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Type I interferon kappa (IFNκ) is selectively expressed in human keratinocytes. Herpes simplex virus-1 (HSV-1) is a human
pathogen that infects keratinocytes and causes lytic skin lesions. Whether IFNκ plays a role in keratinocyte host defense against
HSV-1 has not been investigated. In this study, we found that IFNκ mRNA expression was induced by addition of recombinant
IFNκ and poly (I:C); and its expression level was significantly greater than IFNa2, IFNb1, and IFNL1 in both undifferentiated
and differentiated normal human epidermal keratinocytes (NHEKs) under resting and stimulation conditions. Although IFNe
was expressed at a relatively higher level than other IFNs in resting undifferentiated NHEK, its expression level did not change
after stimulation with recombinant IFNκ and poly (I:C). HSV-1 infection inhibited gene expression of IFNκ and IFNe in NHEK.
Silencing IFNκ in NHEK led to significantly enhanced HSV-1 replication in both undifferentiated and differentiated NHEK
compared to scrambled siRNA-transfected cells, while the addition of recombinant IFNκ significantly reduced HSV-1
replication in NHEK. In addition, we found that IFNκ did not regulate protein expression of NHEK differentiation markers.
Our results demonstrate that IFNκ is the dominant type of IFNs in keratinocytes and it has an important function for
keratinocytes to combat HSV-1 infection.

1. Introduction

The interferon (IFN) κ gene was identified in 2001 [1]. It
consists of 207 amino acids including a 27 amino acid signal
peptide and has about 30% homology to other interferon
genes. IFNκ was initially found to be constitutively expressed
in human proliferating primary keratinocytes and could be
induced significantly by IFNβ, IFN-γ, and encephalomyocar-
ditis virus (ECMV) [1]. Later, IFNκmRNA was also found to
be constitutively expressed in human innate immune cells
including monocytes and dendritic cells [2]. Although IFNκ
is expressed by limited cell sources, it activates the same
signaling pathway as other type I IFNs by receptors of
IFNRA1/IFNRA2 [1]. Because it is constitutively expressed
in keratinocytes, IFNκ has been investigated for its role in
human papillomavirus- (HPV-) involved human diseases.
High-risk HPV were reported to inhibit IFNκ gene tran-

scription in human cervical keratinocytes, and its expres-
sion is reduced and undetectable in HPV-positive human
cervical keratinocytes [3–5].

Herpes simplex virus-1 (HSV-1) is a well-known human
pathogen that establishes lifelong latency in the central ner-
vous system [6, 7]. It triggers reactivation and lytic infections
mainly in the skin and mucosal membrane, and these infec-
tions are often opportunistic and self-limited. However,
under some conditions, such as immunodeficiency, and
chronic usage of immune suppressants including steroids,
some atopic dermatitis patients can develop severe forms
of HSV-1 infections including eczema herpeticum and
encephalitis [8–10].

In this study, we investigated the regulation of IFNκ and
its function against HSV-1 in normal human epidermal ker-
atinocytes (NHEKs). We found that IFNκ is the dominant
type of IFNs compared to IFNa2, IFNb1, IFNe, and IFNL1;
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and it is critical for keratinocyte’s host defense to control
HSV-1 infections.

2. Methods and Materials

2.1. NHEK Cell Culture and Treatment. NHEKs were
purchased from Thermo Fisher Scientific and maintained in
EpiLife medium containing 0.06mM CaCl2 and S7 supple-
mental reagent in 5% CO2 at 37

°C. For NHEK differentiation,
cells were cultured in EpiLife medium containing 1.3mM
CaCl2 for 2 days, then treated with recombinant human IFNκ
(rhIFNκ), HSV-1, or PRR agonist poly (I:C) for additional
24 hours.

2.2. Virus Source, Cytokines, and PRR Agonist. HSV-1
(VR-733) was purchased from American Type Culture
Collection (Manassas, VA). Recombinant human IFNκ
was purchased from PBL Assay Science (Piscataway, NJ).
Poly (I:C)-HMW/LyoVec™ and poly (I:C)-LMW/LyoVec™
were purchased from InvivoGen (San Diego, CA).

2.3. siRNA Knockdown Gene Expression. Three different
IFNκ siRNA duplexes and control nontargeting scrambled
siRNA duplexes were purchased from Life Technologies.
The sequence for IFNκ siRNA #1 are as follows: sense:
CCCUAUCCCUGGACUGUAAtt and antisense: UUAC
AGUCCAGGGAUAGGGtg; IFNκ siRNA #2 sense: GAUA
GACAAUUUCCUGAAAtt and antisense: UUUCAGGAA
AUUGUCUAUCct; IFNκ siRNA #3 sense: CACCUUCAA
AUAUUGGAAAtt and antisense: UUUCCAAUAUU
UGAAGGUGtg. NHEKs were plated in 24-well plates at
1 × 105 per well the day before transfection. Cells were trans-
fected with siRNA duplexes at a final concentration of 10 nM
using lipofectamine 2000 according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA). After 24 hours of
incubation, the cell culture medium was replaced with Epi-
Life supplemented either with 0.06mM CaCl2 for 24 hours
(undifferentiated condition, UD) or with 1.3mM CaCl2
for 2 days (differentiated condition, D). HSV-1 at various
multiplicity of infection (MOI) was then added to the cells
for an additional 24 hours. After incubation with HSV-1,
the cells were harvested for RNA extraction, qRT-PCR,
and plaque assays.

2.4. Total RNA Extraction and qRT-PCR. Total RNA was
extracted using RNeasy mini kit according to the manufac-
turer’s guidelines (QIAGEN, MD). RNA was then reverse
transcribed into cDNA using SuperScript® III reverse tran-
scriptase from Invitrogen (Portland, OR) and analyzed by
real-time PCR using an ABI Prism 7000 sequence detector
(Applied Biosystems, Foster City, CA). Primers and probes
for human 18S (Hs99999901_s1), IFNκ (Hs00737883_m1),
IFNa2 (Hs041892288_g1), IFNb1 (Hs01077958_S1), IFNL1
(Hs00601677_g1), and IFNe (Hs00703565_s1) were pur-
chased from Applied Biosystems (Foster City, CA). The
primers and probe of HSV-1 gD gene were described previ-
ously [11]. Quantities of all target genes in test samples were
normalized to the corresponding 18S.

2.5. Viral Plaque Assay. Vero cells were maintained in
Minimum Essential Medium (MEM) with 5% of Fetal
Bovine Serum (FBS). Cells were plated into 24-well dishes
at 2 × 105 to form monolayers. The following day, HSV-1-
infected NHEK cell culture supernatants were frozen and
thawed for three times to release the viral particles. The
infectious media were then added to Vero cell monolayers
with serial dilutions. After 2 hours of incubation, the infec-
tious media were removed; and the cells were covered by
2% of methylcellulose made in MEM containing 2% FBS
and cultured at standardized cell culture condition. Two
days later, the viral plaque formation was visualized by 1%
crystal violet staining.

2.6. Western Blot Protein Detection. Cells were lysed in 2x
Laemmli sample buffer (Bio-Rad) and proteins were run on
western blots. Antibodies against β-actin (clone W16197A)
and KRT10 (clone DE-K10) were purchased from BioLegend;
antibody against IVL (MA5-11803) was purchased from
Thermo Scientific. Rabbit polyclonal anti-IFNκ (ab168119)
was purchased from Abcam (Cambridge, MA).

2.7. Statistical Analysis. We used GraphPad prism software
(version 5.03, San Diego, CA) for statistical analyses. Com-
parisons of expression levels were performed using ANOVA
techniques and independent sample t-tests as appropriate.
Differences were considered significant at p < 0:05.

3. Results

3.1. IFNκ Is the Dominant IFN Expressed in NHEK under
Resting and Stimulated Conditions Compared to Other IFN
Family Members. To evaluate the relative importance of IFNκ
in keratinocytes compared to other IFN family members, we
investigated IFNκ expression levels in NHEK cells under
both undifferentiated and differentiated conditions in the
presence and absence of rhIFNκ, poly (I:C), and HSV-1. As
shown in Figure 1(a), we found that IFNκ expression level
was much greater than IFNa2, IFNb1, and IFNL1; and its
expression was significantly induced by rhIFNκ in both
undifferentiated (UD) and differentiated (D) NHEK; in addi-
tion, its expression level is significantly greater in differenti-
ated NHEK than undifferentiated NHEK. IFNa2 and IFNb1
were not induced by rhIFNκ. Although IFNe mRNA was
expressed at greater levels compared to other IFNs in undif-
ferentiated NHEK, it was not upregulated further by rhIFNκ.
IFNL1 mRNA was extremely low in both undifferentiated
and differentiated NHEK; interestingly, it was induced in
the presence of rhIFNκ.

IFNκ has been reported to be upregulated in proliferat-
ing keratinocytes by poly (I:C) [4]. In this study, we investi-
gated IFNκ gene expression in response to poly (I:C)
stimulation in comparison with other IFN family members
in undifferentiated and differentiated NHEK. Poly (I:C)-
HMW/LyoVec™ and poly (I:C)-LMW/LyoVec™ contain
different lengths of double-stranded RNA which activate
RIG-1-like receptor-mediated signaling pathways [12]. As
shown in Figure 1(b), three IFNs, IFNκ, IFNb1, and IFNL1,
were significantly induced by poly (I:C)-LMW/LyoVec™
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and poly (I:C)-HMW/LyoVec™ (1μg/ml) in both undiffer-
entiated and differentiated NHEK, while IFNa2 and IFNe
had no change. We were able to detect IFNκ protein in cell
lysates collected from poly (I:C)-stimulated NHEK in both
undifferentiated and differentiated cells (Figure 1(c)). IFNκ
protein was not detected in media alone-treated undiffer-
entiated NHEK by western blot assay, but it was detect-
able in media alone-treated differentiated NHEK. These
data demonstrate that IFNκ is significantly upregulated in
differentiated NHEK.

We also investigated how HSV-1 infection affects
IFNκ gene expression in NHEK. As shown in Figure 1(d),
HSV-1 infection inhibited IFNκ and IFNe expression in

undifferentiated and differentiated NHEK, but IFNb1,
IFNL1, and IFNa2 were not affected.

3.2. Silencing IFNκ Expression Leads to Enhanced HSV-1
Replication in NHEK. Although IFNκ was found to protect
host cells from ECMV and HCV infections [13], it has not
been investigated whether IFNκ could protect keratinocytes
fromHSV-1 infection. To test IFNκ function in keratinocytes
against HSV-1 infection, we silenced IFNκ gene expression
in NHEK in undifferentiated and differentiated NHEK and
then evaluated HSV-1 replication in IFNκ-silenced NHEK.
HSV-1 replication in NHEK cells was evaluated by real-time
qRT-PCR of HSV-1 gD gene and viral plaque assays. Using a
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Figure 1: IFNκ is the dominant IFN in NHEK under resting and stimulated conditions compared to other IFN family members.
Undifferentiated and differentiated NHEK cells were stimulated with rhIFNκ (10 ng/ml), poly (I:C) (1 μg/ml), and HSV-1 (MOI of 0.05)
for 24 hours. The cells were then harvested to evaluate IFNa2, IFNb1, IFNκ, IFNe, and IFNL1 gene expression. (a) Gene expression was
evaluated by real-time PCR in NHEK in the presence and absence of rhIFNκ. (b) Gene expression was evaluated by real-time PCR in
NHEK in the presence and absence of poly (I:C). (c) Western blot assay to detect IFNκ, KRT10, and β-actin. (d) Gene expression was
evaluated by real-time PCR in NHEK in the presence and absence of HSV-1 (MOI of 0.05). Data presented as mean ± SEM. One of three
independent experiments is presented. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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pool of siRNA duplexes to inhibit IFNκ gene expression in
NHEK and cells transfected with scrambled siRNA as con-
trols, we found that IFNκ gene expression was sufficiently
inhibited by siRNA silencing in both undifferentiated and
differentiated NHEK cells (Figure 2(a)). HSV-1 gD expres-
sion was significantly increased in IFNκ-silenced cells com-
pared to scrambled siRNA-treated cells (Figure 2(b)). We
further performed viral plaque assays and confirmed that
IFNκ-silenced NHEK produced increased HSV-1 plaques
than controls (Figures 2(c) and 2(d)). To confirm these
results were not an off-target effect, we used three different
siRNA duplexes to target IFNκ in undifferentiated and differ-
entiated NHEK cells. As shown in Figure 2(e), three IFNκ
siRNA duplexes targeting different regions of IFNκ gene effi-
ciently inhibited IFNκ gene expression. HSV-1 gD gene
expression was significantly increased in IFNκ-silenced
NHEK cells (Figure 2(f)). We further used viral plaque assays
to evaluate the production of viral infectious particles. As
shown in Figures 2(g) and 2(h), IFNκ-silenced NHEK pro-
duced significantly increased viral plaques compared to the
control cells. These results demonstrated that IFNκ-silenced
NHEKs are more susceptible to HSV-1 infection.

3.3. Addition of rhIFNκ Inhibits HSV-1 Replication in NHEK.
Since silencing IFNκ leads to increased HSV-1 infection, we
investigated whether the addition of rhIFNκ to NHEK cells
could reduce HSV-1 replication in these cells. We found that
HSV-1 significantly inhibited IFNκ gene expression, but the
addition of rhIFNκ could increase the endogenous IFNκ gene
expression compared to control treatments (Figure 3(a)).
HSV-1 gD gene expression was significantly reduced in
NHEK cells in the presence of rhIFNκ compared to the
absence of rhIFNκ (Figure 3(b)); NHEK with rhIFNκ treat-
ment resulted in significantly reduced viral plaques com-
pared to cells without rhIFNκ treatment (Figures 3(c) and
3(d)). These data demonstrate that IFNκ is capable of inhibit-
ing HSV-1 replication in NHEK cells.

3.4. IFNκDoes Not Regulate NHEK Differentiation.As shown
in Figures 2 and 3, we found that undifferentiated NHEK
supports more HSV-1 replication than differentiated NHEK;
therefore, we investigated whether IFNκ regulates NHEK dif-
ferentiation program and consequently affects HSV-1 repli-
cation by altering NHEK differentiation status. Keratin 10
(KRT10) is a marker of spinous layer of the epidermis, and
involucrin (IVL) is a marker of granular and stratum cor-
neum layers [14]. We found that the addition of IFNκ and
silencing IFNκ did not change the expression of KRT10 and
IVL in NHEK (Figures 4(a) and 4(b)). These data suggest that
IFNκ does not regulate NHEK differentiation; thus, the
mechanism by which it inhibits HSV-1 infection is not by
regulating NHEK differentiation.

4. Discussion

Type I IFNs comprise more than 20 homologous cytokines
that were discovered based on their antiviral activities [15].
All type I IFNs including IFNκ use a common type I IFN
receptor complex that comprises two chains of IFNAR1

and IFNAR2. Upon ligand binding, IFNAR1 and IFNAR2
dimerize and initiate a signaling cascade that includes
phosphorylation of Tyk2 and Jak1 tyrosine kinases and sub-
sequent phosphorylation of the STAT1 and STAT2 proteins.
Association of the phosphorylated STAT proteins with IRF9
forms the interferon-stimulated gene factors 3 multi-subunit
complex, which translocates to the nucleus and binds to
interferon-stimulated response elements in the upstream of
IFN-inducible genes, and subsequently activates hundreds
of genes to confer antiviral, antitumor, and immune modula-
tory activities [16, 17]. The type I IFN cytokines have shown
differences in their cell sources, receptor affinities, and gene
targets as well as biological activities [17]. In order to define
the importance of IFNκ in keratinocyte innate immune
responses, we compared IFNκ mRNA expression levels with
four other IFNs (IFNa2, IFNb1, IFNL1, and IFNe) under both
resting and stimulation conditions in both undifferentiated
and differentiated NHEK (Figure 1). The rationale for us to
choose these four IFNs are as follows. (1) IFNa2/IFNb1 are
the most studied type I IFNs and IFNa2 has been used in clin-
ical treatment of hepatitis and skin malignancies for decades
[18, 19]; IFNβ is also used for multiple sclerosis treatment
[20]. (2) IFNL1 is the representative cytokine of IFN-λ fam-
ily, an emerging master regulator of innate and adaptive
immune systems for mucosal membrane tissues [21]. (3)
IFNε has been reported to protect female reproductive tracts
from viral and bacterial infections [22]. Our data for the first
time reveals that IFN family members respond differently to
the same stimulation in keratinocytes, and IFNκ is the dom-
inant type of IFNs in keratinocytes under unstimulated and
stimulated conditions of itself, poly (I:C), and HSV-1 in both
undifferentiated and differentiated conditions, suggesting
that IFNκ may be the dominant IFN of skin host defense
against viral infections. Additionally, we found that IFNκ
gene expression was induced by the addition of rhIFNκ,
suggesting that this gene can be regulated by the forward
feedback regulation mechanism in keratinocyte.

The importance of type I IFN in HSV-1 resistance has
been demonstrated by studies using type I IFN receptor
knockout mice. Mice lacking type I IFN signaling have sig-
nificantly decreased survival after ocular and footpad inoc-
ulation of HSV-1 [23, 24]. In addition, human patients
suffering from herpes simplex encephalitis often have defects
in type I IFN signaling [25–27]. On the other hand, previous
studies have found HSV-1 has developed multiple mecha-
nisms to dampen type I interferon production in different
types of cells to facilitate infection [28]. For example, HSV-1
US3, a tegument protein kinase, can reduce TLR3 gene
expression thus inhibiting TLR3-mediated type I IFN
response [29]; HSV-1 US11, an RNA-binding tegument
protein, can interact with RIG-1 andMDA5 and prevent these
proteins from interacting with the downstream adaptor
protein, MAVS, and consequently inhibit IFNβ production
[30, 31]. In this study, we found the gene expression of IFNκ
was significantly inhibited by HSV-1 in both undifferentiated
and differentiated NHEK in a dose-dependent manner
(Figure 2(a)), suggesting that HSV-1 has strong antagonistic
effects against IFNκ in keratinocytes. Thus, from the perspec-
tive ofHSV-1-invading strategy, we speculate that IFNκ is one
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Figure 2: Continued.
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Figure 2: Silencing IFNκ leads to enhanced HSV-1 replication in NHEK. Undifferentiated (UD) and differentiated (D) NHEK cells were
transfected with scrambled siRNA and IFNκ siRNA duplexes. The cells were then infected with HSV-1 for an additional 24 hours before
harvested. (a) IFNκ transcripts and (b) HSV-1 gD transcripts were evaluated by real-time qRT-PCR. (c) Representative viral plaque assay
results were shown. (d) Quantitative results of HSV-1 plaque assay using infectious materials collected from NHEK infected with HSV-1
(MOI of 0.05). (e) IFNκ transcripts and (f) HSV-1 gD transcripts were evaluated by real-time qRT-PCR. (g) Representative viral plaque
assay results were shown. (h) Quantitative results of HSV-1 plaque assay using infectious materials collected from NHEK HSV-1 (MOI of
0.05). Data is presented as mean ± SEM. One of four independent experiments is presented. ∗p < 0:05; ∗∗p < 0:01.
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Figure 3: Addition of rhIFNκ inhibits HSV-1 replication in NHEK. Undifferentiated (UD) and differentiated (D) NHEK cells were treated
with rhIFNκ (10 ng/ml) and indicated MOI of HSV-1 for 24 hours. Cells were then harvested for real-time qRT-PCR. (a) IFNκ and (b) HSV-1
gD transcripts were evaluated by real-time qRT-PCR. (c) Representative viral plaque assay results were shown. (d) Quantitative results of
HSV-1 plaque assays. Data presented as mean ± SEM. One of three independent experiments is presented.
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of the critical targets for the virus to overcome in order to
establish effective infection in keratinocytes. Indeed, we
found that HSV-1 replication was significantly enhanced
in IFNκ-silenced NHEK cells compared to control cells;
and treatment of exogenous rhIFNκ significantly restrained
HSV-1 replication in NHEK. These results demonstrate
that IFNκ is important for keratinocyte innate immunity
against HSV-1 infection and IFNκ may be an effective
therapeutic target for HSV-1 skin infections.

In this study, we found that differentiated keratinocytes
were more resistant to HSV-1 infection compared to undif-
ferentiated cells (Figures 2 and 3). Interestingly, we found
IFNκ mRNA and protein were significantly increased in dif-
ferentiated NHEK. These data suggest that increased IFNκ
gene expression in differentiated keratinocytes may be one
of the mechanisms by which differentiated NHEK has
increased resistance to HSV-1 infection.

In summary, our data in this study demonstrate that
IFNκ is the dominant type of IFNs in human keratinocytes
and it is important for human keratinocytes to control
HSV-1 infection.
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