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Abstract 

In biology, accurate and robust quantification of biological images is critical for 

understanding distribution patterns and heterogeneity of subcellular structures within a 
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cell. While various methods tailored to specific biological contexts have been employed 

for image analysis, there is a need for versatile approaches that transcend the constraints 

imposed by the intricacies of different biological systems. Here we report the application 

of dispersion indices – a statistical concept widely used to measure the income 

distribution within a population by economists – as a powerful and agnostic tool for 

quantifying biological images, which offers distinct advantages over traditional methods. 

In our approach, we substitute pixel intensity for income and number of pixels for 

population. We demonstrate the utility of dispersion indices in quantifying autophagic 

puncta, mitochondrial clustering, and microtubule dynamics, all of which are key 

measures relevant for maladies ranging from metabolic and neuronal diseases to cancer. 

Further, we show utility in 2D cell cultures and a 3D multicellular midbrain culture as well 

as measurement of a performance metric such as a half maximal effective concentration 

value (EC50).  

 

Introduction 

Quantitative fluorescence microscopy is an indispensable technique for 

characterization of biological structures1-4, drug discovery and screening pipelines5-7, 

mechanism of action studies8-10, and studying disease pathology in preclinical studies11-

13 to guide therapeutic development. While several methods and acquisition guidelines14 

exist for image analysis of particular cellular organelles or structures, they rely on the 

specific biological contexts, which requires using multiple context-specific image analysis 

pipelines in ImageJ or in the subsequently improved software, CellProfiler15, for studying 

diverse biological features. We hypothesized that dispersion indices — mathematical 
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measurements used to assess wealth distribution within a population — provide a 

universal framework for quantifying distributions without the need for tailored adaptations 

to distinct biological systems.  

Dispersion indices are statistical measures of distribution regularly used in 

economics to measure income inequality within countries and across continents 16,17. 

Recognizing dispersion indices measure population disparities as a function of income 

and households gives rise to a new opportunity in quantifying biological structures in 

fluorescent microscopy images whereby pixel intensity and number are a proxy for 

income and households, respectively. Herein, we describe the use of dispersion indices 

to quantify the diffusiveness or aggregation of subcellular structures in images. The 

agnosticism of dispersion indices is advantageous to situations where a single 

quantification method must be applied to diverse biological contexts or when quantifying 

structures that lack established analysis protocols. We discuss the generalized entropy 

indices, GE(0) and GE(1), most commonly known as Theil’s L and Theil’s T, as well as 

the coefficient of variation (COV) and Gini coefficient. These indices have previously been 

used in biological contexts; the Gini coefficient, for example, has been used in biological 

contexts to analyze gene expression data18,19 and quantify bacterial aggregation20. We 

highlight the advantages of using dispersion indices to analyze the distribution of 

subcellular structures in biological images and demonstrate their adaptability across 

various experimental setups, in quantifying autophagic puncta, mitochondrial clustering, 

and microtubule polymerization. Dispersion indices effectively capture the nuances of 

subcellular structure distributions in diverse biological contexts, including an example in 

a multicellular 3D human midbrain culture. 
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Given the current challenges in quantifying autophagy21 and the clinical 

importance of autophagy in diseases22 such as diabetes, fatty liver disease, kidney 

disease, Parkinson’s, Alzheimer’s, and cancer, it is a prime test case to evaluate this new 

technique. Autophagic puncta are typically quantified via the protein marker LC3-II, which 

strongly associates to the membranes of autophagosomes and appears as puncta when 

stained. Despite LC3-II being spatially unique, the most common analysis method is via 

western blots, which lacks single cell resolution. This complicates the interpretations of 

autophagy in cell cultures and tissues that contain multiple cell types. Fluorescence-

based methods offer single cell resolution and are commonly used in high content image 

analysis to segment cells using computer algorithms. However, the manual counting of 

LC3 puncta within images remains the standard method for quantitative analysis in 

autophagy research, as automated segmentation of autophagosomes21,23 from 

microscopy images is challenging. These challenges are highlighted in autophagy assay 

guidelines set by Klionsky et al.24, and a straightforward quantitative solution is still 

lacking. We present the development of a facile imaging-based assay as a platform for 

evaluating autophagy-modulating compounds and materials. Specifically, we describe 

the quantification of autophagic puncta using dispersion indices as an alternative to 

puncta counting. To demonstrate the universality of the dispersion indices approach, we 

then study mitochondrial clustering and microtubule dynamics, both of which are also of 

widespread interest. 

 

Results 

Dispersion indices simulation/validation 
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We adapted dispersion indices from their traditional use in economics to analyze 

the distribution of pixel intensities in images. By using dispersion indices in conjunction 

with image segmentation software, this analysis allows the quantification of intensity 

inequality within individual cells. In this application of dispersion indices, we substitute 

income for pixel intensity and households for pixels. Transfer of intensity from bright pixels 

to dim pixels decreases inequality measurements. The mathematical properties of 

dispersion indices are population and mean invariant – an attractive feature for image 

 

 
Figure 1| Numerical properties and decomposition of dispersion indices. (A-D) 
Measures of  pixel intensity inequality using GE(0), GE(1), COV and Gini coefficient as 
a function of both i) the distributed fraction, which is the fraction of the pixel array that 
contains 99.999% of the total intensity, and ii) the  array size, which is the number of 
pixels. For some plots, the array sizes are not plotted to facilitate ease of visualizing 
the trend. The plots converge as the array size increases and dispersion index 
responses follow similar trends irrespective of array size. (E) Example histogram with 
an artificially-generated distribution of pixel intensities that can be linearly decomposed 
into three sub-components. The whole distribution is comprised of three sub-
populations with different means, with two sub-populations having normal distributions. 
(F) Decomposition of this distribution using Thiel’s’ T index into sub-components 
reveals the Tw and Tb contributions from these features quantitatively. 
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analysis. Regardless of the array size of the image (number of pixels) (Figure 1.A-D) and 

regardless of the mean of the distribution, images/objects which exhibit the same intensity 

distribution will yield the same value when using the same dispersion index. Thus, 

dispersion indices are intuitive and quantitative measures such that the indices increase 

when the distributed fraction decreases, meaning that the total pixel intensity distributes 

among fewer pixels (Figure 1.A-D). The analogy in terms of economic inequality means 

that the total income is distributed amongst a smaller number of people in the population, 

indicating higher inequality. However, it is important to note that it is necessary for the 

resolution of the image to be substantial enough to be able to expand the range of 

sensitivity to scenarios in which a high amount of the pixel intensity is distribution among 

a small fraction of pixels (Supplementary Figure 1), as there are noticeable bounds on 

the maximum response of arrays which are smaller than 50 pixels. Consequently, the 

dispersion index is independent of cell size or resolution, as long as the cell is larger than 

50 pixels. For example, an array of 2 pixels can only have a max inequality where 

99.999% of the intensity is in 1 of 2 pixels, whereas an array of 50 pixels has max 

inequality when 99.999% of the intensity is in 1/50 pixels, although these cases are 

extreme. Additionally, dispersion indices anonymize pixels, such that the exact spatial 

distribution of the biological structure does not affect the dispersion index so long as the 

intensity distribution is unaffected.  

Dispersion indices are uniquely sensitive to different fluctuations in inequality 

(Figure 1.A-D)25 . As noted within literature26,27, GE(1) (Figure 1.B) shows increased 

sensitivity over GE(0) (Figure 1.A) to changes among low populations of high income, 

which translates to bright pixels in image analysis indicating that the total intensity of the 
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image is concentrated to a few pixels. Further, the curvature of the GE(1) plot shows a 

sharp increase in response as the distributed fraction decreases. Small changes at lower 

distributed fractions (i.e., the fraction of the pixel array that contains 99.999% of the total 

intensity, or the fraction of the population that contains 99.999% of the total income) result 

in large increases in the index response to those changes. The COV portrays the largest 

initial response to changes in these bright pixels. The Gini coefficient and GE(0) respond 

linearly to incremental redistribution of intensity. For GE(0) and Gini coefficient, there is 

an upper limit response value for max inequality, where one pixel contains 99.999% of 

the intensity (one bright pixel amongst dark pixels).  However, for GE(1) and COV, the 

upper limit for measuring max inequality theoretically increases continuously as the array 

size increases. Additionally, generalized indices GE(0) and GE(1) decompose a 

distribution linearly into sub-components, such that sub-component contributions to 

overall index measures scale with the relative size of that sub-component (Figure 

1.E,F)16,17. For example, a form of decomposition in measuring economic inequality would 

be separating the income distributions by age group to determine how each age group 

contributes to the overall population income inequality. This type of analysis is useful for 

images with multiple cell types. While Theil’s L and Thiel’s T are decomposable, it is not 

as intuitive to understand as the Gini coefficient, which is based on the Lorenz curve28.  

 

Simulation of dispersion indices within biologically relevant contexts.  
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Autophagy is a natural protein degradation and clearance process that occurs at 

varying basal levels in mammalian cells. Much of autophagy research relies on the 

 
Figure 2| Numerical investigation into dispersion indices.(A) Cytosolic debris and 
proteins are sequestered into a double membraned autophagosome before degradation. 
LC3 and p62 mediate the formation process and are degraded. (B) Lipidation of LC3-I 
into LC3-II results in the spatial organization of LC3-II that results in bright puncta in 
images. (C,D) Example simulated puncta accumulation given a constant background 
signal intensity. (C) Input array when number of puncta = 1 and (D) at the maximum 
when the number of puncta = 45. (E,F) example 3D surface plots showing (E) GE(1) 
response and (F) is the Gini coefficient response from input arrays with varying puncta 
diameter and number of puncta. (G-J) represent the same simulations as (C-F) but under 
the assumption of stable total integrated intensity. 
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quantification of the protein marker, LC3-II, for autophagosomes29. During the formation 

process of autophagosomes (Figure 2.A), the phagophore sequesters cargo within a 

double membraned autophagosome and ultimately, the autophagosome merges with a 

lysosome to form an autolysosome. Enzymatic and acidic degradation of the inner 

membrane contents follows for subsequent recycling and use by cells. Wortmannin and 

bafilomycin A1 interrupt the natural autophagic process. Conversion of the cytosolic, 

unlipidated LC3-I to lipidated LC3-II results in the strong association of LC3-II to 

membranes of autophagosomes29, normally ranging 0.5 µm to 1.5 µm in diameter. LC3 

lipidation affords increased puncta staining as LC3 is integrated into the autophagosomal 

membrane (Figure 2.B).  

We investigated the statistical dispersion of the population in silico as a function of 

both increasing puncta number within the cell and puncta size. We considered two 

different simulation scenarios at biological extremes: 1) no loss of diffuse LC3-I 

background signal as [LC3-1] replenishes at an equivalent rate to conversion of LC3-II 

and the total LC3 content increases (stable noise) (Figure 2.C-F), and 2) diffuse LC3-I 

signal diminishes and total LC3 content remains constant (stable integration) (Figure 2.G-

J). Simulation results reveal that high replacement of LC3 content (stable noise) yields a 

sharp and robust dispersion index responses and then peaks before decaying (Figure 

2.E,F). The stable integrated intensity from constant LC3 levels affords increasing 

responses with puncta number and minimal effect due to puncta diameter, owing to the 

spatial focusing of pixel intensity to limited locations within the cell field (Figure 2.I,J). 

 Simulations of autophagosome accumulation in cells support the use of dispersion 

indices as a measure of puncta accumulation within cells. The two scenarios evaluated 
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represent the theoretical bounds of LC3-I production rates, either allowing immediate 

replacement of LC3-I resulting in a stable background signal with an accumulation of 

overall intensity or limiting the replacement of LC3-I such that the overall intensity remains 

constant. In situations of no replacement and stable image mean, dispersion indices 

demonstrate nearly exclusive sensitivity to accumulating number of puncta rather than 

increasing puncta diameter, a finding that supports a high fidelity measurement. 

Furthermore, the simulation with high rates of LC3 replacement (stable noise) provides 

robust responses with the accumulation of low numbers of puncta, but with an eventual 

inflection point. We attribute this inflection point to the large changes in image properties 

such as image mean, a feature not represented in dispersion indices by design. Such an 

inflection point would be undesirable, but our simulation allows for the accumulation of 

puncta to the greatest extent which are non-overlapping, resulting in autophagosome 

numbers that are not found within live cells in a biological context.  Additionally, we note 

that upon cell starvation, the lipidation of LC3-I is likely not equivalent to LC3-I 

replacement in contexts of high turnover, as simulated in the stable noise scenario. LC3-

II is detectable via western blot within minutes of cell starvation29, but replacement of LC3-

I depends on conversion from translated proLC3 and other post-translationally modified 

forms of LC3. As an example, non-autophagic, acetylated LC3B localizes to the nucleus 

and serves as a reserve normally and is depleted during starvation30.  Therefore, stable 

integration more realistically simulates autophagic puncta in real biological contexts 

(Figure 2G,H).  
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Generation of a biological dataset and evaluation of cell-based measurements. 

 

-

 
Figure 3| Dispersion Indices respond to altered lipidation states. (A) Heathy HEK293A 
cells expressing LC3-GFP have low autophagic flux and do not accumulate autophagosomes 
(AP). (B) Starved HEK293A cells increase the intracellular content recycling by increasing 
autophagic flux. (C) Starved HEK293A cells with inhibited LC3 lipidation via Wortmannin 
cannot form autophagosomes at the same rate, decreasing flux. (D) Starved HEK293A cells 
with inhibited degradation via 100nM Bafilomycin A1 cannot degrade autophagosomes. 
Autophagic flux is the difference between C and D under starvation. Scale bar is 5 µm. (E) 
Representative images of HFL1 cells under different states of autophagic flux. Cyan is Hoechst 
33342; yellow is LC3 immunolabeling; magenta is β-actin. Scale bar 5 µm. (F) Representative 
HFL1 western blot data. (G) Plot of GE(1) treatment response for HFL1 cells. (H) Regression 
of normalized GE(1) against LC3-II western blot z-score results. (I) Plot of Gini coefficient 
treatment response for HFL1 cells. (J) Regression of normalized Gini coefficient against LC3-
II western blot z-score results. Dotted lines represent the 95% confidence interval for the linear 
fit. * = p<0.05 , ** = p<0.01, *** = p<0.001, **** = p<0.0001.  
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Given the robust response of dispersion metrics to the formation of simulated 

autophagosomes, we treated HEK293A and HFL cells to induce 4 different levels of LC3 

lipidation and imaged the cells using a combination of antibodies and fluorescent fusion 

protein constructs (LC3B-GFP) (Figure 3.A-D,E). In parallel, we extracted protein content 

for western blot (Figure 3.F) to evaluate LC3 lipidation and p62 accumulation. In doing 

so, we determined the range of autophagic degradation capacity. Levels of p62 increase 

in nutrient deprived cells treated with Earle's Balanced Salt Solution (EBSS). The PI3K 

Inhibitor, Wortmannin, inhibits LC3-I to LC3-II conversion as expected and Bafilomycin 

A1 treatment results in a block of autophagic degradation after LC3 lipidation, affording 

marked high levels of LC3-II in western blots and numerous puncta per cell. Quantification 

of LC3 channel images yields robust and reliable dispersion index responses to 

modulations in LC3 lipidation states and the presence of autophagosomes within cells 

(Figure 3.G-J). To determine the accuracy of dispersion indices as a quantitative measure 

of autophagy in cells, we analyzed regression models of all calculated image 

measurements against western blot results. A strong correlation (R2= 0.89) exists 

between the dispersion indices, GE(1) and Gini coefficient, and the LC3-II western blot 

data, confirming that dispersion indices align well with western blot results. The slope of 

the regression line indicates the sensitivity of each dispersion index to changes in LC3-II, 

where the regression line for the normalized Gini coefficient response has a higher slope 

of 2.31 (Figure 3.J) compared to a slope of 2.13 for the normalized GE(1) response 

(Figure 3.H).  
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Figure 4| Rank-based performance model results. (A) Individual response scores for each 
cell measurement and model performance metric. (B) Table of overall top performing 
measurements. (C) Overall performance scores for evaluated metrics with significant 
correlations to LC3-II levels (p<0.05). (D) Regression Error Characteristic curves for 
parameters colored by calculation module.  
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We generated a CellProfiler pipeline to segment and analyze autophagy images.  

We used CellProfiler to generate 285 different types of measurements per cell and to 

perform semi-automated LC3 puncta counting with manually selected imaging 

thresholds, as automated thresholding techniques were insufficient to reliably detect 

puncta in all treatment groups. We evaluated regression models for each of the 

measurements through 7 different characteristics (fit error, fit variability, fit sensitivity, 

treatment cross validation, KFold cross validation, R2 of fit, and adjusted R2) (Figure 4.A), 

and then evaluated the cell measurement types based on their performance scores. We 

removed models with insignificant fits before ranking to yield 40 different image 

measurements with significant correlations and predictive capability (Figure 4.B,C). Both 

cumulative and cell-type specific performance scores demonstrate that GE(1), GE(0), 

Gini coefficient, and COV are the best cell measurements investigated (Figure 4.C). To 

further visualize errors associated with image-based detection of LC3-II, we utilized 

regression error characteristic curves11 (Figure 4.D), plotting the fraction of data points 

(i.e., accuracy) as a function of increasing deviation from the model prediction (i.e., error 

tolerance). Other image-based measurements performed well but lacked the capacity to 

represent ~20% of data. Other top performing cell-based measurements include LC3 

puncta counting, as expected, and image texture measurements including image 

granularity. However, these other imaged-based features are unreliable in some cell 

types tested (Figure 4.C).  

 

Decomposition of multicellular systems using GE(1) and GE(0).  
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Figure 5| Decomposition of GE(1) and GE(0) in a multicellular system via cell-type 
specific markers. (A) 3D midbrain organoid slice labeled with tyrosine hydroxylase, NeuN 
and Hoechst 33342 to demonstrate multicellularity of the organoids. (B) Image quantification 
of slice in (A) as evidence for NeuN- and NeuN+ cell types within the 3D culture. (C) Western 
blot results from organoids under starvation conditions and inhibition of autophagosome 
degradation. (D-F) Decomposition of GE(1) to show within-group and between-group effects. 
(G-I) GE(1) Twithin responses for nuclei, TUJ1+ neurons, and GFAP+ astrocytes, respectively. 
(J-L) Decomposition of GE(0) to show within-group and between-group effects. (M-O) GE(0) 
Lwithin responses for nuclei, TUJ1+ neurons, and GFAP+ astrocytes, respectively. * =  p<0.05, 
** = p<0.01, *** = p<0.001, **** = p<0.0001. All statistics are from ANOVA with multiple 
comparisons post hoc. Each point represents 1 FOV. N=3 organoids. 
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Dispersion indices are highly useful parameters because they do not require object 

identification for any application – making them agnostic to the specific organelle or 

structure of interest. Moreover, generalized entropy indices contain the added benefit of 

linear decomposability, a feature shared with traditional puncta counting. In practice, the 

linear decomposability evaluates the effects that subgroups contribute to the overall 

inequality of the population, analogous to looking at the variability in puncta per cell 

measurements when averaged over a field of view. In the context of image analysis, 

decomposability determines if overall changes in the dispersion are due to differences in 

average intensity (e.g., caused by uneven staining) rather than changes in inherent 

dispersion within each of the subgroups. 

To demonstrate the benefits of using the decomposability of dispersion indices 

GE(0) and GE(1) to identify inequality contributions by sub-components, we analyzed a 

multicellular human organoid culture model in response to starvation (Figure 5.A)31. 

Although derived from a single population of cells, human neuroepithelial stem cells 

undergo differentiation to yield multiple cell types over time, including neurons, astrocytes, 

and oligodendrocytes. (Figure 5.A,B). Starvation of organoids leads to a substantial 

increase in autophagic flux, as demonstrated by western blot analysis (Figure 5.C). LC3 

flux increases in starvation conditions compared with bafilomycin A1 treated controls, but 

it is unclear which cells within the population are responsive. To investigate this, we 

analyzed two different cell types within the culture, neurons, identified by TUJ1 staining, 

and astrocytes, identified by GFAP staining.  

We first used the linear decomposition of GE(1), as it yields the best approximation 

of LC3-II levels within cells tested. Decomposition results of TUJ1 and GFAP stained cells 
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reveal even LC3 staining between groups (Figure 5.F). The majority of the variation in 

staining intensity between treatment groups arises from differences within each cell type 

subgroup (Figure 5.E). For all stained areas, GE(1) reveals an increase in accumulated 

LC3 in starved cells (in EBSS) inhibited with bafilomycin A1, a response that follows 

western blot results (Figure 5.D). Interestingly, subgroup analysis using GE(1) shows a 

cell-type specific response to starvation, with TUJ1+ areas decreasing GE(1) response 

upon starvation, with bafilomycin treatment exhibiting little effect on the absolute 

magnitude of responses (Figure 5.H). This result shows that TUJ1+ areas had 

insignificant changes to autophagic flux due to starvation. In contrast, GFAP+ cells show 

elevated GE(1) response (i.e., LC3-II accumulation) in starved (EBSS) cells when treated 

with bafilomycin A1, revealing that astrocytes are starvation-responsive cells (Figure 5.I). 

The Hoechst subgroup yielded results similar to GFAP+ cells (Figure 5.G). These results 

align with literature showing that starvation conditions afford less pronounced effects in 

neurons than in astrocytes, where autophagy is robustly activated32. Finally, we evaluated 

these cells using the linear decomposition of GE(0), which enables more equal analysis 

of pixels with varying intensities. Similar to GE(1), the differences between groups 

minimally contributes to the overall differences between treatment groups. However, 

overall and cell-specific subgroup analyses show an increased GE(0) response between 

cells under fed conditions (Figure 5.J,M-O). The measured effects are most pronounced 

in Hoechst associated pixels, and similar for GFAP+ and TUJ1+ cell areas. In sum, 

Hoechst+, TUJ1+, and GFAP+ areas demonstrate a response to both starvation and to 

inhibition of autophagosome degradation, but in different ways. 
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Decomposition enables 3D autophagy measurements without the need for image-

based object detection in multicellular systems. Indeed, dispersion indices reveal cell-

type specific responses that are not represented through bulk measurements. 

Specifically, TUJ1+ neurons display a decreased level of dispersion upon starvation, 

potentially increasing autophagosome clearance in response to the stimulus but not 

accumulating LC3-II like neighboring GFAP+ cells. It is likely that basal autophagy is high 

in these neurons, as much of the differentiation factors included (e.g., BDNF, GDNF, 

cyclic AMP) can induce autophagy. The analysis of complex multicellular systems will 

greatly benefit from this type of analysis. 

 

Dispersion indices to quantify autophagosomal EC50  
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Next, we demonstrated the utility of dispersion indices for reliable, reproducible 

estimations of EC50 concentration within cells. In particular, we chose COV to measure 

EC50 due to the ease of access to the standard deviation and mean of the cell’s intensity 

through all image-processing software. We used a commercially available HEK293A 

GFP-LC3B line and cultured these cells with bafilomycin A1 under normal and starvation 

 
Figure 6| Starvation-dependent dose-response of HEK293A cells to bafilomycin A1.  

(A) Puncta per cell measurements (top) and coefficient of variation (COV) measurements 
(bottom) of HEK293A cells treated with bafilomycin A1 for 3 hours under complete media. (B) 
Puncta per cell and COV analysis for HEK293A cells under EBSS starvation for 3 hours with 
bafilomycin A1 treatment. Representative HEK293A GFP-LC3B images for cells treated with 
bafilomycin in (C) complete media and (D) in EBSS (starved cells). Images were acquired 
using confocal microscopy. Scale bar 5 micron. EC50 values are reported with a 95% CI. 
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conditions to determine an EC50 value for autophagosome formation (Figure 6.A,B). We 

labeled nuclei and actin filaments to easily identify cells using high-resolution confocal 

microscopy (Figure 6.C,D). In this first group of experiments, we confirmed dose-

response characteristics of these cells. We measured autophagy by two methods, the 

coefficient of variation (COV) for each cell as well as the number of LC3 puncta identified 

as objects. Our imaging results estimate an EC50 of ~1nM for bafilomycin A1 in cells 

cultured under normal conditions and  an EC50 of ~4 nM for bafilomycin A1 in cells 

cultured under starvation conditions, which agrees with published results33. Moreover, the 

starvation of HEK293A cells raises the response ceiling relative to complete media – 

evidence for increased autophagic flux. This increase in autophagic flux is in tandem with 

increased cellular resistance to the inhibition of lysosomal degradation, with a shift of 

EC50 from ~1.5 nM to ~3.4 nM. This shift is also apparent upon visual inspection of the 

images (Figure 6.C,D), and most apparent is the shift of intracellular COV intensity, as 

opposed to puncta per cell measurements. Additionally, the use of widefield microscopy 

greatly reduces image acquisition time of the dataset. However, we observed that 

widefield microscopy increases the variability of the acquired dataset, where EC50 is 

reported as 7.6 ± 1.4 nM (95% confidence interval) when quantified using COV and the 

EC50 is reported as 5.1 ± 1 nM (95% confidence interval) when quantified using puncta 

counting (Supplementary Figure 2). While our switch from confocal to widefield 

microscopy does not reduce our theoretical XY resolution, the loss of z-sectioning likely 

affects the variability of the widefield dataset. 
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Dispersion indices to quantify mitochondrial clustering and microtubule dynamics 

 

 

 

 
 
Figure 7| Quantification of mitochondrial clustering in normoxic and hypoxic conditions 
using dispersion indices.  

(A) Representative images of rat pulmonary artery cells stained for nuclei (cyan), actin (green), 
and mitochondria (magenta) in normoxic and hypoxic (2% O2) conditions. (B) Intensity profile 
of mitochondria as a function of distance from the center of the cell in normoxic and hypoxic 
conditions. (C-F) Quantification of mitochondria using Gini coefficient, COV, GE(0), and GE(1). 
Statistics are from unpaired two-tailed t-tests. N=659-664 cells. 
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Next, we investigated applicability of dispersion indices to two other important 

biological structures: mitochondria and tubulin. Mitochondria are crucial for cellular energy 

production and are involved in various cellular pathways. Efficient microtubule dynamics 

are essential for cell division, and standard of care cancer treatments utilize microtubule 

 
 
Figure 8| Quantification of tubulin dynamics with varying vincristine dosages using 
dispersion indices.  

(A) Representative images of U2OS cells stained for nuclei (cyan), actin (magenta), and tubulin 
(yellow) at concentrations of 100nM, 1μM, 10μM, and 20μM of vincristine for 30 minutes. (B-
E) Quantification of tubulin using Gini coefficient, COV, GE(0), and GE(1). (F) Quantification 
of nuclei diameter. Statistics are from one-way ANOVA with Dunnett’s multiple comparisons 
test. N=137-864 cells. 
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inhibitors like paclitaxel as chemotherapies. Common practices for analyzing these 

structure require tedious processes such as mitochondrial isolation and western blotting. 

We hypothesized that quantitative assessments of mitochondria and tubulin via image 

analysis provide a facile pipeline for studying metabolic disruption and identify emerging 

cell resistance to chemotherapeutic drugs. 

Literature reports that under hypoxic conditions, mitochondria cluster in the 

perinuclear region34  as quantified by measuring the fluorescence intensity of 

mitochondria at different distances from the nucleus (Figure 7B). However, dispersion 

indices enable the quantification of mitochondrial clustering without requiring detailed 

spatial information. All four dispersion indices show lower dispersity of mitochondria in 

hypoxic conditions, leading to higher dispersion index values (Figure 7C). Dispersion 

indices identify cells under normoxic and hypoxic conditions based on mitochondrial 

clustering. 

Vincristine, an anti-mitotic microtubule destabilizing chemotherapy drug, binds to 

both soluble and microtubule-associated tubulin35. A previous study showed that 

vincristine alters the Haralick texture homogeneity36, which is an image analysis method 

used to analyze the relationship of neighboring pixels37. This finding prompted us to 

investigate if dispersion indices will quantify tubulin distribution. At concentrations of 

100nM and 1μM, the dispersion index is significantly lower for all 4 dispersion indices. 

These results align with previous image analysis reports using Haralick texture 

homogeneity showing that 1μM significantly alters tubulin distribution, which leads to 

increased homogeneity. Tubulin is more evenly distributed, which is consistent with our 

finding that 1μM vincristine results in lower dispersion indices compared to the control. 
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Interestingly, the Gini coefficient identifies cells treated with vincristine concentrations of 

10μM and 20μM to be significantly different from the control, although the other three 

dispersion indices do not indicate significant differences. The observed discrepancy is 

likely attributed to a greater than 25% reduction in nuclei diameter, indicating reduction in 

cell size at 10μM and 20μM, resulting in loss of spatial distribution. The dispersion indices 

of tubulin treated with 10μM and 20μM vincristine become more similar to that of control 

cells. As the cell size decreases (Figure 8F), pixel intensities artificially appear more 

clustered and cause an artificial increase in the dispersion index. Additionally, higher 

concentrations of vincristine can result in formation of crystalline tubulin aggregates38 that 

appear punctated, contributing to the increase of the dispersion index. Dispersion indices 

offer advantages over Western blot, which examines soluble and polymerized forms of 

tubulin, but lacks the ability to assess time dynamics in a single cell. However, based on 

our findings, we note that the use of dispersion indices to compare treatments should be 

used with caution when there is a greater than 25% change in cell size due to treatment. 

  

Discussion 

We describe a novel image analysis paradigm that, while initially demonstrated 

using autophagy, is broadly applicable to other cellular structures. Taking inspiration 

derived from quantitative analyses of economic income inequality, we substitute pixel 

intensity for income and number of pixels for population and perform a comprehensive 

evaluation against hundreds of image measurements from open-source image analysis 

software.  GE(1) (Theil’s T) provides the most effective model of LC3-II levels, followed 

by the GE(0), Gini Coefficient, and the Coefficient of Variation.  
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GE(1), which describes the entropic distance between the current observed 

entropy and the maximum possible entropy in the image array, measures the spatial 

focusing of LC3 to autophagosomal membranes, reflecting the reduced entropic states 

when LC3 is lipidated. Importantly, these quantification strategies outperform custom 

semi-automated puncta identification algorithms, despite the latter’s accuracy in 

representing LC3-II levels (Figure 4.B). Utilizing dispersion indices offers a significant 

advantage in terms of time saved compared to the tedious optimization required for object 

detection algorithms.  

While image textural features provide another set of valuable measurements, the 

indirect nature of the best textural measurements (i.e., Variance and SumVariance) of 

autophagy as pixel intensity dispersion indicators underscores the utility of dispersion 

indices. Previous methods reliant on puncta identification, such as “autophagosome 

scores,” have been used to calculate a ratio between the total intensity within identified 

autophagosomes and the total intensity within the cell39. Dispersion indices are a similar 

type of measurement, but eliminate the need to identify individual puncta. 

Applying this analysis paradigm to multicellular 3D human midbrain cultures, we 

observe differential cell responses between neurons and astrocytes upon nutrient 

deprivation. This is the first simultaneous measurement of autophagic flux in multiple cell 

types. We also demonstrate the applicability of our methods by generating EC50 curves 

for autophagosome degradation inhibition using Bafilomycin A1 under starvation. Our 

results underscore the method’s versatility and applicability across diverse biological 

contexts. 
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Moreover, our method extends beyond autophagy to analyze mitochondria and 

tubulin, which are vastly different structures from autophagosomes. This generalizability 

enables high-throughput screening of multiple biological structures, offering a powerful 

tool for current and future imaging assays. We anticipate our analysis pipeline to be an 

effective and versatile method in high content image analysis, where previously 

challenging targets can be quantified without the use of proprietary software or image 

analysis algorithms limited to specific cell types. 

 

Materials and Methods 

 

Cell Culture.  

HEK293A cells expressing LC3-GFP were purchased from Sigma-Aldrich 

(14050801). HepG2 (HB-8065), HFL1 (CCL-153), and U-2 OS cells were sourced from 

ATCC. Rat primary pulmonary artery endothelial cells (PAECs) were purchased from Cell 

Biologics (RA-6059). HEK293A, HepG2, and HFL1 cells were cultured with Dulbecco’s 

Modified Eagle’s Medium (Gibco, 11-965-092) supplemented with 1% penicillin-

streptomycin and 10% Fetal Bovine Serum (Atlanta Biologicals, S11150). PAECs were 

cultured using the Complete Endothelial Cell Medium Kit (M1266, Cell Biologics). U-2 OS 

cells were cultured with McCoy’s 5A Medium (ATCC) supplemented with 1% penicillin-

streptomycin and 10% Fetal Bovine Serum. Cells were grown at 37°C and 5% CO2. Cells 

were grown to ~80% confluency and then split onto glass coverslips (for confocal 

microscopy), or to 96 well plates (CellVis) at a density of 4000 cells/well. Cells were left 

to grow on glass for a minimum of 48 hours before experiments began.  
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Human Midbrain Organoid Culture.  

Human neuroepithelial stem cells (hNESCs) cells were a gift from Jens 

Schwarmborm at the University of Luxembourg and grown according to published 

procedures31. Stem cells were grown using N2B27 base media with, 150 μM ascorbic 

acid (Sigma-Aldrich, A59060), 0.75 μM Purmorphamine (Sigma-Aldrich, SML0868), and 

3 μM CHIR-99021 (Axon Med Chem, 1386). hNESCs were grown on Matrigel-coated 6 

well plates and media was changed every other day. To form organoids, hNESCs were 

seeded at 9000 cells/ well into a round-bottom 96-well plate (Corning, 7007). Single 

colonies were transferred to 24 well plates 4 days after seeding and embedded in a 30µL 

Matrigel droplet. Organoids were differentiated in N2B27 Media with BDNF (Peprotech, 

450-02), GDNF (Peprotech, 4510-10), TGF-β3 (Peprotech, 100-36E), N6,2-O-

Dibutyryladenosine 3’,5’-cyclic monophosphate sodium salt (D0627, Sigma-Aldrich), and 

ascorbic acid. Purmorphamine was kept in the differentiation medium for the first 6 days 

and then removed. Media was changed 3 times per week for 8 weeks before organoid 

use in experiments, and embedded organoids were kept freely floating in 24 well plates 

on an orbital shaker. N2B27-based media is a 1:1 (v:v) mixture of neurobasal medium 

(Gibco, 2110349), and DMEM/F12 Mixture without L-glutamine, (Corning, 15-090-CV), 

supplemented with GlutaMAX (Gibco, 35050061), N2 (Gibco, 17502001), and B27 

(Gibco, 17504044). 

 

 

Nutrient Depravation and Autophagy Inhibition.  
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Nutrient deprivation of cells and organoids to induce autophagosome formation 

involved the replacement of complete media with Earle’s Balanced Salt Solution (Gibco) 

for 3 hours with the addition of either DMSO (as mock control), Wortamannin (Sigma 

Aldrich) or Bafilomycin A1 (Medchem express). All inhibitors were added at the induction 

of starvation.  

Hypoxia Experiments 

 PAECs were seeded on 15 mm glass coverslips in 60mm petri dishes at a density 

of 0.8x106 cells/dish for 48 hours before exposure to hypoxia. The petri dish was placed 

in a hypoxia chamber at 2% O2 for 2.5 hours and incubated at 37°C. The petri dish was 

then taken out to stain for mitochondria using MitoTracker Deep Red FM (Thermo Fisher 

Scientific) and placed back into the hypoxia chamber at 2% O2 for an additional 30 

minutes. The cells were then stained for actin using CellMask Green Actin Tracking Stain 

(Thermo Fisher Scientific) and nuclei using Hoechst. Cells were fixed for 10 minutes at 

RT with freshly diluted 4% PFA in 1x PBS. Cells were rinsed and then mounted on glass 

slides using Prolong Diamond Antifade reagent (Thermo Fisher Scientific). 

 

Tubulin Inhibition Experiments 

U-2 OS cells were seeded on glass-bottom 12 well plates at a density of 0.1x106 cells/well 

for 48 hours before treatment. Cells were stained for tubulin using Tubulin Tracker Deep 

Red (Thermo Fisher Scientific), for actin using CellMask Green Actin Tracking Stain 

(Thermo Fisher Scientific) and nuclei using Hoechst. Cells were treated with vincristine 

(Sigma-Aldrich) solubilized in DMSO and FluoroBrite DMEM (Gibco). 
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Autophagy Staining 

For HEK293A cells, wells were fixed for 10 minutes at RT, with freshly diluted PFA 

to achieve a final concentration of 4% PFA in 1X PBS. Cells were then washed once with 

PBS, and then incubated for 30 minutes with Phalloidin iFluor 647 (AAT Bioquest, 

1:10,000 dilution), Hoechst 33342 (1µg/mL), and 0.1% Triton-X 100 (Sigma Aldrich) in 

PBS. For cells grown on coverslips, cells were rinsed and then mounted on glass slides 

using Prolong Diamond Antifade reagent Thermo Fisher Scientific).  

 For HepG2 cells, wells were also fixed for 10 minutes RT with 4% PFA. For 

immunolabeling experiments, cells were then washed, permeabilized with ice-cold 

methanol at -20°C for 15 minutes, and then washed again before blocking using 10% 

goat serum, 1% BSA, and 0.1% Triton X-100 in 1X PBS. To stain for protein targets, 

Rabbit Anti-LC3B (Cell Signaling Technology, D11 clone, 1:400 dilution), Mouse - Anti-

p62/SQSTM1 (Abcam, BSA and azide free, 1:500 dilution), and Chicken Anti - Beta-Actin 

(Sigma Aldrich, 1:150 dilution) primary antibodies were incubated overnight at 4°C. 

Secondary antibodies (Goat Anti-Rabbit AlexaFluor 488, Goat Anti-Chicken AlexaFluor 

594, and Goat Anti-Mouse AlexaFluor 647, Jackson ImmunoResearch) were incubated 

for 2 hours at RT. Sample preparation prior to imaging is the same as described above 

for HEK293A cells. 

Freshly fixed samples were blocked before staining for 3 hours with 10% goat 

serum (Jackson Immuno Research, 005-000-121), 1% bovine serum albumin (Sigma-

Aldrich, A9418), and 0.1% Triton-X 100 (Sigma -Aldrich, T8787) in 1X PBS. Primary 

Antibodies were then incubated overnight at 4°C to label LC3B (1:400, Cell Signaling 

Technology, 3868), and β-Actin (1:1000, Cell Signaling Technology, 3700), rinsed 3x, and 
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then incubated with secondary antibodies, Goat Anti-Rabbit AlexaFluor 488 (1:2000, 

Jackson Immuno Research, 111-545-144), and Goat Anti-Mouse AlexaFluor 594 

(1:2000, Jackson Immuno Research, 111-585-146). After 3 hours of incubation at RT, 

nuclei were then labeled by incubating 1µg/mL Hoechst 33342 (Thermo Fisher Scientific, 

62249) for 15 minutes at RT, followed by three washes with 1X PBS. Samples were then 

mounted in Prolong Gold Antifade Reagent (Thermo Fisher Scientific, P36934). For 

HEK293A cells expressing GFP, samples were mounted in Prolong Diamond Antifade 

(Thermo Fisher Scientific, P36961). For double labeling experiments, Goat-Anti Rabbit 

AlexaFluor 647(1:2000, Jackson Immuno Research, 111-605-146) was used to detect 

LC3B in both the green and the far red channels. To label LC3A and LC3B proteins, a 

different primary antibody was substituted (1:150, Cell Signaling Technology, 12741S). 

Samples were normally imaged within a week of staining and kept at 4°C in the dark for 

preservation. 

 

Western Blotting.  

Cells designated for western blotting were grown on 6 well plates or 96 well plates, 

lifted using cell scrapers, and then lysed with RIPA buffer (Thermo Fisher Scientific, 

89900) and protease inhibitor cocktail (Thermo Fisher Scientific, 78430). Western Blot 

samples were kept frozen at -20°C before analysis. 

Protein Extracts were run on 4-20% precast gels, (BioRad, 4569035) at 90V for 2 

hrs in Tris-glycine-SDS running buffer, transferred in 25 mM Tris with 192 mM glycine and 

20% methanol at 90V for 1 hour. Samples were blocked in 5% non-fat dry milk in TBS-T. 

Primary antibodies for GAPDH (Cell Signaling Technology, 5174), LC3B (Cell Signaling 
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Technology, 3868), LC3A/B (Cell Signaling Technology, 12741), p62 (Abcam, ab56416), 

Viniculin (Cell Signaling Technology, 13901), and GFP (Cell Signaling Technology, 2956), 

were all incubated 1:1000 in 1% Non-fat dry milk in TBS-T. Secondary Antibodies were 

diluted 1:2000 in 5% BSA in TBS-T solution. Anti-mouse IgG-HRP (Cell Signaling 

Technology, 7076) and anti-rabbit IgG-HRP (Cell Signaling Technology, 7074) secondary 

antibodies were diluted 1:2000 in 5% BSA in TBS-T solution. Bands were visualized by 

chemiluminescence using SuperSignal West Femto Maximum Sensitivity Substrate 

(Thermo Fisher Scientific, 34094) on a ChemiDoc XRS+ imager (Bio-Rad). 

 

Preparation of Starved 3D Organoid Samples.  

For western blot analysis, samples were lysed and stored as described above. For 

immunofluorescence experiments, organoids were fixed in 4% PFA for 1 hour and then 

transferred to 30% sucrose solution overnight or until the samples sank to the bottom of 

the tube. Organoids were then sliced and frozen into 50 µm sections using a microtome. 

For immunolabeling, organoids were transferred into 1.5 mL tubes. Solution exchanges 

were achieved by a short spin on a benchtop centrifuge. Samples were mounted using 

Prolong Gold Antifade. Neurons were identified with Tyrosine Hydroxylase (1:1000 

Abcam, ab112), Neuronal marker NeuN (1:500, Abcam, ab177487), and TUJ1 (1:1000, 

Sigma-Aldrich, MAB1637). Astrocytes were labeled with GFAP (1:500, Sigma-Aldrich, 

G3893). 

 

Imaging and Image Analysis 
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To ensure a quality dynamic range, the gain of each channel was adjusted such 

that there are no saturated pixels to enable accurate quantitative image analysis14. For 

analysis, we created maximum-intensity Z-projections in ImageJ using a macro and then 

processed the images simultaneously using CellProfiler15. All measurements were made 

on a per-cell basis, removing cells on the edges of the FOV. The pipelines are available 

upon request, but we specifically highlight the use of a median filter for nuclei and β-Actin 

channels to aid in primary and secondary object selection (i.e., nuclei and cell edge 

segmentation). Additionally, the use of a top hat filter improves the automated detection 

of relatively small objects (relative to pixel size or resolution) such as LC3 and p62 puncta. 

 Whole organoid slices for general characterization of neuron population were 

carried out using widefield microscopy on an Olympus VS120 slide scanner. For 96-well 

plate formulations, cells were then washed in 1X PBS and then imaged on an Olympus 

IX-83 widefield microscope and an air immersion 60x, 0.95 NA objective. Mounted slides 

and live cells were imaged using an Olympus FV3000 confocal microscope and an air 

immersion 40x, 0.90 NA objective. For LC3 labeled samples, all imaging data was 

collected on an Olympus FV3000 confocal microscope using a 60x (PLANAPO) oil 

immersion objective with an NA of 1.42. Cells with different treatment groups were all 

acquired with the same imaging acquisition parameters. For monoculture cell images, 

cells were segmented using CellProfiler, with custom steps for nuclei and cell 

segmentation as needed. For analysis of organoid slides, cell areas specific to neurons 

(TUJ1+) or astrocytes (GFAP+) were allocated via thresholding of respective channels to 

create 3D masks, and then applied to the LC3 image for dispersion analysis. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.608451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.18.608451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 
 

 

All analysis measurement modules (e.g. MeasureTexture, MeasureAreaShape, 

etc.) used identical settings across all cell types. For hypoxia experiment analyses, the 

MeasureObjectIntensityDistribution module was used to quantify the intensity profile of 

the mitochondria channel from the nuclei to the cell edge. Output data files from 

CellProfiler pipelines were processed and imported into MATLAB for downstream 

analysis. To generate dispersion measurements, including linear decomposition, images 

were directly imported into MATLAB, normalized, and cell regions were identified using 

counterstains. LC3, mitochondria, and microtubule channel pixels located within cell 

regions were included in dispersion calculations. Dispersion indices were calculated 

through the following equations: 

Equation 1: 𝑇ℎ𝑒𝑖𝑙!𝑠	𝐿 = 	𝐺𝐸(0) = 	 "
#
∑ 𝑙𝑛 1	$%

$!
	2#

&'" 	 = 	𝐿	 = 	 𝐿(&)*&+ +	𝐿,-).--+ 	=

	∑ #"
#
𝐿// + 	∑ #"

#
𝑙𝑛	 4	 $%

$"
	5 	/ 	  
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∑ $"
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0
𝑙𝑛	 1	$

%"
$%
	2 	/  

Equation 3: 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 	 1#
$%
	 = 	 "

$%
?"
#
∑ (	𝑦& 	 − 𝑦B	)2#
&'" 	  

Equation 4: 𝐺𝑖𝑛𝑖	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1	 − 	 "
#
∑ (	𝑦& + 𝑦&3"	)#
&'"   

where 𝑦i is the intensity of a pixel, 𝑦j is the intensity of a pixel within a subgroup, 𝑦B is the 

mean intensity of all pixels, 𝑦Bj is the mean intensity of pixels within a subgroup, N is the 

total number of pixels, 𝜎$ is the standard deviation, Nj is the total number of pixels in the 

jth subgroup, Y is the total amount of intensity, Tj is the Theil’s T value calculated 
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considering only subgroup pixels and Lj is the Theil’s L value calculated considering only 

subgroup pixels.  

 

Numerical Approximations and Puncta Simulations.  

For numerical evaluation of dispersion indices, a total intensity was assumed and 

99.999% of the total intensity was incrementally distributed from 1 to the total number of 

pixels (9000), with the remaining percentage distributed evenly among the other pixels. 

To simulate autophagosome accumulation, puncta were simulated in an approximately 

10 µm cell as a 100x100 pixel square cell array with puncta as 2D Gaussians with full 

width at half maximum (FWHM) equivalent to the range of autophagosomes we normally 

expect to see in biological data (0.5-1.5µm in diameter). Pixel intensities from puncta were 

calculated by integration of a 2D Gaussian function. Puncta were assigned random 

locations in the cell without overlapping centers until no more locations remained. To yield 

constant total intensity in the simulated image, random noise was overlaid such that the 

integrated intensity was constant for all puncta diameters and numbers. For assumptions 

of constant background, the same 2D noise array was added to all simulated images. 

 

Rank-based performance characterization of dispersion indices.  

All cell-based measurements were normalized by measurement type and 

averaged by field of view before performing regression analysis against LC3-II blotting 

measurements. Regression characteristics for each model were then assigned scores 

based on 7 different characteristics (fit error, fit variability, fit sensitivity, treatment cross 

validation, KFold cross validation, R2 of fit, and adjusted R2) and ranked. Measurements 
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that produced insignificant fits based on a p-value of 0.001 were removed from the 

downstream rank analysis. 

 

Statistical Analyses.  

All plotting and statistical analysis were performed in MATLAB or GraphPad Prism, 

and statistical tests used unpaired two-tailed t-tests or ANOVA, with Tukey’s or Dunnett’s 

test for multiple comparisons. P-values less than 0.05 were considered significant. For 

nonlinear fitting, we performed a 4-parameter (variable slope) fit to estimate EC50 values 

with 95% confidence intervals for all fitted parameters. The reported slopes are 5x the 

true slope of the curve due to dose-data transformations that enabled the plotting of box 

plots on a log10 axis and do not affect the quality of the resulting fits. 
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Supplementary Figures: 

 

 

 

 
 

Supplementary Figure 1| Range of relative values achieved by dispersion indices as a 
function of array size. Increasing the array size (number of pixels) increasing the possible 
maximum dispersion index value achieved in cases of high inequality (ie. 99.999% of the pixel 
intensity is within 1 pixel). 
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Supplementary Figure 2| EC50 dose-response generation with HEK293A cells using 
widefield microscopy. Characterization of bafilomycin A1 response quantified using either 
the (A) the COV, (B) autophagy score, or (C) automated puncta per cell counting. 
Representative images for A-C are given in (D). Characterization of wortmannin inhibition of 
PI3K and autophagy induction given cotreatment with 25 nM bafilomycin A1. Measurements 
of COV (E), autophagy score (F) and puncta per cell measurements (G) show increasing 
puncta accumulation with decreasing wortmannin dose. Representative images are presented 
in (H). Scale bar 5 micron. EC50 values are reported with a 95% CI. 
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