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REVIEW

Role of thyroid hormone‑integrin 
αvβ3‑signal and therapeutic strategies 
in colorectal cancers
Yu‑Chen S. H. Yang1†, Po‑Jui Ko2,3†, Yi‑Shin Pan4, Hung‑Yun Lin5,6,7,8,9*  , Jacqueline Whang‑Peng5,6, 
Paul J. Davis9,10 and Kuan Wang4 

Abstract 

Thyroid hormone analogues—particularly, l-thyroxine (T4) has been shown to be relevant to the functions of a variety 
of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are 
critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface inte‑
grin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. 
Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. 
EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor 
cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresist‑
ance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine 
interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC prolifera‑
tion. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer 
functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome 
chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signal‑
ing pathways.
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Introduction
Colorectal cancer (CRC) is the second leading cause 
of cancer death worldwide and studies of CRC under-
standably attract much attention in the oncology litera-
ture [108]. New therapeutic targets in the tumors and 
expanded anticancer drug choices have importantly 
transformed treatment strategies for CRC in recent 
years. Improved patient outcomes have resulted over 
the past two decades [12, 113]. Improvements in surgical 

techniques for managing the oligometastatic disease of 
lungs and liver in CRC have also contributed to improved 
overall survival (OS) of CRC patients. 5-Fluoroura-
cil (5-FU) has increased CRC OS from 14.2 to nearly 
30  months when combined with folinic acid, fluoroura-
cil, oxaliplatin (FOLFOX)- and folinic acid, and irinote-
can (FOLFIRI)-based chemotherapies [53]. However, 
this improvement has not increased the 5-year survival 
rate for patients with Stage IV disease; the rate remains 
at < 15%, and metastatic CRC (mCRC) remains essen-
tially incurable [103].

Among the new therapeutic targets in mCRC that 
appear to have promising effects are Ras isoforms. Ras 
genes are the most frequently mutated family of onco-
genes in cancer. CRCs often contain mutant Ras proteins 
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and these appear to be linked to chemoresistance. How-
ever, most Ras-specific targeted therapeutic strategies 
have to-date been unsuccessful [11]. No K-Ras-specific 
drugs have been approved for clinical use, although 
AMG510 is a therapeutic option for patients with KRAS 
G12C mutations [101]. New therapeutic approaches are 
needed for Ras-mutant CRC. Studies from our group 
and others indicate that cell surface integrin αvβ3 may 
play important role in regulation of CRC proliferation, 
especially under influence of thyroid hormones [26, 64, 
69, 88]. Signaling induced by thyroid hormone via integ-
rin αvβ3 may be involve crosstalk with epidermal growth 
factor receptor (EGFR)-Ras and contribute to the devel-
opment of CRCs.

Integrin αvβ3 signal and genomic actions of thyroid 
hormone in CRC​
Traditional genomic actions of thyroid hormone start 
with intranuclear binding of the hormone by nuclear thy-
roid hormone receptors (TRs) that are transcription fac-
tors [8]. In the genomic actions of thyroid hormone, T4 
serves as a prohormone for T3 and the latter is the princi-
pal ligand of TR proteins. Triiodothyronine has a tenfold 
higher affinity than that of T4 for nuclear receptors [100]. 
The complex of TRβ with T3 translocates to the nuclear 
compartment where it sheds associated co-repressors, 
attracts co-activator proteins and becomes transcrip-
tionally active. Although T4 involve in the initiation of 
this process of co-repressor releasing, it does not start 
the transcription[25]. Evidence indicates that traditional 
TRβ1-T3 plays negative role in cancer cell proliferation 
(Table 1) [64]. Table 1 lists a number of these overlapping 
genomic and nongenomic functions of thyroid hormone. 
On the other hand, the extracellular T4 or to a less extend 
T3 can, via a specific receptor on a plasma membrane 
integrin αvβ3, activate extracellular signal-regulated 

kinses (ERK1/2) and downstream signal transduction 
pathways to promote cell proliferation in variety types of 
cancer cells [6, 13, 33, 58, 71, 84].

The integrin αvβ3 is one of two dozen integrin heter-
odimers found on the surfaces of cells. While it has an 
important role in maintaining normal cell structure and 
in signal transduction, the integrin αvβ3 was shown to 
be over-expressed in high-growth endothelial cells and 
solid tumor and leukemic cells [9, 10, 23, 24, 26, 37, 42, 
43, 64, 90]. Several small molecules (resveratrol[10], non-
peptide hormones like steroid hormones [10] and thyroid 
hormones (T4, T3) have specific binding sites (receptors) 
on integrin αvβ3; at these sites, the ligands induce signal 
transduction and sequentially stimulate biological activi-
ties on cancer and endothelial cells [10]. These activities 
include cell proliferation [12, 20].

At physiological concentrations, thyroid hormone (T4) 
but not T3 [12, 20] initiates at the iodothyronine receptor 
on cell surface integrin αvβ3. As noted above, T4 via the 
integrin activates downstream ERK1/2, but the hormone, 
itself, does not enter the cell as a part of these functions. 
The consequences of signals generated at the integrin by 
T4 in cancer cells include cell proliferation, anti-apoptosis 
and radioresistance [12, 20], as discussed in the sections 
below. After interacting with T4, integrin αvβ3 is endo-
cytosed into cytoplasm. Integrin monomeric αv, but not 
β3, translocates to the nucleus [70] and may function as a 
co-activator protein.

The interaction between thyroid hormone and integ-
rin αvβ3 has been revealed by Davis’ group using com-
putational modeling [65]. An arginine-glycine-aspartate 
(RGD) recognition site on the heterodimeric integrin 
αvβ3 is essential to the binding of a variety of extracel-
lular matrix proteins. RGD peptides block the thyroid 
hormone binding site on integrin αvβ3 to inhibit and 
consequent ERK1/2 activation. These observations 

Table 1  Overlapped Genomic and Non-Genomic Actions of Thyroid Hormones

Genomic actions Non-genomic actions

Integrin αvβ3 No Yes [22]

ERK1/2 activation No Yes [105]

PI3K activation No Yes, only T3 activates PI3K [17]

T4-induced integrin αvβ3 internalization No Yes, nuclear phosphorylated αv monomer-MAPK-p300 complex 
binds to the promoter region of a panel of genes [70]

Nuclear receptor TRβ1 involvement Yes No

Shuttling ERα and TR to nucleus No Yes [75]

Actin-reorganization Yes, thyroid hormone regulates 
actin expression [14]

Yes [20]

Gene expression Dependent Dependent but without ligand-TR complex [64, 70]

Regulating TRβ1 expression Yes Yes, T4 via αvβ3 regulates post-translational modifications of TRβ1[67]

Thyroid hormone-induced cancer cell 
proliferation

Yes, TRβ1 expression inhibits cancer 
proliferation [98]

Yes, integrin αvβ3-dependent [74]
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suggest that the hormone interaction site is located at 
or near the RGD recognition site on integrin αvβ3. Focal 
adhesion kinase (FAK) is a non-receptor tyrosine kinase 
that promotes cell migration and invasion through the 
control of focal adhesion turnover. Downstream of inte-
grin αvβ3, FAK connects ERK1/2[104], PI3K/AKT[77], 
and other signal transduction pathways.

Thyroid hormone binds to integrin αvβ3 to promote cancer 
proliferation
At physiological concentration, T4, but not T3, interacts 
with integrin αvβ3 to induce integrin αvβ3 to trans-
locate into cytosol without T4 companion [70]. Sev-
eral studies indicate that there are multi-mechanisms 
regulating integrin internalization [27]. Integrin αvβ3 
has been shown to be internalized through caveolin-
dependent mechanisms [35]. A possible mechanism is 
that endocytosed integrin αvβ3 is phosphorylated and 
binds with caveolin during endocytosis [117]. Sequen-
tially, integrin β3 disassociates from complex, and the 

integrin α/caveolin complex binds with phosphoryl-
ated ERK1/2 [55]. The activated integrin αv-ERK1/2 
complex translocates into nucleus and regulates tran-
scriptional activities via binding to other transcription 
factors [120]. T4 induces nuclear integrin αv-ERK1/2-
complex further associates with transcriptional coacti-
vators, p300 and STAT1, and with corepressors, NCoR 
and SMRT[70]. The complexed phosphorylated ERK1/2 
may be response to phosphorylation of coactivators 
[82] and corepressors [25]. Phosphorylation activates 
functional co-activators and repressors. The complex 
binds promotors of responsible genes including estro-
gen receptor-α, cyclooxygenase-2, hypoxia-inducible 
factor-1α, and thyroid hormone receptor β1. Those 
genes are important for cancer cell biological activities 
(Fig.  1). However, other mechanisms may also involve 
in thyroxine-integrin αvβ3 signal transduction pathway.

The Wnt/β-catenin pathway is an evolutionarily con-
served cell signaling system that mediates key physiologi-
cal processes but is also incriminated in the occurrence 

Fig. 1  Thyroxine and Triiodothronine induce gene expression via different pathways. Thyroid hormone (T4) binds with integrin αvβ3 to induce 
integrin αvβ3 endocytosis without T4 bound. The integrin αvβ3 in cytoplasma associates with activated ERK1/2. The integrin αv monmer-pERK1/2 
translocates into the nucleus and forms transcriptional complex with p300 and pSTAT3 which releases co-repressors, NCoR and SMRT from 
promotor region. The integrin αv-pERK-STAT3-p300 complex plays a co-activator function. On the other hand, T4 can also penetrate cell 
membrane via active transporters, and converted to T3 by deiodinase (D1 or D2). T3 binds to TRβ1, and the consequences are normal thyroid 
hormone-dependent biological activities which also show anti-proliferative effect in cancer cells
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of several malignant neoplasms, including colon cancer. 
Thyroid hormone has been shown to promote the nuclear 
accumulation of HMGA2 and β-catenin in a concentra-
tion-dependent manner in colorectal cancer cells with 
different k-RAS statuses [61]. A dense collagen matrix 
increases integrin-mediated cell-ECM interactions with 
phosphorylated FAK and ERK signaling to exhibit a dis-
rupted membranous E-cadherin/β-catenin complex and, 
remarkably, show cytoplasmic or nucleic localization of 
β-catenin, sequentially to regulate cell proliferation in 
human gastric adenocarcinoma cells [46]. Furthermore, 
membranous E-cadherin/β-catenin complex could be 
recovered by inhibiting the phosphorylation of FAK [46]. 
The nucleus- accumulated β-catenin induces Cyclin D1 
and c-Myc [58], the downstream targets of the β-catenin 
pathway, are also strongly correlated with cell prolifera-
tion and cell cycle progression in colorectal cancer[107].

Additionally, T4 induces PD-L1 expression in human 
breast cancer, colorectal cancer, and oral cancer cells [62, 
72]. Recently, our studies have shown that thyroid hor-
mone increases cytosolic and nuclear PD-L1 accumula-
tion[10] which may be anti-apoptotic [63]. Expression of 
PD-L1 is regulated via activated ERK1/2 and PI3K [45, 
62]. Thyroid hormone-induced PD-L1 is involved in CRC 
proliferation[45]. Blockage of thyroid hormone binding 
with integrin αvβ3 can inhibit PD-L1 expression and cell 
proliferation in CRC cells [45]. On the other hand, inhibi-
tion of receptor tyrosine kinase (RTK) is able to reduce 
PD-L1 expression and CRC proliferation in K-Ras wild 
type but not K-Ras mutant CRC cells[45]. These studies 
further demonstrate that thyroid hormone-activated sig-
nal via integrin αvβ3 also cross-talks with the EGFR sig-
nal to modulate cancer cell proliferation[5].

Epidermal growth factor receptor (EGFR) signaling in CRC 
cells
The structural domains of EGFRs include an extracellu-
lar ligand-binding component, a transmembrane com-
ponent, and an intracellular tyrosine kinase feature. The 
EGFR is activated upon binding with ligands such as 
EGF, transforming growth factor (TGF)-α, amphiregulin, 
heparin-binding EGF, and betacellulin [41]. After being 
bound with ligands, EGFR dimerizes, auto-phospho-
rylates, and consequently activates the tyrosine kinase 
component of EGFR [91]. Ultimately, EGFR signaling 
has positive downstream effects in terms of increased 
cell proliferation and improved cell survival. The EGFR 
pathway contributes importantly to cell differentiation, as 
well as proliferation. A dearth of EGFR activity results in 
the developmental failure of multiple organs.

Overexpressed EGFRs exist in many primary cancers 
including CRC, and play important roles in both tumor 
growth and progression [56]. Expression or upregulation 

of the EGFR gene was demonstrated in up to 80% of CRC 
cases [85, 99]. Regular EGFR activity is also crucial for 
the formation of tumors in adenomatous polyposis coli 
(APC)-mediated intestinal tumorigenesis [110]. Essen-
tially, EGFRs’ signaling is able to accelerate proliferation, 
survival, invasion, and immune evasion in CRC cells [12]. 
Consequently, there is also a metastatic risk [81]. EGFR 
signaling pathway can regulate migration and invasion 
through β-catenin activity. Additionally, tumor cells with 
a low EGFR expression have low tumor metastatic risk 
and better survival rates in CRC patients [44].

Main EGFR downstream effectors are molecules 
involved in the Ras-Raf-mitogen-activated protein kinase 
(MAPK) kinase (MEK)/MAPK pathway. EGF binds to 
EGFR to promote activation downstream of Ras signal-
ing[118]. Binding to their plasma membrane receptors, 
growth factors may activate receptor-linked tyrosine 
kinases (RTKs), leading to activation of Son Of Sevenless 
(SOS), a Ras-selective guanine nucleotide exchange fac-
tor (RasGEF) that supports nucleotide exchange, and an 
activated conformation of Ras-GTP. When activated, the 
Ras-GTP complex attaches to a variety of effector pro-
teins involved in downstream signaling and consequent 
cell growth/survival, differentiation, and both migration 
and adhesion. Downregulation of the EGFR signaling 
pathway should, therefore, result in interruption of this 
pathway and ultimately in reduced cellular proliferation.

Mutations of K-Ras, such as G12C, are found in most 
of pancreatic cancers, and one-third of lung cancers, 
and 50% of CRCs; these mutations are associated with 
high mortality rates. Accumulations of abnormal APC, 
K-Ras, and β-catenin genes are early events in CRC 
tumorigenesis [15, 60]. However, any correlations that 
exist among these events are still unclear. EGFR signal-
ing is able to crosstalk with the Wnt-β-catenin pathway 
to stimulate CRC growth and can trigger β-catenin sig-
nals via the receptor tyrosine kinase-PI3K/Akt pathway, 
while β-catenin can stimulate EGFR signaling via the 
transmembrane Frizzled receptor [2, 106]. Furthermore, 
the EGFR signal can crosstalk with β-catenin to pro-
mote frequencies of invasiveness and metastasis of can-
cer cells [2]. EGF-induced nuclear localization of SHC 
Binding and Spindle Associated 1 (SHCBP1) activates 
β-catenin signaling by enhancing the CBP/β-catenin 
interaction [73] and promotes cancer progression [73]. 
EGFR activation is partly due to α2,6 sialylation of the 
EGFR by ST6Gal1, which affects EGF-induced cancer 
cell proliferation [96]. Additionally, ST6Gal1-induced 
α2,6 sialylation is critical for adhesion and migration of 
CRC cells [96]. ST6Gal1 induces mutant EGFR sialyla-
tion in CRC HCT116 cells [5]. The anticancer activity of 
gefitinib is more significant in ST6Gal1-deficient CRC 
cells, as over-expressed ST6Gal1 was shown to suppress 
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gefitinib-induced cytotoxic effects and promote gefitinib-
mediated chemoresistance in CRC cells [5].

Crosstalk between integrin αvβ3 and epidermal growth 
factor receptor (EGFR) signaling in CRC cells
Thyroid hormone regulates K-Ras expression [40]. The 
hormone significantly enhances expression of PCNA, 
Cyclin D1, and c-Myc and their protein levels in both 
K-Ras wild type HT-29 and mutant HCT 116 cells [59]. 
The T4 antagonist and derivative of tetrac, nano-diami-
notetrac (NDAT), and cetuximab significantly suppress 
transcription of cell proliferation-associated genes; these 
include PCNA, Cyclin D1, c-Myc, and RRM2 induced by 
thyroxine; these effects are significantly enhanced over 
cetuximab, alone, in HCT 116 cells. In addition, T4 sup-
pression of transcription of mRNAs of pro-apoptotic 
genes p53 and RRM2B is significantly antagonized by 
the combination of NDAT and cetuximab compared to 
cetuximab alone [59]. In K-Ras mutant HCT 116 cells, 
but not in the K-Ras wild type COLO 205 cells, the com-
binations of tetrac/NDAT and cetuximab significantly 
reduced cell proliferation compared to cetuximab, alone. 
In summary, T4 promotes CRC cell proliferation and this 
action is opposed by tetrac and NDAT. The combina-
tion of tetrac/NDAT and cetuximab potentiates cetuxi-
mab actions in K-Ras mutant colorectal cancer cells [59]. 
These results suggest indicated existence of crosstalk 
between thyroid hormone and the EGFR-K-Ras signal 
pathway in CRC.

Therapies based on targeting EGFR signaling in CRC​
EGFR-targeted therapies have been of particular interest 
because of the clinical benefits conferred by monoclo-
nal antibodies (mAbs) to the receptor, such as panitu-
mumab and cetuximab, and identification of biomarkers 
that inform treatment decision-making [50]. Genetic 
heterogeneity in CRC, however, often conveys a need 
for personalized chemotherapeutic protocols. Genetic 
variations may make difficult the full characterization of 
resistance mechanisms in standard therapies [116]. K-Ras 
has been the subject of extensive drug-targeting endeav-
ors over the past three to four decades. These endeavors 
include targeting the K-Ras protein itself, as well as its 
posttranslational modifications, membrane localization, 
protein–protein interactions, and downstream signaling 
pathways. Despite optimized patient selection based on 
Ras mutation status, the primary and secondary resist-
ance to mAbs is still higher than desired [50].

Using molecular targeted drugs, such as bevacizumab, 
cetuximab, panitumumab, aflibercept, and regorafenib, 
can increase clinical survival rates [79, 102]. Although 
new chemotherapeutic regimens have improved 
patient responses, their use remains limited by inherent 

chemoresistance of tumors and the acquisition of resist-
ance in the course of therapy [103, 113]. However, anti-
EGFR therapies are often affected by tumor cell mutation 
associated with resistance based on alterations in EGFR-
driven signaling systems [113].

Monoclonal antibodies (mAbs) have been extensively 
investigated for CRC treatment. Cetuximab and panitu-
mumab are mAbs that inhibit activities of EGFR through 
blocking the binding of EGF to EGFR, including down-
stream signaling that is initiated at the receptor. Such 
signaling pathways include Ras-Raf-MEK-MAPK, phos-
phatase, and tensin homolog (PTEN) and the phosphati-
dylinositol-AKT pathways [12, 34, 83]. Panitumumab 
and cetuximab both are in clinical use for CRC [97, 122]. 
Cetuximab (Erbitux®) is a chimeric [immunoglobulin G1 
(IgG1)] mAb. When bound to the extracellular domain of 
the EGFR, cetuximab can block endogenous ligand bind-
ing and inhibit proliferation of cancer cells. Cetuximab 
may also have immune-regulated anticancer effects, for 
example, antibody-dependent cell-mediated cytotoxic-
ity [83]. In a Phase II clinical trial, cetuximab improved 
survival and reversed chemoresistance in patients with 
refractory mCRC [16], a result that led to U.S. Food and 
Drug Administration (FDA) approval of the drug for 
management of metastatic CRC. In addition to improv-
ing the survival rate, cetuximab maintains the quality of 
life for mCRC patients [49]. Cetuximab is administered 
intravenously after initial biweekly or weekly loading dos-
age and used as a solo agent in the setting of mCRC or 
in conjunction with a second standard chemotherapeutic 
agent [78]. A humanized IgG2 EGFR antibody, panitu-
mumab is bound by the EGFR extracellular domain and 
interrupts signaling for ligand-mediated proliferation. 
The efficacy of panitumumab was shown to result in clin-
ical benefits both when added to chemotherapy and as 
monotherapy in mCRC in various clinical settings [1, 29].

The most likely basis for resistance to anti-EGFR ther-
apy in cancer cells is constitutive activation of signaling 
pathways linked to EGFR and this may or may not be a 
function of constitutive EGFR activity. The principal 
predictors of cetuximab failure are point mutations of 
the KRAS gene, principally in codon 12 or 13 in exon 2 
[3, 92]. Functionally, this means that cetuximab mono-
therapy or conjunctive therapy is to be used in mCRC 
patients whose tumors bear wild-type (WT) K-ras. After 
treatment with cetuximab, however, biochemical conver-
gence may occur in tumor cells to reactivate the Ras-Raf-
MEK-MAPK signaling pathway [113, 114].

Another EGFR-targeted therapy involves TKIs. TKIs 
are small molecules derived from quinazolines that can 
be transported across cell membranes and block the 
intracellular tyrosine kinase domain of various recep-
tors such as EGFR, Erb2, and vascular endothelial growth 
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factor receptor (VEGFR) [123]. Gefitinib (Iressa®) is an 
EGFR specific antagonist that can block the phospho-
rylation of the EGFR [47]. It also can target other path-
ways such as ERK1/2 phosphorylation in mesothelioma 
cell lines [32]. Gefitinib is used to treat non-small cell 
lung cancer and various types of cancers as a single agent 
or in combination with other anticancer agents [7]. It is 
only used for phase II clinical trial in CRC in Europe [4]. 
Erlotinib is a specific inhibitor of the EGFR that can also 
block phosphorylation of the ligand-induced EGFR. Both 
of these drugs have been highly effective in other tumor 
types, particularly lung cancer harboring mutations of 
the EGFR gene [86]. As such, there has been great inter-
est in determining the efficacy of EGFR TKIs in mCRC.

Gefitinib-inhibited EGFR activity results in EGFR 
dephosphorylation, HER3-phosphatidylinositol 3-kinase 
(PI3K) complex dissociation, and a decrease in Akt activ-
ity [93]. Plasma membrane integrins, ADAM (a disinteg-
rin and metalloproteinase protein), and EGFR have been 
shown to contribute to fibronectin (FN) induction by the 
activation of ERK1/2, p38, and Akt. These agents also are 
involved in promoting growth and invasiveness of cancer 
cells. Gefitinib prevents FN-induced signal molecule acti-
vation and other activities in hepatocellular carcinoma 
CBO140C12 cells, suggesting that activation of EGFR 
tyrosine kinase regulates these FN responses [80]. Thus, a 
gefitinib-induced anti-metastatic activity involves block-
age of FN-induced signaling [80]. Gefitinib inhibits acti-
vation of Akt and ERK [7] by disturbing the K-Ras/PI3K 
and K-Ras/Raf complexes to reduce synthesis of matrix 
metalloproteinases (MMPs). However, constitutive acti-
vation of PI3K or ERK1/2 signal transduction pathways is 
involved in gefitinib-induced resistance in cancers. Gefi-
tinib disrupts K-Ras/PI3K and K-Ras/Raf complexes in 
human non-small cell lung cancer (NSCLC) Calu3 cells 
but not in K-Ras-mutant Calu3ras cells [7, 30]. The K-Ras 
mutation was correlated with gefitinib resistance [95]. 
Gefitinib combined with lovastatin downregulates the 
K-Ras protein and can effectively suppress EGFR phos-
phorylation and activation of Raf, ERK1/2, and Akt in 
gefitinib-resistant human NSCLC A549 and NCI-H460 
cells [7]. EGFR mutations can also affect the sensitivity of 
CRCs to gefitinib, but this effect is not consistent [125]. 
Gefitinib was shown to inhibit human chondrosarcoma 
proliferation and metastasis by inducing cell cycle arrest, 
leading to a decrease in the migration capacity [109]. 
Gefitinib also reduces expressions of metastasis-related 
proteins, such as basic fibroblast growth factor (bFGF) 
and MMP-2 and MMP-9 [109]. Gefitinib has been com-
bined with other cancer chemotherapeutic agents to 
manage various cancers [36, 52, 111, 112]. What is clear 
is that gefitinib affects a number of therapeutic targets in 
cancer cells mentioned above, yet resistance to this TKI 

does develop [76]. In this review article, we describe a 
new treatment strategy that restores responsiveness to 
gefitinib.

In addition, immunotherapies have been applied in 
current mCRC studies against other targets. These 
include use of antibodies that target the VEGF/VEGFR 
pathway [Bevacizumab (Avastin®), and Ramucirumab 
(Cyramza®)]. Alternatively, immunotherapy may use 
checkpoint PD-1/PD-L1 inhibitors such as Nivolumab 
(Opdivo®) and Pembrolizumab (Keytruda®).

Tetrac derivatives compete with thyroid hormone to bind 
on integrin αvβ3
Tetrac derivatives compete with T4 for the iodothyro-
nine receptor on the integrin αvβ3 [5]. NDAT acts pri-
marily at the cell surface receptor and does not enter the 
nucleus when internalized by tumor cells. In contrast, 
tetrac may undergo nuclear uptake and, in the nuclear 
compartment, tetrac has low-grade thyrometic activity, 
rather than anti-thyroid (anti-T4) effects. Tetrac deriva-
tives block binding of T4 to the cell surface thyroid hor-
mone receptor on integrin αvβ3; they thereby inhibit the 
non-genomic effects of thyroid hormone-initiated down-
stream signal transduction pathways [5, 59, 64, 72, 90]. 
The interaction between tetrac derivatives and integrin 
αvβ3 regulates gene expression related to cancer cell sur-
vival pathways, for example, pathways that oppose induc-
tion of apoptosis in cancer cells. Tetrac derivatives also 
downregulate cancer cell proliferation via integrin αvβ3 
in the absence of T4 [64].

Tetrac and NDAT also support apoptosis and suppress 
angiogenesis by differentially modulating transcription of 
a panel of genes linked to these processes[19]. Both tetrac 
and NDAT upregulate expressions of the proapoptotic 
BcL-x short form [38], the antiangiogenic thrombos-
pondin 1 (THBS1), and other proapoptotic genes [64]. 
In addition, they suppress transcription of several anti-
apoptotic gene families. Catenin proteins play roles in 
cell–cell adhesion, and β-catenin also has transcriptional 
functions in the nucleus. Mutation and overexpression 
of β-catenin occur in a variety of cancers, including CRC 
and breast and ovarian cancers [51, 119]. Tetrac and 
NDAT increase transcription of the CBY1 gene which 
codes for an inhibitor of β-catenin [89]. Tetrac and 
NDAT also reduce β-catenin abundance via downregula-
tion of the CTNNA1 and CTNNA2 genes [19]. While the 
function of CTNNA1 protein may include suppression of 
invasiveness of tumor cells [115], mutated CTNNA1 may 
be involved in induction of GI tract cancer [28]. Mutated 
CTNNA2 is linked to tumor invasion [31]. At the tumor 
cell surface thyroid hormone analogue receptor on inte-
grin αvβ3, tetrac inhibits the pro-angiogenic activities 
of vascular endothelial growth factor (VEGF) and basic 
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fibroblast growth factor (bFGF) [18]. NDAT inhibits 
transcription of anti-apoptotic factors such as myeloid 
cell leukemia sequence 1 (MCL1) and XIAP. NDAT 
acts differentially, however, to upregulate expression of 
apoptosis-inducing genes such as caspase-2(CASP2), 
BCL2L14, and BAD [19]. NDAT also blocks transcription 
of the Ras-oncogene family [19]. The expression of cyc-
lin genes is also downregulated in cancer cells by NDAT 
[38]. Interestingly, our studies also indicated both tetrac 
and NDAT are able to inhibit programmed cell death/
ligand 1 PD-L1 expression and protein accumulation 
by cancer cells [59]. Production of PD-L1 blocks host 
immune T cells from attacking the tumor cells. The anti-
PD-L1 activities of tetrac and NDAT could potentially be 
a new therapeutic strategy for cancer immunotherapy. 
NDAT inhibits expression of ribonucleotide reductase 
regulatory subunit M2 (RRM2) that is caused by the stil-
bene, resveratrol but potentiates resveratrol’s antican-
cer activity [90]. In summary, tetrac derivatives regulate 
expression of genes involved in modulating angiogen-
esis and regulating tumor cell metabolism by multiple 
mechanisms [21]. In addition to antiproliferation, tetrac 
and NDAT were shown to augment other drug-induced 
anticancer growth [65, 89, 91, 103]. The effects of tetrac 
derivatives are summarized in Table 2.

Combined treatment of tetrac derivatives and anticancer 
agents
Treatment with tetrac and NDAT is not cytotoxic to non-
malignant cells [19] or in animal studies [5, 90]. We have 
studied in several cell models the combined treatment 
effects of tetrac or NDAT as well as other anticancer drugs 
in CRC cells [5, 59, 68, 89] and other cancer cells [68].

Gefitinib has been shown to be less effective in CRC 
compared to other cancer types [4]. Compared to results 
in non-small cell lung cancer (NSCLC) patients, CRC 
patients required a higher dosage of drug to achieve stale 
disease, and the latter was not associated with reduction 
in tumor size [4]. Cellular studies indicated that atorv-
astatin (5 μM) enhanced cytotoxicity of gefitinib-related 
inhibition of Akt and ERK activity [7]. Cytotoxicity can 
be additive in combination therapy.

Functional sialylation of β-galactoside α-2,6-
sialyltransferase 1 (ST6Gal1) on the EGFR was highly 
correlated with CRC progression and metastasis [96]. 
Upregulation of α2,6-sialylation may also induce radi-
oresistance in CRC [96]. Other studies have shown 
that gefitinib is more effective in ST6Gal1-knockdown 
CRC SW480 cells [96]. Our investigation has shown 
that ST6Gal1 induces sialylation of mutant EGFRs in 
CRC HCT116 cells [5]. Interestingly, gefitinib increased 
antiproliferation in ST6Gal1-deficient CRC cells [5]. In 

Table 2  The effects of tetrac derivatives

Cell cycle [5, 59, 89] Angiogenesis [5, 18, 38, 89] Others [5, 19, 59, 89, 
90]

 CCND1 ↓ (Tetrac, NDAT)  Anti-angiogenic:  HIF1A ↓ (tetrac, NDAT)

 THBS1 ↑ (tetrac, NDAT)  TP53 ↑ (NDAT)

Cell proliferation [5, 19, 38, 59, 89]  RRM2B ↑ (NDAT)

 CBY1 ↑ (tetrac, NDAT)  Angiogenic:  p21 ↑ (NDAT)

 CTNNA1 ↓ (NDAT)  VEGFA ↓ (tetrac, NDAT)

 CTNNA2 ↓ (NDAT)  bFGF ↓ (tetrac, NDAT)

 CTNNB1 ↓ (tetrac)

 β-catenin ↓ (tetrac) Metastasis [5, 89]

 PCNA ↓ (tetrac,  NDAT)  MMP-2 ↓ (tetrac, NDAT)

 c-Myc ↓ (tetrac, NDAT)  MMP-9 ↓ (tetrac, NDAT)

 EGFR ↓ (NDAT)  MMP-13 ↓ (tetrac)

Apoptosis [5, 38, 59, 66] Immune checkpoint  [45]

 Anti-apoptotic:  PD-L1 ↓ (NDAT)

 MCL1 ↓ (NDAT)

 XIAP ↓ (tetrac, NDAT) Chemo sensitization [5, 89]

 HMGA2 ↓ (tetrac)

 Proapoptotic:  ST6Gal1 ↓ (NDAT)

 BCL2L14 ↑ (NDAT)

 CASP2 ↑ (NDAT)

 BAD ↑ (NDAT)
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contrast, ST6Gal1 overexpression decreased the cyto-
toxic effect of gefitinib [96]. Sialylation of the EGFR by 
ST6Gal produced gefitinib chemoresistance in CRC 
cells [96]. EGFR sialylation affected EGF-mediated 
cancer cell proliferation [96]. On the other hand, sia-
lylation promoted gefitinib resistance in CRC cells [5]. 
NDAT reduced ST6Gal1 expression and inhibited CRC 
cell proliferation [5]. NDAT enhanced gefitinib-induced 
antiproliferation via a mechanism involving inhibition 
of ST6Gal1 activity and PI3K activation [5].

Cetuximab (Erbitux®) inhibited K-Ras WT cells, but 
not K-Ras-mutant CRC cell growth [59]. Tetrac sig-
nificantly enhanced cetuximab-reduced cell prolifera-
tion in K-Ras-mutant HCT 116 cells, but not in K-Ras 
WT COLO 205 cells [59]. However, NDAT potentiated 
cetuximab-induced antiproliferation in both K-Ras WT 
and K-Ras-mutant CRC cells [59]. Gefitinib blocks Akt 
and ERK activities [7] by disturbing the K-Ras/PI3K 
and K-Ras/Raf complexes to reduce synthesis of matrix 
metalloproteinases (MMPs) [112]. Gefitinib (1 μM) did 
not inhibit PI3K activation in HCT116 cells, although 

gefitinib inhibited the complexing of K-Ras/PI3K and 
K-Ras/Raf in NSCLC K-Ras/PTEN or K-Ras/PIK3CA 
co-mutant cells [7]. Consistent activation of the PI3K/
Akt and/or Ras/ERK pathways was associated with gefi-
tinib resistance in NSCLC cell lines [48].

In addition to reducing ST6Gal1 expression, NDAT 
blocks EGFR sialylation by ST6Gal1 and consequent 
PI3K activation [5]. When intact—in the absence of 
NDAT—both reactions contribute to proliferation in 
K-Ras WT and K-Ras mutant cells [81]. The combina-
tion of NDAT and gefitinib in CRC cell lines permitted 
efficient identification of pro-apoptotic and metastasis-
relevant genes affected by the drugs [81]. NDAT dif-
ferentially regulates the expression of specific genes at 
integrin αvβ3 [19, 20, 38, 64] and the consequences of 
NDAT action are cell cycle disruption, apoptosis, and 
anti-angiogenesis [20]. Other studies of HCT116 CRC 
xenograft-bearing mice have also demonstrated that 
NDAT additively promotes gefitinib-induced anti-
cancer activity [5]. While downregulation of ST6Gal1 
transcription has been shown to stimulate tumor cell 

Fig. 2  Targeting Therapies of CRC is compensated by NDAT in K-Ras Mutant Colorectal Cancers. Thyroid hormone stimulates signal pathway of 
integrin αvβ3-FAK axis and proliferation. EGF via EGFR-Ras pathway promotes proliferation. It also cross-talks with integrin αvβ3 signal via FAK 
activation. These signals can induce activation of PI3K- and ERK1/2-dependent pathways. In addition, signals via growth factor receptors are also 
able to induce β-catenin-dependent cell proliferation. NDAT inhibits signal pathway of integrin αvβ3-FAK axis and proliferation. EGFR-dependent 
signal pathways via Ras-PI3K/ERK1/2 crosstalk with FAK. These signals can be intercepted by blocking activation of FAK, PI3K and ERK1/2. Crosstalk 
between growth factor receptors and FAK can be blocked by NDAT treatment
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proliferation both in vitro and in vivo [96], NDAT dem-
onstrated its capability to decrease ST6Gal1 expres-
sion and CRC growth. Although decreased ST6Gal1 
may increase EGF-induced EGFR phosphorylation 
and ERK1/2 activation in CRC cells [96], NDAT has 
been shown to reduce ERK1/2 activation and ST6Gal1 
accumulation in CRC cells [5]. In addition, NDAT 
suppressed PI3K activation to down-regulate PD-L1 
expression and protein accumulation in  vitro and in 
xenograft in K-Ras-mutant CRC [45]. Gefitinib effec-
tively reduces cancer metastasis by downregulating 
expressions of metastasis-linked proteins, e.g., MMP-9, 
MMP-2, and bFGF [109]. In contrast. NDAT can inhibit 
expressions of MMP-2, MMP-9, and VEGF-A [19, 64, 
66] and further enhance inhibitory effects on MMP-2, 
MMP-9, and VEGF-A by gefitinib.

Tetrac derivative actions in cells exhibit potential for 
the clinical treatment of K-Ras-mutant CRC patients. 
Our studies indicate that NDAT has greater therapeutic 
potential than tetrac since it can reverse K-Ras-mutant-
dependent resistance using cetuximab and gefitinib. 
However, xenograft weights in animals treated via NDAT 
alone did not significantly decrease compared to those in 
the untreated control [5, 90]. Therefore, NDAT alone or 
combined with a low dosage of cetuximab and gefitinib 
has new chemotherapeutic potential. Such observations 
show that added or enhanced effects can be obtained 
when tetrac derivatives are combined with other chemo-
therapeutic agents (Fig. 2).

Conclusion
Thyroid hormone as T4, acting via cancer cell plasma 
membrane integrin αvβ3, induces cell proliferation, and 
metastasis. The hormone may engage in crosstalk with 
EGFR in modulating a variety of cancer cell activities. 
Targeting EGFRs by antibodies or by EGFR-specific TKIs 
has shown promising results in CRC therapies. However, 
both immunotherapy and targeting therapy in K-Ras-
mutant CRC patients have raised concerns about resist-
ance. Combined treatment with EGFR-specific inhibitor 
agents augments antitumor responses beyond initial sin-
gle EGFR inhibitor therapy [124]. Multiple-agent treat-
ments of cancers have been practiced for years, often 
achieving efficacy that exceeds single agents. Targeting 
cell surface integrin αvβ3, tetrac, and chemically-mod-
ified tetrac (NDAT) also inhibit the EGFR-dependent 
signal transduction pathway via crosstalk between the 
integrin and the EGF receptor. These agents can poten-
tiate the antiproliferative actions of cetuximab and gefi-
tinib in K-Ras-mutant CRC. Both gefitinib and NDAT 
inhibit proliferation in K-Ras WT CRC cells. While gefi-
tinib is unable to suppress cell growth in K-Ras-mutant 
CRC cells, NDAT induces anti-proliferation by blocking 
ST6Gal1 activity and PI3K signal transduction. Although 
NDAT targets the integrin αvβ3 via crosstalk with EGFR 
signaling, NDAT enhances anti-proliferation induced by 
gefitinib in CRC cells. A similar observation was obtained 
with other EGFR blockers such as cetuximab [59]. Tet-
rac derivatives can overcome mutations in EGFR signal 

Table 3  Actions of modificed tetrac in combination with clinical anti-cancer agents Drug

Clinical agents Efficacy and deficiency Tetrac/NDAT combination

Chemotherapy

 Fluoropyrimidine Despite the improved OS, systemic toxicity and tumor 
resistance are limitations of this therapy [121]

NA

 Oxaliplatin

Targeted therapy

1. Monoclonal antibodies

 Anti-VEGF/VEGFR:

  Bevacizumab (Avastin®) Chemo-combination therapy is superior to single agent. 
PIGF or angiopoietin-2 were upregulated in CRC cases 
resistant to antiangiogenic therapy [39, 54]

NA

  Aflibercept (Eylea® and Zaltrap®)

  Regorafenib (Stivarga®)

  Ramucirumab (Cyramza®)

 Anti- EGFR:

  Cetuximab (Erbitux®) Cetuximab (Erbitux®) inhibited K-Ras WT but not K-Ras-
mutant CRC cell growth[58]

NDAT potentiated cetuximab-induced antiproliferation in both K-Ras 
WT and K-Ras mutant CRC cells[58]. They also showed potentia‑
tion effect in vivo

  Panitumumab (Vectibix®)

 Immune checkpoint inhibitor:

  Pembrolizumab (Keytruda®) Pembrolizumab and Nivolumab displayed good efficacy 
for high levels of microsatellite instability (MSI-H) or 
MMR deficiency (dMMR) but unsatisfactory results for 
MS stable and MMR proficient cases. [57, 94]

NA

  Nivolumab (Opdivo®)

  Ipilimumab (Yervoy®)

2. Small molecules

 EGFR inhibitor:

  Gefitinib (Iressa®) Gefitinib was shown less effective in CRC compared to 
other cancer types[45]

NDAT enhanced gefitinib-induced antiproliferation via a mechanism 
involving inhibition of ST6Gal1 activity and PI3K activation[5, 45]  Erlotinib (Tarceva®)
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transduction pathways to potentiate cetuximab-induced 
antiproliferation in K-Ras-mutant CRC. Thus, use of 
NDAT—either alone or combined with other agents, 
such as gefitinib and cetuximab is a promising approach 
to treatment of human K-Ras-mutant CRC. A summary 
of the efficacy in cancer cells of currently available clini-
cal agents and potential advantage of combination treat-
ment with tetrac derivatives are listed in Table 3.
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