nodes deleted before the DCN had at least one nodes

fragmented were 5.5, 4.0, and 7.3, with standard deviations 4.2,

3.5, and 5.9, respectively. These are the 0.4%, 1.6%, and 1.6% of

all the vertices in their main networks, respectively.

The DCN was considered fragmented even if one node became

fragmented. In order to study the interconnectivity of the networks

after some of the nodes became fragmented and to make

comparison with the study performed on yeast protein-protein

interaction networks [36], instead of using infinity, we assigned a

specific value as the shortest path when two nodes were

disconnected. The value was equal to the maximum length of

the shortest paths before the removal action. We observed that

DCNs were very vulnerable to ‘‘attack’’, i.e., the modified ASP

had a sharp increase and reached the peak after removing 2.5%

and 5% of the nodes of yeast and rice, respectively, and much

more robust against ‘‘failure’’, i.e., the modified ASP had a much

slower increase compared to ‘‘attack’’. However, we found that

DCNs were not as robust as yeast interaction networks under

‘‘failure’’, as the ASP in yeast interaction networks remained

almost unchanged after removing up to 50% of nodes based on

study [36].

In summary, the results show that DCNs follow the general

robustness characteristics of scale-free networks, but are more

vulnerable to perturbations than protein interaction networks and

other high-density scale-free networks. One possible reason is that

the ‘‘domain’’ used in our DCNs sometime may be a coarse unit,

which sometime may be further divided into smaller units. The

other reason is probably because DCNs are less densely connected

than protein interaction networks and the internet, or because of

the much smaller size of DCNs. This may indicate that the

interconnectivity of DCNs is not indispensably important, mainly

because of the nature of DCNs. For the networks showing great

robustness, their functions can only be carried out by inter-

connectivity, such as the Internet. On the other hand, for the

domains that do not have a direct connection in the DCN, they

may also be able to physically interact with the others and carry

out functions. For example, two domains from two different

proteins may be interactive and bind with each other, but they do

not co-exist in one protein.

Domain function prediction – GO terms
To assess the capability of DCN to predict the GO terms of a

target domain, we developed and evaluated three methods:

neighbor-counting, x2, and a SVM-based method, as shown in

Table 1. The neighbor-counting method retrieves the GO terms

of all neighboring vertices and ranks them by their occurrence

frequencies. This ranked list of GO terms is its final predictions.

The x2 method not only considers the occurrence frequencies of

GO terms in the neighboring nodes, but also the overall

distributions of the GO terms in the entire DCN. The SVM-

base method uses the known examples of the target domains to

train a SVM model, and then uses this SVM model to make

predictions. Details can be found in the ‘‘Materials and Methods’’

section. We evaluated the top 3 ranked GO terms by the criteria

that if one of the top 3 GO terms matches one of the real GO

terms of the target domains, we count it as a correct prediction.

Similarly, the top 1 GO term evaluation criteria is that only if the

top 1 GO term matches one of the real GO terms, it is considered

as a correct prediction. For the neighbor-counting and x2 value

methods, we calculated the percentage of correctly predicted

domains. For the SVM-based method, we performed a leave-one-

domain-out cross-validation, and report the average percentage of

correctly predicted domains. These three methods were tested on

the target domains whose ‘‘radius one’’ neighboring domains have

at least one GO term available. The number of target domains for

Arabidopsis, yeast, and human are 736, 518, and 953, respectively.

The evaluation criteria mentioned above is a yes-or-no binary

criteria. Considering that two different GO terms may share

functional similarity, we also calculated the average similarity

score between the best prediction and the real GO terms

(Table 2), using the tool G-SESAME [39], which defines the

Table 1. The prediction accuracy of using neighbor counting,
x2, and SVM when predicting GO terms.

Species Top 3 Top 1

Neigh.-Count. x2 SVM Neigh.-Count. x2 SVM

Arabidopsis 64.8% 59.6% 58.5% 50.4% 42.9% 47.6%

Yeast 67.0% 61.8% 61.1% 52.3% 41.9% 51.6%

Human 65.8% 58.3% 60.4% 47.4% 37.5% 45.1%

For SVM, it’s the average accuracy of a leave-one-domain-out cross-validation.
‘‘Top 1’’ (‘‘Top 3’’) indicates when ‘‘the top one ranked GO term’’ (‘‘one of the
top three ranked GO terms’’) matches one of the actual GO terms of the target
domain, it is considered a correct prediction. The values shown under ‘‘Top 1’’
are also the precision values for top 1 prediction. The precision values for ‘‘Top
3’’ predictions can be found at Table 4.
doi:10.1371/journal.pone.0017906.t001
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semantic similarity between two GO terms as the percentage of

their common sub-graphs starting from the root of the GO

‘‘directed acyclic graph’’ (DAG) [39].

For the SVM-based method, we tested each of the five set

features built on GO terms, EC numbers, amino acid sequences,

secondary structures, and solvent accessibilities. We first used only

GO term frequency and kept adding one of the other features.

After comparing the performances of several leave-one-domain-

out cross-validations, we found that the ‘‘GO terms frequency’’

feature, generated from the neighboring domains, had the largest

positive influence on final prediction accuracy. Adding any one of

the remaining features slightly decreased the accuracy by 1–3% on

Arabidopsis. We also tested four kernel functions for the SVM

model: linear, polynomial, radial basis function (RBF), and

sigmoid tanh, and found that the linear kernel function yielded

the best accuracy. Therefore, the SVM method used in our

evaluations (Tables 1 and 2) only uses ‘‘GO term frequency’’

features consisting of 31,398 values and the linear kernel function.

Moreover, we randomly selected different numbers of negative

examples in each GO term’s training dataset (see ‘‘Materials
and Methods’’ section for how to construct a training dataset),

and found that the ratio 2:1 negative to positive examples

generates the best accuracy, which is reported in Tables 1 and 2.

Our results (Table 1–4) show that the SVM-based method has

the better performance compared to the x2-based method when

considering only top 1 predictions; and the simple neighbor-

counting method, which relies solely on DCN topology, achieves

the best performance, in terms of both the ‘‘yes-or-no’’ evaluation

and the average similarity between the best predictions and real

GO terms. The accuracy of top 3 predictions using neighbor

counting on three species is more than 65% and top 1 predictions

more than 47%. The average GO similarity of top 3 predictions is

more than 0.81 and top 1 prediction more than 0.66. The good

performance suggests that the connectivity of DCNs contains

rather rich information for protein function prediction. To further

investigate the neighbor counting method, we plotted Figure 3,

the relationship between ‘‘the number of neighboring domains

with known function’’ and ‘‘the prediction accuracy’’ (top 3,

radius one neighboring domains) on three test species: Arabidop-

sis, yeast, and human. The results showed that, in general, more

neighboring domains with known functions can generate better

accuracy. Although most of the target domains have less than five

neighboring domains with known function, as long as there is one

neighboring domain with functional information available,

neighbor-counting can correctly predict 60% of the domains

(top 3). This shows that domain co-occurrence is a very useful

indicator of protein function.

We also conducted experiments on integrating both radius one

and two neighboring domains. For neighbor-counting and SVM-

based method, our results show that the accuracy has a small

decrease, by 2–3% on average, after including radius two

neighbors (data not shown). For the x2-based method, the

accuracy drops by 10% on average (data not shown). This

indicates that directly expanding the neighboring radius may not

help improving accuracy, as more noise may be included. In the

future, we plan to incorporate more advanced algorithms such as

graph kernels [40] and graph random walk algorithm [41] to infer

functions from DCNs.

We selected nine most promiscuous domains [42] (i.e., the hub

domains or the vertices in DCNs with a high degree) and used the

three methods: neighbor-counting, x2, and SVM-based method, to

predict their functions (Table 5–7). Our results show that in

general, if considering top 3 hits, the neighbor-counting method

performs better than x2 and SVM-based method. However, SVM-

based method performs better on Arabidopsis and human if

considering only top 1 prediction. Moreover, for some promiscu-

ous domains, x2 and SVM-based method perform better than

neighbor-counting. For example, the top 1 prediction of neighbor-

counting method has a similarity score of 0.088 on human domain

‘‘Pkinase_Tyr’’, whereas x2 method has a score of 1.000 on the

same domain. Similarly, the best prediction of neighbor-counting

has a similarity score of 0.080 on human domain ‘‘SET ’’, whereas

the SVM-based method has a score of 1.000. This shows that each

of these three methods may have its own advantages when being

applied to specific domains. Table 5 also shows that usually the

higher degree value a domain has, the better performance

neighbor-counting method can achieve if considering top 3

predictions.

Domain function prediction – Enzyme
For a target domain, we first used SVM and a neighbor-

inference method to predict whether it is an enzyme domain. On

enzyme domains, we tested two methods, neighbor-counting and

SVM-based method, to classify it into one of the six enzyme

classes.

For SVM-based enzyme ‘‘yes or no’’ predictions, we found that

using ‘‘GO term frequency’’ feature with linear kernel function

generated the best accuracy. Adding other features such as EC

number, secondary structure, and solvent accessibilities did not

significantly influence performance (data not shown). Table 8
and 9 compare the performance of using SVM and another

method: neighbor-inference, by which if the neighboring domains

have at least one EC number, it is predicted as an enzyme domain;

Table 2. The average semantic similarity scores of the best
predictions, among ‘‘Top 1’’ or ‘‘Top 3’’ GO term(s).

Species Top 3 Top 1

Neigh.-Count. x2 SVM Neigh.-Count. x2 SVM

Arabido-
psis

0.814 0.790 0.767 0.680 0.652 0.620

Yeast 0.835 0.818 0.772 0.679 0.646 0.626

Human 0.826 0.790 0.791 0.665 0.619 0.630

‘‘Top 1’’ (‘‘Top 3’’) indicates that for each target domain, we calculate the pair-
wise similarity scores between the top one (top three) ranked GO term(s) and
the actual GO terms, and the highest score is considered as the similarity score
of the best prediction. Semantic scores are calculated by the tool G-SESAME
[39].
doi:10.1371/journal.pone.0017906.t002

Table 3. The average recall value of using neighbor counting,
x2, and SVM when predicting GO terms.

Species Top 3 Top 1

Neigh.-Count. x2 SVM Neigh.-Count. x2 SVM

Arabidopsis 47.0% 42.5% 40.4% 21.4% 18.6% 20.0%

Yeast 47.4% 44.3% 41.5% 22.0% 18.0% 20.9%

Human 45.8% 40.1% 40.4% 19.8% 16.5% 19.1%

Recall was calculated as the correctly predicted GO terms divided by the total
number of real GO terms. Average recall was the sum of recall value for each
domain divided by the total number of test domains.
doi:10.1371/journal.pone.0017906.t003
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otherwise, not. We calculated and report the sensitivity of positives

(Qp), the sensitivity of negatives (Qn), and the Matthews

correlation coefficient (MCC) [43]:

Qp~
TP

TPzFN

Qn~
TN

TNzFP

MCC~
TP|TN{FN|FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFN)(TNzFP)

p

where TP is true positive, FN is false negative, TN is true negative,

and FP is false positive. The Q p and Q n of SVM-based method are

0.66 and 0.87 on average, which indicates the predictions are more

biased towards the negative side. However, the neighbor-reference

method shows more balanced results, with the Q p and Q n of 0.79

and 0.78. The overall classification accuracy and the Matthews

correlation coefficients of these two methods are very similar (i.e.,

about 0.54).

To classify an enzyme domain into one of six enzyme classes, we

developed and evaluated two methods, neighbor-counting and a

SVM-based method (Table 10). For the neighbor-counting

method, the most frequent enzyme class in the neighboring

domains is considered as the predicted enzyme class for the central

node. For the SVM-based method, we tested several combinations

of the five occurrence-frequency features built on GO terms, EC

numbers, amino acid sequences, secondary structures, and solvent

accessibilities, and found that using ‘‘GO term frequencies’’ plus

Table 4. The average precision value of using neighbor
counting, x2, and SVM for top 3 predictions.

Species Top 3

Neigh.-Count. x2 SVM

Arabidopsis 40.7% 36.8% 35.3%

Yeast 41.3% 38.0% 36.9%

Human 38.9% 34.1% 34.7%

Precision was calculated as the number of correctly predicted GO terms divided
by the number of predictions a method made (in this case, three). Average
precision was the sum of precision value for each domain divided by the total
number of test domains. The precisions of ‘‘Top 1’’ can be found at Table 1.
doi:10.1371/journal.pone.0017906.t004

Figure 3. The number of neighbors with known functions versus the prediction accuracy of the neighbor-counting method. The
more neighors with known functions, the higher accuracies neighor-counting method can achieve when pedicting the functions of the central node.
Most of the target domains have less than five neigbors with known functions.
doi:10.1371/journal.pone.0017906.g003
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‘‘EC number frequencies’’ generated the best performance in the

leave-one-domain-out cross-validation. Adding any one of the

other features slightly decreased or did not influence accuracy. As

shown in Table 10, when there are . = 2 EC numbers available

in the neighboring domains, both SVM and neighbor-counting

method (top 3) can achieve 100% classification accuracy.

Neighbor-counting cannot work on the cases of 70 target domains

whose neighboring nodes do not have an EC number, which

results in the decrease of its accuracy to 0.711. This is a case on

which the neighbor-counting method cannot work, but SVM can

make predictions based on the ‘‘GO term frequencies’’ features. In

general, as long as there is one EC number in the neighboring

domains, the accuracy of both SVM-based and neighboring-

counting can reach .90%. This demonstrates the abilities of

DCNs to infer enzyme classes. In the future, we will test the

performances of inferring sub-classes of enzyme domains.

We also tested other kernel functions in the SVM model and

tried to integrate radius two neighboring domains. Linear kernel

function worked the best, and integrating more neighboring

domains slightly decreased the accuracy (data not shown).

Protein function prediction
In order to test the performance of applying the aggregated

neighbor-counting method to predict protein functions in a real life

scenario, we randomly selected 100 proteins from the Gene Ontology

FASTA sequence database (http://archive.geneontology.org/lite/

2010-12-11/go_20101211-seqdb-data.gz). The functions of these

100 proteins had been annotated, and their GO terms stored in the

Gene Ontology database. Therefore, we treated these GO terms as

their real GO terms. We ran HHsearch [44] to search each query

sequence against the Pfam profile database to detect Pfam domains.

Only the Pfam domains detected with an e-value, = 0.01 were kept.

To determine the closest relevant species for a query sequence, we

used PSI-BLAST [45] to search each of the 100 proteins against the

whole genome protein sequences of H. sapiens, S. cerevisiae, C. elegans, D.

melanogaster, 15 plants species, and 398 single-chromosome prokary-

otic species. In total, 96 proteins had at least one PSI-BLAST hit with

an e-value, = 0.01, and the other four had an e-value: 1.8, 1.9, 2.7,

and 3.7, respectively. The DCN of the species of the most significant

hit of a protein is used to predict is function.

In total, DCN-based aggregated neighbor-counting method

(details see ‘‘Materials and Methods’’ section) generated predic-

tions for 66 out of 100 proteins. Among the 34 proteins on which

DCNs failed to make predictions, 10 of them failed because no

Pfam domain was detected by HHsearch with an e-value, = 0.01;

19 of them failed because the Pfam domain(s) detected by

HHsearch could not be found in the DCN of the closest relevant

species; and the others failed because none of their neighboring

domains had GO terms available. Because we used PfamScan, a

sequence-profile alignment tool, to detect Pfam domains when we

constructed the DCNs (see the ‘‘Construction of Domain Co-

occurrence Networks’’ sub-section in the ‘‘Materials and Meth-

ods’’ section) but used HHsearch, a much more sensitive profile-

profile alignment tool, to detect Pfam domains on these 100

Table 5. Performances of neighbor-counting method on
promiscuous domains.

Domain Degree Top 3 Top 1

Arab. Yeast Hum. Arab. Yeast Hum. Arab. Yeast Hum.

Helicase_C 44 24 55 1.000 1.000 1.000 0.387 1.000 1.000

PDZ 1 N/A 69 0.234 N/A 1.000 0.115 N/A 0.160

Pkinase 44 15 63 1.000 1.000 1.000 1.000 1.000 0.300

Pkinase_Tyr 17 N/A 41 1.000 N/A 1.000 0.246 N/A 0.088

Pkinase_C 1 4 14 1.000 1.000 1.000 1.000 0.171 0.300

PHD 35 11 43 1.000 0.557 1.000 0.096 0.557 0.557

AAA 24 21 21 1.000 1.000 1.000 1.000 1.000 1.000

SET 12 2 20 1.000 0.096 1.000 0.054 0.096 0.080

GATase 7 13 11 0.538 0.262 0.602 0.538 0.220 0.602

Average 20.6 12.9 37.4 0.864 0.702 0.956 0.493 0.578 0.454

Definition of best prediction can be found at the caption of Table 2. ‘‘N/A’’
indicates this specific domain does not exist in the DCN of a species. ‘‘Average’’
indicates the average value of degree values and similarity scores. ‘‘Arab.’’
indicates ‘‘Arabidopsis’’, and ‘‘Hum.’’ indicates ‘‘Human’’. Some of these
promiscuous domains were selected from [42].
doi:10.1371/journal.pone.0017906.t005

Table 6. Performances of x2 method on promiscuous
domains.

Domain Top 3 Top 1

Arabidopsis Yeast Human Arabidopsis Yeast Human.

Helicase_C 1.000 0.696 1.000 1.000 0.696 0.696

PDZ 0.234 N/A 0.482 0.234 N/A 0.284

Pkinase 1.000 1.000 1.000 1.000 1.000 0.573

Pkinase_Tyr 0.670 N/A 1.000 0.670 N/A 1.000

Pkinase_C 1.000 1.000 0.206 0.895 0.895 0.199

PHD 0.669 0.557 0.661 0.000 0.557 0.557

AAA 0.152 0.152 0.152 0.040 0.040 0.040

SET 0.058 0.096 0.488 0.058 0.096 0.058

GATase 0.302 0.602 0.602 0.538 0.602 0.602

Average 0.560 0.584 0.617 0.486 0.552 0.442

Definition of the best prediction can be found at the caption of Table 2. The
degree value of each promiscuous domain can be found at Table 5.
doi:10.1371/journal.pone.0017906.t006

Table 7. Performances of SVM-based method on
promiscuous domains.

Domain Top 3 Top 1

Arabidopsis Yeast Human Arabidopsis Yeast Human.

Helicase_C 1.000 1.000 1.000 1.000 0.527 1.000

PDZ 0.000 N/A 0.226 0.120 N/A 0.226

Pkinase 0.202 0.171 0.181 1.000 0.037 0.173

Pkinase_Tyr 0.662 N/A 0.132 0.662 N/A 0.088

Pkinase_C 1.000 1.000 1.000 1.000 0.171 0.149

PHD 1.000 0.481 0.557 0.096 0.481 0.096

AAA 1.000 0.081 1.000 1.000 0.039 1.000

SET 1.000 0.485 1.000 1.000 0.000 1.000

GATase 0.337 0.527 0.602 0.079 0.527 0.602

Average 0.689 0.535 0.633 0.662 0.255 0.482

Definition of the best prediction can be found at the caption of Table 2. The
degree value of each domain can be found at Table 5.
doi:10.1371/journal.pone.0017906.t007
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proteins, some of the domains found by HHsearch could not be

found by PfamScan. This also suggests that the coverage of our

current DCNs can be improved by using more sensitive domain

detection tools. Another reason why some of the detected domains

cannot be found in the DCNs is that we used PSI-BLAST to

identify relevant species, which may not be the right species for the

query protein. Thus, adding the DCNs of more species into our

system may increase the coverage of function prediction.

Table 11 reports the average precision, recall, and the

semantic similarity score of the best predictions on the 66 proteins

including both multi- and single-domain proteins. Table 12
shows the same measurements on the 9 single-domain proteins

containing only one Pfam domain (i.e., only one domain with an

HHsearch e-value, = 0.01). Precision was calculated as the

number of correctly predicted GO terms (‘‘exact match’’) divided

by the number of GO predictions. Recall was calculated as the

correctly predicted GO terms (‘‘exact match’’) divided by the total

number of real GO terms. Our results show that the top 1

prediction on single-domain proteins can achieve a similarity score

of 0.636. Considering top 3 predictions on single-domain proteins,

the best prediction has a similarity score of 0.834, and above 0.95

if considering more than top 4 predictions. Figure 4 shows a

successful prediction example for one protein, in which all top 3

predictions match the real GO terms. For both domain function

and protein function predictions, if more than two edges existed

between two vertices, as the case shown in Figure 5 between node

c and d, they were reduced to one edge.

Evaluation of DCN-Inferred Phylogeny
We evaluated our DCNs-alignment-based phylogeny inference

method on six different combinations of 398 single-chromosome

prokaryotic species (strains). We benchmarked our DCNs-based

method and compared its performances with that of five other

state-of-the-art phylogeny inference methods (Table 13). These

methods include (1) BPhyOG [46], a method based on

overlapping genes (OG); (2) a method based on Composition

Vector Tree (CVT) with k = 5, where k is the length of strings [47].

The concept of ‘‘Composition Vector Tree’’ which used the string

appearance frequencies to represent a genome, and the distance

between two genomes was calculated as the Euclidean distance

between the two ‘‘Composition Vector Trees’’. (3) [48] extended

(2) by using the appearance frequencies of all the strings with

length k, = 5, and named this vector ‘‘Complete Composition

Vector’’. (4) A method based on Structural Protein Domain

Universe Graph (PDUG) [49]. This method incorporates a graph

consisted of protein domains, which, to some extent, is similar to

our DCNs-based method, but these two methods still have big

differences. PDUG consists of all the protein domains and may be

derived from several species, with known protein structures. Each

of these domains is treated as a node in the PDUG. The protein

structure and the structural similarity are based on the structural

classification of protein ‘‘fold’’, and the structural similarity is used

to define the edge between two nodes. An organism is assigned

nodes from the PDUG based on sequential similarities, and the

distance matrix between graphs is generated based on the degree

distribution. (5) ComPhy [50], a method based on gene Composite

Distance (CD). Gene composite distance combines Gene Disper-

sion Distance, Genome Breakpoint Distance, and Gene Content

Distance, and it achieves higher than 90% accuracy on all the six

datasets. Detailed descriptions about ComPhy can be found at

[50].

Table 13 reports the results of our novel DCNs-based method

on the six datasets. It performs very well on dataset 6, with

similarity score 93.45% to Bergey’s taxonomy, which contains 54

genomes that cover almost all the major clusters of the 398

genomes (Table 14). The phylogenetic tree generated on dataset

6 is shown in Figure 6, which largely complies with Bergey’s

taxonomy. Our experiments also show that DCNs-based method

is robust as it has .85% accuracy on both datasets 1 and 2 which

contain randomly selected species. Dataset 2 contains 52 species

randomly selected from 398 chromosomes, whereas dataset 2

contains 53 species, half of which are randomly selected from

Archaea and half randomly selected from Eubacteria. The

accuracies on Datasets 4 and 5 are 82.75% and 80.42%,

Table 8. The leave-one-out cross-validation results of the
SVM-based enzyme ‘‘yes or no’’ predictions.

Species Positive Negative TP FN TN FP Qp Qn MCC Ratio

Arabido-
psis

309 432 205 104 374 104 0.66 0.87 0.54 0.78

Yeast 220 300 40 75 260 40 0.66 0.87 0.54 0.78

Human 312 646 185 127 593 53 0.59 0.91 0.55 0.81

‘‘Ratio’’ standards for the percentage of correctly predicted domains in the
cross-validation. The feature used are only GO term frequencies gained from
radius one neighboring domains.
doi:10.1371/journal.pone.0017906.t008

Table 9. The accuracies of using ‘‘neighbor-inference’’
method for enzyme ‘‘yes or no’’ predictions.

Species Positive Negative TP FN TN FP Qp Qn MCC Ratio

Arabid-
opsis

309 432 240 69 328 104 0.78 0.76 0.53 0.77

Yeast 220 300 177 43 231 69 0.80 0.77 0.56 0.78

Human 312 646 242 70 497 149 0.78 0.77 0.52 0.77

The ‘‘Ratio’’ indicates the percentage of correctly predicted domains.
doi:10.1371/journal.pone.0017906.t009

Table 10. Prediction accuracy of the neighbor-counting and
SVM-base method when predicting EC families.

Known EC SVM
Neighbor-
Counting

Target Domain
Number

Top 3 Top 1

. = 0 0.803 0.711 0.674 307

. = 1 0.924 0.924 0.919 237

. = 2 1.000 1.000 0.989 89

. = 3 1.000 1.000 1.000 43

. = 4 1.000 1.000 1.000 21

. = 5 1.000 1.000 1.000 19

. = 6 1.000 1.000 1.000 17

. = 7 1.000 1.000 1.000 6

For SVM, it reports the accuracy of a leave-one-domain-out cross-validation.
Experiments were performed on Arabidopsis DCNs. ‘‘Known EC’’ indicates the
number of known EC numbers occurrences in the radius one neighboring
domains. ‘‘Target Number’’ indicates the number of target domains. The
features used in SVM-based method are the GO and EC number occurrence-
frequencies, with the linear kernel function.
doi:10.1371/journal.pone.0017906.t010
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respectively, which shows DCN-based method has a decent

sensitivity to distinguish and classify closely-related species, i.e. in

the deeper level of the phylogenetic tree, as dataset 4 contains only

genomes from Bacterial Division 12, and dataset 5 contains both

Division 12 and 13. The overall accuracy on all the 398

chromosomes is 76%, which is slightly lower but still comparable

with most of the other methods. In general, our DCNs-based

method gains a comparable performance when compared to most

of the other methods. ComPhy consistently showed a higher than

90% agreed percentage with Bergey’s taxonomy. However, our

DCNs-based method is based on organism-specific DCNs and

graph alignment algorithm, which are completely different to the

gene-based and sequence-based methods. It is likely that

combining our DCNs-based method with the method in ComPhy

can further improving the performance of ComPhy. Moreover,

once the DCNs are constructed for candidate species, the graph

alignment process is very fast and memory-efficient, because it

does not need to consider all the genes in the whole chromosome,

but only the nodes of DCNs, and on average one DCN of the 398

single-chromosome organisms contains 377 vertices. Using our

PERL implementation of our graph alignment, with O(n2)
complexity (n is the number of unique domains in the two DCNs),

the average time of aligning two DCNs of the 398 species is

,1.6 seconds using a single 2.4 GHz Intel(R) Xeon CPU at a 64-

bit Linux machine.

Conclusions and Future Work
We present a set of new DCN-based methods to predict protein

function and to infer species phylogeny. We tested our methods on

the genomes of several representative species and a large

phylogeny benchmark. The results showed that DCN-based

methods can predict protein function rather accurately, probably

because DCNs constructed from all the proteins of a genome are

rather complete and reliable in comparison with other protein

networks. Our unique approach of constructing phylogeny by

aligning species’ DCNs also yields good performance that are

comparable to other established methods, making it a comple-

mentary and valuable addition to the repository of phylogenetic

analysis tools.

Despite initial promising results, there is still room to improve

DCN-based function prediction and phylogeny inference. The

‘‘domains’’ used in our current version of DCNs are ‘‘domain

families’’ defined by the Pfam database, which sometime could be

further divided into sub-units. Using a more specific definition of

domains might show different characteristics of DCNs. For

example, we plan to use the structural domain definitions in the

SCOP database [51] and ProDom [32] in our next study.

However, since probably none of the current domain definitions is

perfect and there is no unified ways of defining a domain, some

noises are not completely avoidable.

In our current work, when predicting the GO terms of a target

domain, we treated different GO terms in the neighboring

domains independently. However, the semantic similarities

between GO terms may be incorporated into the SVM and

neighbor counting methods to improve protein function predic-

tion. More advanced graph-kernels and random-walk graph

kernels [52–54] can also be applied to DCNs to predict domain

functions in order to take non-immediate neighboring domains

into account. Similarly, advanced graph alignment algorithms,

such as IsoRankN [55] may be used to align DCNs for phylogeny

inference. Furthermore, the quality of the genome assembly and

annotation is important to our DCNs-based phylogeny inference

method. It may be interesting to find how annotation quality

influences the performance of DCN-based phylogeny inference

method by using different versions of annotated genomes.

Materials and Methods

Construction of Domain Co-occurrence Networks
The only input data needed for constructing a domain co-

occurrence network (DCN) is the whole genome protein sequences

of the target organism. In order to have a broad coverage of

various species with known genome sequences and cover several

model species for our experiments, we construct DCNs for Homo

sapiens (human, downloaded from NCBI: human genome

resources ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/), Saccharo-

myces cerevisiae (yeast, downloaded from SGD [56]), Caenorhabditis

elegans (downloaded from http://www.uniprot.org/uniprot/?query

=organism:6239+keyword:181), Drosophila melanogaster (fruit fly,

Table 11. The results of DCN-based aggregated neighbor-
counting method on 66 randomly selected proteins.

Number of top
predictions

Average
Precision Average Recall

Average
similarity score
of best
prediction

1 36.4% 6.5% 0.600

2 33.3% 11.5% 0.724

3 30.3% 18.8% 0.805

4 26.9% 21.9% 0.855

5 23.9% 23.6% 0.874

6 23.2% 27.8% 0.897

7 21.2% 29.2% 0.913

8 19.9% 31.1% 0.913

9 18.6% 32.1% 0.913

10 17.1% 32.8% 0.913

The ways of calculating precision and recall can be found at the captions of
Table 4 and Table 3, respectively. Explanations of the best semantic similarity
score can be found at the caption of Table 2. From the 100 proteins randomly
selected from GO database, 66 proteins have predictions available by DCN-
based aggregated neighbor-counting method.
doi:10.1371/journal.pone.0017906.t011

Table 12. The results of DCN-based aggregated neighbor-
counting method on 9 single-domain proteins.

Number of top
predictions

Average
Precision

Average
Recall

Average similarity
score of best
prediction

1 33.3% 8.4% 0.636

2 27.8% 14.3% 0.799

3 22.2% 15.6% 0.834

4 27.8% 21.6% 0.960

5 22.2% 21.6% 0.960

6 20.4% 25.4% 0.960

7 17.5% 25.4% 0.960

8 16.7% 27.6% 0.960

9 16.0% 31.3% 0.960

10 15.6% 32.2% 0.960

doi:10.1371/journal.pone.0017906.t012
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downloaded from http://www.uniprot.org/uniprot/?query=

organism:7227+keyword:181), 15 plants species, and 398 single-

chromosome prokaryotic species (downloaded from NCBI:

microbial complete genomes taxonomy ftp://ftp.ncbi.nih.gov/

genomes/Bacteria/). The 15 plant species include: Chlamydomonas

reinhardtii (green alga), Ostreococcus lucimarinus, Ostreococcus tauri,

Ostreococcus RCC809, Chlorella vulgaris, Volvox carteri, Physcomitrella

patens (moss), Selaginella moellendorffii (gemmiferous spikemoss), Oryza

sativa (rice), Zea mays (maize), Sorghum bicolor (sorghum), Vitis vinifera

(grape), Arabidopsis thaliana, Populus trichocarpa (black cottonwood),

and Glycine max (soybean). The protein sequences of Arabidopsis

thaliana were downloaded from TAIR8 [57] (version 8), Oryza sativa

(rice) from the ‘‘TIGR rice genome annotation resource’’ [58], Zea

mays (maize) from the ‘‘MAGI website’’ (http://magi.plantge

nomics.iastate.edu/), Vitis vinifera (grape) from ‘‘Genoscope’’

(http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/),

Glycine max (soybean) from ‘‘phytozome’’ website (http://www.

phytozome.net/soybean), and the others from the Joint Genome

Figure 4. An example showing the DCN-based aggregated neighbor-counting method for protein function prediction. The query
protein for this example contains 1,225 amino acids and has an ID ‘‘DDB_G0274191’’ in DictyBase (http://dictybase.org/gene/DDB_G0274191). Three
unique Pfam domains (red vertices) were detected by HHsearch, each with an e-value, = 0.01. It had a PSI-BLAST hit to a protein of Vitis vinifera
(grape) with an e-value e-118. Therefore, the DCN of Vitis vinifera was used to make predictions. The vertices in yellow are the radius one neighboring
vertices of the three Pfam domains. The GO terms of these yellow vertices were put together and ranked based on their occurrence frequencies. This
query protein contains 14 real GO terms. Everyone of the top 3 predictions (GO:0005524, GO:0006355, and GO:0016020) ranked by DCN-based
aggregated neighbor-counting method matches one of the real GO terms. Besides that, the 5th (GO:0007165), 7th (GO:0000155), 13th (GO:0000160),
and 14th (GO:0000156) ranked GO terms have an exact match to the real GO terms.
doi:10.1371/journal.pone.0017906.g004
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Institute (JGI) website (http://www.jgi.doe.gov/). These 15 plants

species represent virtually all major evolutionary stages of plants,

including alga, primitive land plants, and higher plants.

The program PfamScan is downloaded from the Pfam [33] FTP

site (ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/), togeth-

er with Pfam databases and hidden Markov model (HMM)

libraries. This domain searching tool is locally installed, which

incorporates HMMER (http://hmmer.janelia.org/) and BLAST

to search against Pfam domain libraries. Each protein sequence of

the target species was searched against Pfam using PfamScan. The

domain hits with an e-value, = 0.01 were kept. When construct-

ing a DCN, each domain is considered as a node, or vertices, in

the undirected graph; and every two domains (i.e. nodes) are

connected by an edge if they co-exist in one protein [26] as shown

in Figure 1. Figure 7 illustrates the main DCN of Arabidopsis

thaliana proteome visualized by Cytoscape [59].

Domain function prediction – GO terms
Because domains involved in the same biological process are

more likely to co-occur in one protein, domains with similar

functions tend to cluster in DCNs. Figure 8 shows a densely

connected sub-graph identified in the DCN of Arabidopsis. This

sub-graph consists of 10 domains, which form seven different

proteins in Arabidopsis. The domains of each protein are circled

by red dotted-line eclipse. Not surprisingly, all the proteins are

identified to participate in RNA synthesis processes according to

the Pfam annotations. Thus, the function of one protein (e.g.

spb1_C+FtsJ) can be inferred from another protein (e.g. KOW

+Supt5) that is connected through a path in the sub-graph and the

central node, e.g. domain S4.

In order to demonstrate the potential of DCNs to infer protein

function, we first focused on predicting the specific GO terms [60]

of a domain from its neighboring nodes. Taking Figure 8 as an

example, if we pretend to not know the GO terms of domain S4,

we can use the GO terms of its radius one (immediate) neighboring

domains: FtsJ, tRNA-synt_1b, Ribosomal_S4, PseudoU_synth_2, KOW,

and Ribosomal_S4e to infer the GO terms of the central domain.

We can also do that by incorporating radius two neighboring

domains, including Spb1_C, Supt5, and RS4NT. In our experiments

of predicting domain functions, we used Arabidopsis thaliana,

Saccharomyces cerevisiae, and Homo sapiens as benchmarks. We

included Arabidopsis thaliana because it has been well-studied as a

model plant species and has high-quality genome annotation. We

incorporated Saccharomyces cerevisiae and Homo sapiens because they

are often used as model species for protein function prediction.

Three methods were used in our experiments to predict domain

functions. The first is the most straightforward method, majority

vote or neighbor-counting: count the appearance number of every

GO term occurred in the neighboring nodes of the target domain;

and then rank the GO terms based on this occurrence frequency;

and the top ranked GO term(s) is (are) considered as the predicted

GO term(s). This method was used by [61] to predict protein

functions based on yeast protein-protein interaction networks.

The second method in our experiment considers the distribution

of every GO term in the entire DCN. This method was used by

[62] to improve the performances of the neighbor-counting

method mentioned above. This method ranks GO terms gathered

from the neighboring domains by a x2 value:

x2
i ~

(ni{ei)
2

ei

Table 13. Accuracy comparisons between our DCNs-based
method and other methods for phylogeny inference.

Dataset
Species
Num. OG1

CVT
(k = 5)2

CCV
(k, = 5)3 PDUG4 CD5 DCNs

1 52 83.93 88.29 87.82 N/A 90.29 85.71

2 53 85.49 87.92 86.27 N/A 90.74 87.00

3 398 85.52 78.86 79.03 N/A 90.07 76.71

4 181 80.34 87.19 87.19 N/A 98.30 82.75

5 277 81.89 83.19 83.28 N/A 90.71 80.42

6 54 88.27 91.47 91.39 81.57 96.55 93.45

The accuracy of OG, CVT, SDD, and CD are directly retrieved from [50].
Accuracies are reflected by the percentage of the agreed quartets.
1OG = Overlapping Gene Distance [46],
2CVT = Composition Vector Tree [47], and k is the length of string,
3CCV = Complete Composition Vector [48],
4PDUG = Structural Protein Domain Universe Graph [49],
5CD = Composite Distance [50].
doi:10.1371/journal.pone.0017906.t013

Figure 5. An example illustrating the graph alignment
algorithm we utilized.
doi:10.1371/journal.pone.0017906.g005

Table 14. The composition of dataset 6 containing 54 single-
chromosome prokaryotic organisms.

Division Bergey’s code Number of species

Bacteria Aquificae B1 1

Bacteria Fusobacteria B21 1

Bacteria Thermotogae B20 1

Bacteria Cyanobacteria B10 2

Bacteria Actinobacteria B14 5

Bacteria Firmicutes B13 15

Bacteria Proteobacteria B12 21

Archaea A2 8

doi:10.1371/journal.pone.0017906.t014
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where i denotes a GO term, for example, GO:0090295, negative

regulation of transcription by nitrogen catabolites; ni denotes the observed

number of GO term i in m-neighboring domains; and ei denotes

the expected number of GO term i appeared in m nodes.

Besides the above two methods, we also designed a Support

Vector Machine (SVM) -based method. For each domain, we

generated a feature-vector which included: (1) The occurrence

frequency of each of the 31,398 GO terms defined by Gene

Ontology [60], gathered from the neighboring nodes of the target

domain. For example, if there are in total two GO terms occurring

in the neighboring nodes, and each of them occurs once, the

frequencies of both of these two GO terms are 0.5, and the

frequencies of all the other GO terms are 0. (2) The occurrence

frequency of each of the six enzyme families collected from the

neighboring nodes of the target domain. (3) The occurrence

frequency of each of the 20 amino acids of the target domain.

From all the proteins of the target species, the ones that are found

to have the target domain are gathered; and then the segments of

the domain region are used to calculate the occurrence frequency

of the 20 amino acids. (4) Secondary structure information: the

occurrence frequency of helix (H), strand (E), and coil (C) of the

target domain, which are calculated in a similar way as in (3). (5)

Solvent accessibility information: the occurrence frequency of

solvent exposed and buried amino acids of the target domain. The

Figure 6. The phylogenetic tree generated on 54 single-chromosome prokaryotic taxa by our DCNs-alignment-based inference
method. For each organism, the Bergey’s code, NCBI ID, and the scientific name are shown. The percentage of the agreed quartets between this tree
and the Bergey’s taxonomy is 93.45%.
doi:10.1371/journal.pone.0017906.g006
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secondary structures and solvent accessibilities are predicted by

SCRATCH [63]. Some of these features, such as secondary

structure, amino acid sequence, and solvent accessibilities, have

been widely used in protein function prediction [43,64–66];

therefore, it seemed reasonable to also test them in DCN-based

predictions. However, our experiments showed that not all of these

features made positive contributions to improvements in accuracy.

Details are discussed in the ‘‘Results and Discussion’’ section.

According to TAIR8, Arabidopsis has 1,454 domains in total.

736 of these domains have at least one GO term available in Pfam

(i.e. domains with known function) and have at least one GO term

available in its radius one neighboring nodes. From these 736

nodes, we performed a leave-one-domain-out cross-validation.

Figure 9 shows an example, in which we supposed there are in

total only four domains existing in the DCN. Each time we left one

domain out, which is domain a in Figure 9, and treated its GO

terms unknown. From the remaining domains, which are domain

b, c, and d in Figure 9, we generated a feature vector from each of

these domains. A training dataset for each GO term was then

constructed in which the domains having the function of this GO

term were labeled positive and the ones not were labeled as

negative examples. Figure 9 shows the training dataset for ‘‘GO

term 2’’. If one domain contains several GO terms, which happens

quite often, each of the GO terms is included as positive examples

in its training dataset. As shown in Figure 9, ‘‘GO term 2’’ occurs

in both domains b and c, so the training dataset of ‘‘GO term 2’’

contains two positive examples with feature vector b and c. The

negative examples are randomly selected from all of the domains

that do not have the GO term. If a feature vector of a domain has

been included as a positive example, it will not be selected as a

negative example.

A binary SVM model was trained for each of the GO terms

occurring in the remaining domains using SVMlight [67], and then

the target domain, domain a in Figure 9, was classified by each of

these SVM models. Every SVM model generates a predicted

value, based on which all the GO terms are ranked, and the top

ranked GO terms are considered as the predicted GO terms. In

Arabidopsis, 467 models on average were trained every time when

classifying a target domain, and 403 for yeast, and 631 for human.

Many nodes in the DCN have a self-loop, i.e. an edge starting

from and ending to the same node. If a domain with self-loop is

Figure 7. Domain co-occurrence network of Arabidopsis thaliana. In total, the DCN of Aradbisopsis contains 141 disconnected sub-graphs
(each one has no edges connecting to any other sub-graphs); and most of the sub-graphs have less than 10 nodes. (A) is the largest DCN sub-graph,
or the main graph, of Arabidopsis DCNs that has 626 nodes and 1,304 edges. The graphs shown in Figure 1 and 8 are two acutal examples of the
small sub-graphs in Arabidopsis DCN. (B) is an enlarged partial view of Arabidopsis main DCN, in which domain Pkinase is a hub.
doi:10.1371/journal.pone.0017906.g007

Figure 8. The relationship between sub-graphs and protein
function. Each red eclipse encircles the domains co-occurred in one
protein.
doi:10.1371/journal.pone.0017906.g008
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selected as a target domain, it also exists in its own radius one

neighboring domains, which makes the GO terms of the

neighboring domains contain the real GO term(s) of the target

domain. Therefore, the self-loop of every target domain, if exists, is

removed.

Domain function prediction – enzyme family
We also used DCN to predict whether a domain is an enzyme

domain; and if so, which of the six Enzyme Commission (EC)

classes it belongs to. These six enzyme classes are: Oxidoreductases,

Transferases, Hydrolases, Lyases, Isomerases, and Ligases, which have an

EC number starting from 1 to 6, respectively. A mapping file

between GO terms and Enzyme Commission (EC) numbers was

downloaded from Gene Ontology website (http://www.geneon

tology.org/external2go/ec2go). If a domain contains at least one

GO term that maps to an EC number, this domain is considered

as an enzyme domain.

To predict whether a domain is an enzyme domain, we applied

SVM along with all the features mentioned in the previous section.

In Arabidopsis, there are a total of 307 enzyme domains that have

at least one GO term or EC number available/known in the

radius one neighboring domains, i.e. the GO term and EC classes

occurrence frequency are not all 0. Each of these domains was

considered as a positive example. The negative examples consisted

of the domains with known functions that are not enzyme-related,

i.e. none of its GO terms maps to an EC number. In this way, we

eliminated the ‘‘Domain with Unknown Function’’ (DUF)

domains, because these domains may not be non-enzyme

domains. We gathered a total of 429 negative domains/examples

in Arabidopsis. A binary SVM model was built by SVMlight [67],

and different kernels and combinations of features tested by several

leave-one-out cross-validations. Besides SVM, we also tested a

neighbor-inference method, by which if the neighboring nodes

contain at least one EC number, we predicted the target (central)

domain an enzyme domain; otherwise, non-enzyme domain.

Each of the 307 Arabidopsis enzyme domains having an enzyme

class number starting from 1 to 6 based on the first digit of their EC

numbers. SVMmulti-class [67] was used to build SVM models and

classify a query domain into one of the six classes. A leave-one-out

cross-validation was performed on these 307 enzyme domains,

which contain 90 domains in EC class 1, 91 domains in EC class 2,

59 domains in EC class 3, 19 domains in EC class 4, 13 domains in

EC class 5, and 37 domains in EC class 6.

Protein function prediction
To predict the functions of a query protein, we used a DCN-

based aggregated neighbor-counting method. Given the amino

acid sequence of a query protein, we run a profile-profile

alignment tool HHsearch [44] against Pfam profile database

(downloaded at ftp://toolkit.lmb.uni-muenchen.de/HHsearch/

databases/) to detect Pfam domains. In order to determine the

most relevant species of the query proteins, a PSI-BLAST search

was performed against the whole genome protein sequences of H.

sapiens, S. cerevisiae, C. elegans, D. melanogaster, 15 plants species, and

398 single-chromosome prokaryotic species, and the species

having the most significant PSI-BLAST hit (with the minimum

e-value) was considered the relevant species. The DCN of the

relevant species was used to make functional prediction for the

query protein. The aggregated neighbor-counting was then used

to predict functions. From the HHsearch result report of each

query protein, the detected Pfam domain(s) with an e-

value, = 0.01 was (were) extracted. For each of these extracted

domain(s), we retrieved its (their) radius one neighboring domains,

and the neighboring domains of all extracted domains were put

together. The GO terms for these neighbor domains were

retrieved from Pfam database and ranked by their occurrence

frequencies. This list of ranked GO terms was our final prediction.

Figure 4 shows an example of using the aggregated neighbor-

counting method to predict protein functions.

Phylogenetic tree construction and its evaluation
To construct a phylogenetic tree of a group of species, we

aligned their DCNs to identify conserved sub-networks, or

common network topology, which can reveal the evolutionary

significant patterns between species. This novel method is different

from existent sequence-based methods, as when comparing the

network topologies, since it uses the entire proteome of each

species to infer the phylogenetic relationship.

Figure 9. Predicting the GO terms of domain a using SVM classification. The DCN is supposed to have only four domains: a, b, c, and d, and
the functions of domain a are treated unknown. It only shows the binary classification process for GO term 2. This same process should be applied on
every GO term (GO term 1–7) that occurred in the training domains (domain b, c, and d). The top ranked GO term(s) is (are) treated as the final
predicted functions.
doi:10.1371/journal.pone.0017906.g009
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To align the DCNs of two species a and b, we define the DCN of

species a as a graph Ga~(Va,Ea), where Va is the set containing

all the vertices of graph Ga, and Ea is the set containing all the

non-redundant edges in graph Ga. Similarly, we define the DCN

of species b as a graph Gb~(Vb,Eb). The mutual vertices between

graph Ga and graph Gb (i.e., the same domains exist in both the

DCNs of species a and b) are defined as set V(a\b)~Va\Vb. We

identified the mutual vertices V(a\b), and calculate NUM(Ea\Eb)

- the number of mutual edges between graph Ga and graph Gb.

Because we do not assign weights to edges, two edges from two

graphs connecting the same vertices are considered equal. Then

we count the total number of unique edges connecting only mutual

vertices in both graph Ga and graph Gb, denoted as

NUM(Emutual{vertices
a |Emutual{vertices

b ). Then the similarity score

S(a,b) between graph Ga and graph Gb is calculated as the number

of mutual edges, divided by the total number of unique edges on

the mutual vertices:

S(a,b)~
NUM(Ea\Eb)

NUM(Emutual{vertices
a |Emutual{vertices

b )

Figure 5 illustrates an example of the graph alignment algorithm,

in which we align the two graphs as Figure 5 (A) and (B). We at

first find the mutual vertices between (A) and (B), which are b, c, d,

and e as shown in Figure 5 (C). Then three mutual edges between

graph (A) and graph (B): c–d, c–e, and e–d are picked as shown in

Figure 5 (D). The seven unique edges on the mutual vertices

between graph (A) and (B) are shown in Figure 5 (C). In this case,

there are two edges occurred between node c and d, which is due

to the fact that two proteins contain both domain c and d. These

two redundant edges are considered as one edge. Thus the

number of unique edges on the common vertices is 6. Therefore,

the similarity score between graph Figure 5 (A) and (B) is equal to

the number of edges in graph Figure 5 (D) divided by the number

of unique edges in graph Figure 5 (C), which is 3/6 = 0.5.

This alignment algorithm is straightforward, easy to implement,

and has low computational complexity compared to complicated

global alignment algorithms. If n is the total number of unique

domains in the two DCNs, the computational complexity will be at

most O(n2). In the future, we plan to try more advanced global

graph-alignment algorithms, such as IsoRankN [55].

Given a group of species, we used our graph alignment

algorithm for pair-wise comparisons and generated a distance

matrix (distance score = 1 - similarity score). We generated a

phylogenetic tree using the program ‘‘NEIGHBOR’’ in the

phylogeny inference package PHYLIP [68], which implements

the neighbor joining method [69].

Unlike the phylogenetic study of more advanced organisms,

which has plenty of morphology and archeology evidence

available, there are still uncertainties in bacteria taxonomy.

However, the scientific community usually considers the classifi-

cation presented in the book Bergey’s Manual of Determinative

Bacteriology [70] as the best approximation. Bergey defines a set

of taxonomy codes to indicate the classification. For example, the

organism Lactobacillus casei has a Bergy’s code B13.3.2.1.1

indicating it belongs to kingdom Bacteria, Division 13 (Firmicutes),

Class 3 (Bacilli), Order 2 (Lactobacillales), Family 1 (Lactobacillaceae),

and Genus 1 (Lactobacillus). In our work, we use Bergey’s

classification as the reference, and compared our phylogenetic

trees to this reference. The similarity between our phylogenetic

tree and Bergey’s classification was calculated by ComPhy [50],

which counts the number of agreed quartets between our

Figure 10. Composition details of the 398 single-chromosome prokaryotic genomes (strains).
doi:10.1371/journal.pone.0017906.g010
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phylogenetic tree and Bergey’s classification, and uses the

percentage of the agreed quartets as the similarity measure,

whereas a quartet is a sub-graph topology containing four taxa

(tree nodes) [50].

In order to comprehensively evaluate the potential of DCNs to

infer phylogeny, we conducted experiments on six datasets with

different combinations of 398 single-chromosome prokaryotic

genomes (strains). These six datasets were previously used to

compare several different phylogeny inference methods [50]. For

direct comparison, we used the same version of the datasets: 432

prokaryotic genomes downloaded from NCBI in September 2007.

After removing 34 multi-chromosome species, we included 398

species in our dataset, which contains 29 Archaea species and 369

Eubacteria species (Figure 10). Dataset 1 consists of 52 randomly

selected species from Bergey’s taxonomy tree [50]. Dataset 2

contains 53 species, 28 of which are randomly selected from the

Archaea species, and 25 of them are randomly selected form

Eubacteria species. Dataset 3 contains all the 398 organisms.

Dataset 4 is composed by Bacterial Division 12 (181 species).

Division 12 is a large division containing approximately half of the

398 genomes. Dataset 5 is formed by Bacterial Division 12 (181

species) and Division 13 (96 species). These two are big clusters,

and the phylogenetic tree generated on dataset 5 should contain

two tiger clusters. Dataset 6 contains 54 organisms, which were

obtained from Deeds [49], a phylogeny inference method using

domain structures networks.
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