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ABSTRACT

Genome-wide profiling of copy number alterations
and DNA methylation in single cells could enable de-
tailed investigation into the genomic and epigenomic
heterogeneity of complex cell populations. However,
current methods to do this require complex sample
processing and cleanup steps, lack consistency, or
are biased in their genomic representation. Here, we
describe a novel single-tube enzymatic method, DNA
Analysis by Restriction Enzyme (DARE), to perform
deterministic whole genome amplification while pre-
serving DNA methylation information. This method
was evaluated on low amounts of DNA and sin-
gle cells, and provides accurate copy number aber-
ration calling and representative DNA methylation
measurement across the whole genome. Single-cell
DARE is an attractive and scalable approach for con-
current genomic and epigenomic characterization of
cells in a heterogeneous population.

INTRODUCTION

Genetic and epigenetic aberrations of the genome are hall-
marks of cancer. Large scale copy number aberrations
(CNA), resulting in structural variation of DNA sequence
in somatic cells, could alter gene dosage and play criti-
cal roles in oncogenesis (1). Beyond CNA, aberrant DNA
methylation in CpG dinucleotides have also been associated
with suppression of tumor suppressor genes and activation
of oncogenes (2,3). As such, a genome-wide characteriza-
tion of genomic and epigenomic heterogeneity in single cells
of disaggregated tumors could provide important insights
into the biological aspects of tumor development.

Advances in sequencing technologies have shifted CNA
determination from array-based technologies to more

quantitative sequencing-based approaches, by which a
number of single-cell CNA assays have been demonstrated.
Most of the approaches to generate whole genome libraries
from single cells such as Multiple Displacement Amplifi-
cation (MDA), Degenerate Oligonucleotide Primed PCR
(DOP-PCR) and Multiple Annealing and Looping Based
Amplification Cycles (MALBAC) rely on random priming
(4–7). On the other hand, Ligation-Mediated PCR (LM-
PCR) Whole genome Amplification (WGA) method re-
lies on specific restriction enzyme cutting and controlled
PCR to perform deterministic amplification of the whole
genome, and it was demonstrated to have improved repro-
ducibility and reduced allelic bias (8). Utilizing this ap-
proach, a single-tube streamlined method has been devel-
oped to detect CNAs in single cells at high accuracy and
resolution (9). To date, however, none of these methods are
capable of concurrently measuring the epigenetic modifica-
tions encoded in the original DNA, as the information is
irrecoverably lost during amplification process.

The most widely studied epigenetic modification is DNA
methylation, which is commonly detected through methods
that rely on bisulfite conversion or Methylation Sensitive
Restriction Enzymes (MSRE). Bisulfite treatment converts
unmethylated cytosines to uracil and can provide methy-
lation information at base-pair resolution upon sequenc-
ing. Recently, single-cell Whole-Genome Bisulfite Sequenc-
ing (scWGBS) (10), genome-wide single-cell Bisulfite Se-
quencing (scBS) (11) and single-cell Reduced Represen-
tation Bisulfite Sequencing (scRRBS) (12) were reported
to enable DNA methylation analysis in single cells. While
scWGBS enables uniform coverage across the genome and
could allow inference of CNAs (10), there is an associated
high cost to cover a significant fraction of the ∼28 million
CpG sites distributed across the human genome. scRRBS
decreases the cost by restricting DNA methylation profiling
to CpG-dense regions such as gene promoters and CpG is-
lands (CGI), however it grossly underrepresents distal regu-
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latory elements that are often more informative than canon-
ical promoters (13). Bisulfite-based methods also have in-
herent limitations for single-cell assays, as the harsh chemi-
cal processing and multiple sample cleanup steps required
for bisulfite-based sequencing could lead to non-specific
sample loss. This is further exacerbated by poor mappability
of bisulfite converted DNA sequences. Therefore, there is a
need to develop alternative methods for low-input or single-
cell assays that avoid sample loss associated with bisul-
fite protocols, while providing representative genome-wide
methylation and CNA information.

An alternate method to detect DNA methylation in-
volves the use of MSRE that selectively digest unmethylated
DNA. MSRE approaches such as HpaII-tiny fragment En-
richment by Ligation-mediated PCR sequencing (HELP-
seq), Methyl-seq and Methylation Sensitive Cut Counting
(MSCC) (14–16) have been used to determine unmethy-
lated regions genome-wide. A recent method, scCGI-seq,
combines MSRE digestion and MDA for selective detec-
tion of methylated CGIs at the single-cell level (17). As
these methods are based on counting the sequenced frag-
ments, this poses a challenge as true negatives at a specific
location cannot be distinguished from false negatives that
arise from read loss. Here, we report a single-tube enzymatic
method, DNA Analysis by Restriction Enzymes (DARE),
that enables quantitative analysis of both unmethylated and
methylated DNA in the same sample. Information of both
methylation status is captured by differential adapter tag-
ging of DNA fragments that are sequentially digested by a
pair of methylation sensitive and insensitive restriction en-
zymes. This produces sequencing reads appended with spe-
cific tags corresponding to the methylation state of the par-
ticular CpG site. True methylated sequences can therefore
be easily distinguished from read loss events. Digital count-
ing of methylated and unmethylated reads in each library
ensures precise quantification of DNA methylation levels
for both low-input and single-cell samples. Due to the rep-
resentative and deterministic genome coverage, DARE en-
ables CNA calling at 500 kb resolution. This novel DARE
approach will significantly augment current techniques for
concurrent single-cell CNA and DNA methylation analysis.

MATERIALS AND METHODS

Cell culture

K562 cells (ATCC® CCL-243™) were cultured in high
glucose Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco) supplemented with 10% Fetal Bovine Serum (FBS)
(Gibco) and 1% penicillin-streptomycin (Gibco). HepG2
cells (ATCC® HB-8065™) were cultured in low glucose
(1 g/l) DMEM (Gibco), 1% Glutamax (Gibco), 1% non-
essential amino acids (NEAA) (Gibco), 10% FBS (Gibco)
and 1% penicillin–streptomycin (Gibco). H1 ES cells was
a gift from John Chua’s lab. The cells were harvested, and
the DNA was extracted using DNeasy blood and tissue kit
(QIAGEN) for the low-input assays. DNA concentrations
were quantified using Qubit dsDNA HS Assay Kit (Thermo
Scientific) in Qubit 3.0 (Invitrogen). The cells were stained
with CellTrace Calcein Red-Orange AM (Life Technolo-

gies), diluted in Phosphate Buffered Saline (PBS) (Gibco)
to 1 cell/�l concentration and isolated in 0.2 ml PCR tubes
for the single-cell assay. The tubes were observed under the
microscope to confirm the presence of a single fluorescently
stained cell.

Adapters design and preparation

List of adapter and primer sequences are found in Supple-
mentary Table S1. The adapters are designed such that U-
tag (unmethylated) or M-tag (methylated) adapters will be
ligated on one end of the digested fragment while N-tag
(NlaIII) adapter will be ligated on the other end. NlaIII
digestion is included to reduce the average library size
to ensure compatibility with Illumina sequencing systems.
All three adapters were obtained by annealing a long and
short oligonucleotide together. The long oligonucleotide
of U-tag adapter and M-tag adapter consist of an 8-base
Unique Molecular Identifier (UMI) followed by the respec-
tive adapter sequences to distinguish them apart in 5′ to 3′
direction, while the complementary short oligonucleotides
contain 5′CG overhang. Similarly, N-tag adapter oligonu-
cleotides consist of a long oligonucleotide with 3′CATG
overhang and a short oligonucleotide. The 3′ end of the long
oligonucleotides would ligate to 5′ phosphate group of the
digested genomic DNA. The short oligonucleotides with
low melting temperature would detach and allow extension
of the digested fragment by polymerase during the first step
of amplification (72◦C for 13 min), completing the adapter
complementary sequence. All the short oligonucleotides of
the adapters consist of few uracil bases which were excised
by Thermolabile USER® II enzyme (New England Bio-
labs), leaving the excess adapters as single stranded long
oligonucleotides that are not capable of ligating. Single
stranded adapter oligonucleotides were eventually removed
using Exonuclease I (Enzymatics). Oligonucleotides were
ordered from Integrated DNA Technologies (IDT), and the
respective long and short oligonucleotides were annealed in
1× CutSmart buffer at final concentration of 25 �M (ramp
down at 1◦C per min from 75 to 25◦C).

Sample preparation for DARE

Unmethylated Lambda DNA (Promega) was used as the
unmethylated control. Methylated control was obtained by
methylating unmethylated Lambda DNA (Promega) twice
using CpG Methyltransferase (M.SssI) (NEB) at 37◦C for
3 h. For low-input experiments, 1 �l containing 100 or 1 ng
of DNA was used. For single cell experiments, cells were
isolated in 1 �l of PBS into 0.2 ml PCR tubes and verified
to be single cells using a microscope.

DARE workflow

1 �l of input sample containing DNA or a single cell was
added into individual tubes. Details of reaction mixture
compositions are found in Supplementary Table S2. All
the single-cell reaction mixtures additionally contained C1
Loading Reagent (Fluidigm). 2 �l of lysis reaction mixture



PAGE 3 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 19 e122

with Protease (QIAGEN) was added to the tubes and in-
cubated at 42◦C for 3 h, 65◦C for 30 min and 80◦C for 15
min. 2 �l of HpaII digestion reaction mixture containing
HpaII (New England Biolabs) was added to the tube and in-
cubated at 37◦C for 3 h to digest the unmethylated CCGG
sites, and the enzyme was inactivated at 65◦C for 20 min.
Following digestion, 2 �l of U-tag adapter ligation reaction
mixture was added and the adapters were ligated at 25◦C for
2 h. This was followed by ligase inactivation at 65◦C for 20
min. The excess uracil adapters were removed with 2 �l of
Thermolabile USER® reaction mixture at 37◦C for 20 min,
25◦C for 20 min and the enzyme was inactivated at 65◦C for
20 min. The remaining CCGG sites and CATG sites were
then digested with 21 �l of MspI (New England Biolabs)
and NlaIII (New England Biolabs) digestion reaction mix-
ture at 37◦C for 3 h, and the enzymes were inactivated at
65◦C for 20 min. MspI and NlaIII digested sites were then
ligated with 7 �l of M-tag/N-tag adapter ligation reaction
mixture at 25◦C for 2 h and T4 DNA ligase HC (Thermo
Scientific) was inactivated at 65◦C for 20 min. 1 �l of Ther-
molabile USER® II enzyme (New England Biolabs) was
used to remove excess M-tag adapters and N-tag adapters
at 37◦C for 20 min, 25◦C for 20 min, and inactivated at 65◦C
for 20 min. Single stranded excess adapter oligonucleotides
were eliminated by the addition of 1 �l of Exonuclease I
(Enzymatics) at 37◦C for 30 min. The single strand ligated
products were first extended with Preamplification reaction
mixture at 72◦C for 13 min, followed by inactivation of Ex-
onuclease I at 85◦C for 20 min. In this assay, the inhibition
of Exonuclease I at 85◦C was performed after the extension
step. This is to prevent the fragments from denaturing be-
fore obtaining the double stranded fragments with complete
tags on both ends of the fragment. Since our method relies
on single stranded ligation, denaturation of DNA before
extension will result in only one end of each fragment be-
ing tagged, with either U-tag/M-tag or N-tag. Next, 2 �l of
20 �M Read 1 primer and N-tag long oligonucleotide were
spiked-in to the tube and amplified at 98◦C 45 s, 15 cycles
of 98◦C 15 s, 67◦C 30 s, 72◦C 15 s and then 72◦C 30 s. The
amplified products were cleaned up with 1.6× AMPure XP
beads (Beckman) and eluted in 12 �l of water. Read 1 and
Read 2 primers were added to the amplicons through qPCR
amplification in Reamplification reaction mixture at 98◦C
45 s, X cycles of 98◦C 15 s, 67◦C 30 s, 72◦C 15 s. For this
reaction, 1 �l of 20-fold diluted product from 100 ng input
sample, and 1 �l of 1 ng and single cell products was used.
The number of cycles required was optimized using real-
time monitoring, with 100 and 1 ng samples requiring six cy-
cles and single cell samples requiring nine cycles. The ream-
plified library was purified using MinElute PCR Purifica-
tion Kit (QIAGEN). Qubit dsDNA HS Assay Kit (Thermo
Scientific) was used to quantify the library concentration
and equal concentration of all libraries were pooled. Prod-
ucts between 180bp-420bp were size selected with BluePip-
pin 2% agarose cassette (Sage Sciences) and purified using
MinElute PCR Purification Kit. Qubit dsDNA HS Assay
Kit was used to quantify the library concentration. The
size distribution of the library was measured using Bioan-
alyzer High Sensitivity DNA Analysis Kit (Agilent). This
was followed by quantification of the library with Kapa Li-

brary Quantification Kit (Roche) and sequenced in MiSeq
or HiSeq 4000 sequencing system (Illumina).

Data processing

To process the sequencing data to obtain methylation val-
ues, we developed a pipeline consisting of the follow-
ing main steps: (i) extracting the UMI, (ii) differentiating
methylated and unmethylated reads based on the adapter
sequence, (iii) adapter trimming, (iv) alignment to the hu-
man genome, (v) removal of PCR duplicates, (vi) calculat-
ing methylation ratio at each CCGG site. The quality of
the sequenced reads was analyzed using FastQC v0.11.4
(18). UMI-tools v0.5.4 was used to extract the UMI and
remove PCR duplicates (19). Adapters were trimmed using
Cutadapt v1.5 (20) and alignment to hg38/GRCh38 human
reference genome was done using bowtie2 v2.3.4.1 (21).

Ploidy determination and copy number aberration analysis

The human genome was split into 500 kb windows. This
resolution was chosen as 93.5% of the 500 kb windows were
covered by 50 unique fragments or more. The sum of unique
reads in each window was divided by the number of as-
sayable sites in that window to obtain the read counts by
window. The ploidy determination approach was adapted
from Kendall and Krasnitz (22). Using the reads count by
window, a range of multiplier values were chosen such that
1.5 ≤ 〈MS〉 ≤ 5.5, where M is the multiplier and S denotes
the reads counts. Subsequently, the mean squared round-
ing error 〈(MS – [MS])2〉 was calculated for each multiplier
and the multiplier at which this error was minimum was
chosen (Supplementary Figure S1A). The estimated copy
number for each bin was calculated using the previously ob-
tained multiplier and the median ploidy was given as the
highest density integer (Supplementary Figure S1B). In or-
der to validate our approach, the ploidy determination was
performed on H1 ES cells, which yielded a consistent copy
number of 2 (Supplementary Figure S1C).

To obtain the final copy number values for each 500 kb
window, the reads for each cell were normalized using the
median of that cell and multiplied by the obtained ploidy.
To provide integer copy number for use in Circos plot, the
obtained values were rounded to the nearest integer.

CNA calling accuracy

To determine the accuracy of the CNA calling algorithm,
reference HepG2 CNA values from Zhou et al. were used
(23). The reference CNA values were binarized as normal
and aberrated for this purpose. Our determined CNA values
for each window was binarized using different thresholds
and the sensitivity and specificity was calculated at each of
these thresholds. Using the obtained values, a Receiver Op-
erating Characteristics (ROC) curve was plotted and area
under the curve (AUC) was calculated to determine accu-
racy.

Single nucleotide variation analysis

Whole genome sequencing data was obtained from EN-
CODE (ENCFF336CFC). The SNV calling was done us-
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ing samtools mpileup (24). Our sequenced library was com-
pared with hg38 reference to determine the variations.

Determining DNA methylation

A given CCGG site was considered assayable if it had a
CATG site more than 32 bp and less than 272 bp away from
the CCGG site of interest, and no other CCGG site preced-
ing the CATG site.

The DNA methylation at each CCGG site was calculated
as the unique number of reads with M-tag divided by the
total unique reads at that site.

Methylation ratio = # M − tag
# (U − tag + M − tag)

Confirming accuracy of DNA methylation

Whole Genome Bisulfite Sequencing (WGBS) data
for K562 and HepG2 was downloaded from EN-
CODE (K562: GSM2308596 ENCFF721JMB, HepG2:
ENCFF369YQW). WGBS samples were filtered to in-
clude only sites with five or more reads to ensure reliable
methylation values. For the merged sample generated by
combining the single cells, only sites with five or more
covered reads were included in the analysis. Different
gene region annotations, such as CpG Islands, introns,
exons and repeats were downloaded from UCSC table
browser. Promoters were defined as the region that is 1 kb
downstream and 500 bp upstream of the transcription start
site of each gene (25). To calculate mean methylation for
different regions, the average methylation of the CCGG
sites covered within the region were used. For scDARE,
pairwise Pearson correlation for complete observations
was calculated between all the single cells.

To visualize the Pearson correlation between DARE and
other assays, we employed density scatter plots. The CpG
sites are binned by methylation percentage and the color
scale represents the densities of CpG sites of particular
methylation percentages. This approach avoids overplotting
of similar valued CpG sites that obscure the structure in the
bimodal distributed DNA methylation data. The Pearson
correlation score is generated from the raw data.

Comparison with other methylation assays

RRBS data was downloaded from ENCODE
(ENCFF001TNA). Other single-cell methylation as-
say data was obtained from the following NCBI GEOs
(scRRBS: GSE47343, scBS: GSE56879).

Gene body methylation analysis

To correlate the gene body methylation with expression of
the respective genes, HepG2 RNA-Seq data was obtained
from ENCODE (ENCFF004HYK). Genes were ranked by
‘transcripts per million (tpm)’. Genes with less than 1 tpm
were denoted as ‘low expression’ while genes with >100 tpm
were denoted as ‘high expression’. All other genes with tpm
between 1 and 100 were denoted as ‘intermediate expres-
sion’.

Allele-specific methylation

SNVs from DARE methylated and unmethylated reads
were identified using samtools mpileup and filtered for sig-
nificance using vcfutils. Only sites with heterozygous SNVs
was considered. Fisher’s exact test and q-value <0.05 was
used to select regions with allele-specific methylation.

Saturation plot

The cumulative CCGG coverage of DARE was determined
by a saturation plot. Starting from a single randomly chosen
sample, the number of CCGG sites covered was calculated.
Additional experiments were randomly added and the cu-
mulative number of unique CCGGs covered was calculated
at each step. This process was repeated ten times and the
results obtained was plotted.

RESULTS

DARE workflow and adapter design

DARE is a LM-PCR based approach to methylation-
specific WGA. The basic principle of DARE is the
methylation-specific tagging of CCGG sites across the
genome as illustrated in Figure 1A. This is achieved by
first digesting genomic DNA with methylation-sensitive
HpaII enzyme that cleaves unmethylated CCGG sites.
The cleaved fragments are ligated with a uracil-containing
double-stranded ‘U-tag’ adapter. Subsequent treatment
with Thermolabile USER® II enzyme inactivates the un-
ligated U-tags by converting them into single-stranded
oligonucleotides. Following this, genomic DNA is digested
with methylation-insensitive MspI enzyme that digests
the methylated CCGG sites and NlaIII enzyme that fur-
ther fragments the genomic DNA by cutting at CATG
sites. MspI and NlaIII cut sites are ligated with ‘M-
tag’ and ‘N-tag’ adapter respectively, both of which are
uracil-containing double-stranded adapters. All unligated
adapters are made single-stranded and removed from so-
lution by treatment with Thermolabile USER® II enzyme
and Exonuclease I. At this point, all the genomic DNA
molecules are ligated with N-tag adapter at CATG sites,
U-tag adapter at unmethylated CCGG sites and M-tag
adapter at methylated CCGG sites. Accordingly, PCR am-
plification of these tagged molecules produces three types
of products: (i) U-tag/M-tag adapter on one end and N-
tag adapter on the other, (ii) U-tag/M-tag adapter on both
ends, (iii) N-tag adapter on both ends. Of these products,
only the first type is efficiently amplified and sequenced,
while the rest are inefficiently amplified due to PCR sup-
pression effect. This deterministic amplification of frag-
ments is a unique feature that is important for consistent
methylation comparison and CNA determination across
different samples.

The features of the adapters are shown in Figure 1B. The
U-tag adapter and M-tag adapter consists of several impor-
tant regions: (i) Read 1 primer sequence, (ii) 8-base Unique
Molecular Identifier (UMI), (iii) Tag region (TTAGCGAC
ACGA for U-tag, AGCAGATGACGT for M-tag) and (iv)
5′CG overhang for specific ligation to HpaII/MspI cut sites.
Meanwhile, the N-tag adapter consists of Read 2 primer



PAGE 5 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 19 e122

A B

Figure 1. Workflow of DNA Analysis by Restriction Enzyme (DARE) assay. (A) Workflow of DARE assay––cell lysis and protease treatment are followed
by digestion of unmethylated CCGG sites with methylation sensitive HpaII enzyme. U-tag adapters are ligated and the remaining CCGG sites are digested
by methylation insensitive MspI enzyme. NlaIII digestion is included to reduce the fragment length. This is followed by ligation with the respective adapters
(M-tag and N-tag adapters). Thermolabile USER® II enzyme is used to remove excess uracil-containing adapters after each ligation. (B) Adapter system:
U-tag adapter consists of Read 1 primer sequence of Illumina adapter, unique molecular identifier (UMI), unmethylated site specific tag (U-tag), and CG
overhang. M-tag adapter similarly consists of Read 1 primer sequence of Illumina adapter, UMI, methylated site specific tag (M-tag), and CG overhang.
N-tag adapter consists of Read 2 primer sequence of Illumina adapter and CATG overhang.

sequence and 3′CATG overhang for ligation to NlaIII cut
sites. This particular adapter design has many advantages
especially for low-input samples: (a) it enables sticky end
ligations that are much more efficient than blunt-end or TA
ligation, (b) the use of non-phosphorylated adapters elimi-
nates adapter-adapter ligation and (c) the UMIs reduce the
effect of quantitative biases in low-input sample.

To assess the feasibility of DARE assay to distinguish
methylated from unmethylated CCGG sequences, we per-
formed the assay on unmethylated and enzymatically-
methylated lambda DNA. As expected, the majority of
reads obtained from the unmethylated control samples con-
tain U-tag, while the majority of reads obtained from the
methylated control samples contain M-tag (Supplementary
Figure S2A). As a control of enzyme digestions in our re-
action tubes, we spiked in unmethylated lambda DNA for
estimation of enzyme efficiency.

Accurate copy number aberration determination using DARE

To benchmark this novel assay on low amounts of DNA,
we first performed DARE on 100 and 1 ng of HepG2 ge-
nomic DNA according to the protocol described (Supple-
mentary Table S2). On average, 12.3 million reads per cell
(8.3–16.1 million, Supplementary Table S3) were obtained
and mapped to hg38, with an average mapping efficiency
of 93% (Supplementary Table S3). We first assessed the
genome-wide distribution of DARE fragments for read-
count based CNA calling. In-silico digestion of the human
genome yielded 1 806 438 fragments in the 32–272 bp range
that are flanked by CATG on one side and CCGG on the
other. Due to the deterministic amplification of DARE frag-
ments, we performed read-count normalization based on
in-silico fragments for CNA calling. As the signal-to-noise

ratio of CNA calling is related to the number of reads per
window, we determined the fraction of the genome that is
covered by >50 in silico DARE fragments for different win-
dow size (Figure 2A). At a resolution of 500 kb, 93.5% of
the windows across the genome satisfy this criterion and is
expected to provide robust CNA calling. The same trend
is observed in the 100ng HepG2 DARE sample as the in-
silico simulation. We also used median absolute pairwise
difference (MAPD), which indicates the noise in CNA call-
ing at a particular resolution. At the resolution of 500 kb,
MAPD for 100 ng HepG2 DARE sample was calculated to
be 0.10, which is within the required 0.45 cutoff for CNA
calling (26). As a control, we performed DARE assay on
100 ng gDNA from diploid H1 ES cells, subjected to the
same bioinformatics analysis for CNA calling, and showed
that a diploid copy number is obtained across the entire
genome. The CNAs for HepG2 and H1 ESCs obtained from
DARE are visualized in the Circos plot in Figure 2B.

To verify the accuracy of CNA calling, we compared the
copy number obtained with DARE at 500 kb resolution
against published copy number data for HepG2 (23). Com-
parison of corresponding copy number values from DARE
and reference data demonstrated a high degree of concor-
dance (Figure 2C). ROC analysis showed an excellent agree-
ment (AUC = 0.96) between CNA calls from DARE and
reference dataset (Figure 2D).

Assaying for DNA methylation in low-input samples using
DARE

The key feature of the DARE assay is the retention of DNA
methylation information even upon WGA. It offers some
advantages over other methylation assays: Firstly, the use
of U-tag and M-tag to identify methylation status of each
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Figure 2. Unbiased read distribution of DARE and its accuracy in determining copy number aberrations. (A) Percentage of 100 kb, 500 kb, 1 mb and
10 mb windows that contain 50 or more theoretical assayable sites and 50 or more unique fragments per bin in the 100 ng HepG2 DARE sample. (B)
Circos plot showing CNAs in DARE 100 ng HepG2 and H1 ES cells gDNA samples. The outermost circle is the cytoband of the human genome. The
middle circle is the copy number of HepG2 at 500 kb resolution and inner circle is the copy number of H1 ES cells at 500 kb resolution. (C) Box plot of
obtained copy number from DARE HepG2 100 ng sample and corresponding values in the reference data. (D) ROC analysis of obtained CNA values at
500 kb resolution from DARE HepG2 100 ng DNA, AUC = 0.96.

CCGG site allows for direct determination of the methy-
lation status without requiring normalization based on a
separate sample like most MSRE-based methods (HELP,
MSCC, scCGI-seq etc.) (Supplementary Figure S2B). Sec-
ondly, the high complexity of insert sequences results in
high mapping efficiency (93%) compared to the bisulfite as-
says (55–73%) (27,28).

The MSRE-based DARE assay can only profile the
methylation states of CpG sites located in the CCGG con-
text. Theoretical analysis showed that while there are ∼28.7
million CpG sites in the human genome, ∼2.3 million (8%)
of these are located in CCGG context. After filtering for
fragment size and removing sequences that map to multiple
locations, 1 385 655 unique CCGG sites are theoretically
covered by DARE. This represents 4.8% of the ∼28.7 mil-
lion total CpG sites or 59.7% of the ∼2.3 million CCGG
sites in the human reference genome. Thus, while DARE
covers far less CpG sites than WGBS, its theoretical CpG
coverage is comparable to other methylation detection tech-
nologies such as HumanMethylation 450 BeadChip (∼450

000 CpGs) and RRBS (∼3.4 million CpGs). A comparison
between CpG coverage of DARE and other technologies is
summarized in Supplementary Table S4.

DARE assay on 100 ng HepG2 DNA, sequenced to 11.4
million reads, covers 86% (1.19 million/1.38 million) of the
assayable DARE CpGs, with average sequencing depth of 6.
The genomic distribution of assayable DARE CpGs closely
tracks the total CpG distribution, and provide an excellent
representation of the distribution of CpGs in different ge-
nomic elements. To illustrate the linear spatial relationship
between CCGG and CpG sites, we showed that the num-
ber of CpG sites between consecutive CCGG sites is tightly
distributed (Supplementary Figure S2C), and the frequen-
cies of CpG sites and CCGG sites within 10 kb windows are
highly correlated (Supplementary Figure S2D). The analy-
sis of a single CpG site or a few CpG sites has been widely
used as surrogate indicators of the DNA methylation sta-
tus of the corresponding element (29). The correlation be-
tween the average DARE CCGG methylation and average
WGBS CG methylation at CGIs was 0.84, indicating a high
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predictive sensitivity of this approach. We further showed
that the genomic representation of DARE libraries closely
matches that of WGBS and recapitulates the theoretical dis-
tribution of different genomic regions (Figure 3A). Com-
pared to RRBS where ∼80% of promoters are represented
by one or more measurements (30), DARE achieves sim-
ilar coverage where 74% of the promoters are represented
by one or more DARE CpG (Supplementary Figure S2E).

To validate the accuracy of the methylation values ob-
tained by DARE, we compared the values to that of WGBS
data. The Pearson correlation of methylation values at indi-
vidual CCGG sites between HepG2 WGBS and DARE as-
say from 100 ng HepG2 DNA was 0.92 (Figure 3B), while
correlation between replicate 100 ng HepG2 DNA samples
was 0.93 (Supplementary Figure S2F), indicating good ac-
curacy and reproducibility. The accuracy was maintained
even with a lower amount of input DNA, with the correla-
tion between 100 and 1 ng HepG2 DNA being 0.92 (Supple-
mentary Figure S2G), showing that DARE can be applied
to small amounts of input DNA for accurate epigenome
profiling.

We summarized DARE DNA methylation values across
gene bodies and 15 kb regions upstream and downstream
of each gene and detected the characteristic hypomethyla-
tion valleys around transcription start sites (TSSs) as well as
hypermethylation patterns of the gene bodies (Figure 3C).
Beyond promoters, there has recently been many studies
to establish the effect of gene body methylation on gene
expression (31–33). By analyzing HepG2 RNA-Seq data
from ENCODE (ENCFF004HYK) and methylation infor-
mation obtained through DARE, we observed that lower
expressing genes had intermediate methylation level of gene
body, while the intermediate and high expressing genes had
high gene body methylation (Figure 3D and E). This was
also observed in the WGBS data, validating the accuracy
of the trend observed (Supplementary Figure S2H and I).
As DARE provides proportional representation across the
genome, it serves as a valuable tool to investigate the func-
tion of DNA methylation in different genomic contexts.

Concurrent genomic and epigenomic analysis detects allele
specific methylation

Apart from CNA determination, the excellent mappabil-
ity of non-bisulfite-treated DARE fragments enables ro-
bust SNV calling for simultaneous genomic and epigenomic
analysis. In regions covered by ≥10 DARE fragments, we
detected 89% (81 099/90 894) of SNV calls made by whole
genome deep sequencing of HepG2 cells DNA, indicating
the high sensitivity of DARE genomic analysis. Of these
SNVs, 35% (29 110/81 099) were C→T or G→A conver-
sions that would otherwise be difficult to distinguish from
induced deamination of cytosine in bisulfite approaches. We
also investigated the frequency of SNVs in the CCGG con-
text that might affect the performance of DARE assay. Us-
ing the HepG2 cell line as an example, we found that 30 594
of the ∼4.2 million annotated SNVs overlapped with the
theoretical 1.38 million assayable CCGG sites in DARE.
Therefore, only a negligible percentage (∼2.2%) of the as-
sayable sites are potentially affected.

Recent studies have found sequence-dependent CpG
methylation differences at heterozygous regulatory se-
quences that could lead to complex traits in human pop-
ulations. However, directly identifying SNVs from bisul-
fite converted sequence reads is challenging and it was es-
timated that an average 30× sequence read depth would
be required to call SNVs accurately from bisulfite sequenc-
ing data (34). This problem is circumvented in the bisulfite-
free DARE assay. More than half (45 867/81 099) of the
SNVs detected in DARE assay for HepG2 DNA are het-
erozygous and could serve as allelic markers. We performed
allele-specific methylation analysis on these heterozygous
SNV loci and estimated significance by means of Fisher’s
exact test on the counts of methylated and unmethylated
cytosines observed on the same sequencing read with each
of the SNV allele. Sixty eight loci with allele-specific methy-
lation were detected with q-values of <0.05. The locations
of these loci are visualized in Figure 3F and a complete list
of these loci is listed in Supplementary Table S5.

As a new finding of this analysis, we observed a very
striking colocation of the allele-specific methylation loci
and genomic regions harboring large-scale CNA in HepG2.
While only 23.5% of the HepG2 autosomes are measured by
DARE to harbor CNAs at 500kb resolution, 64.7% (44/68)
of the allele-specific methylation loci are found in the CNA
regions (Supplementary Table S5), representing a signifi-
cant enrichment. We believe that this is the first time such
relationship has been reported in literature, and it is made
possible by DARE assay that concurrently measures ge-
nomic CNAs, SNVs and DNA methylation in the same
sample.

Application of DARE in single cells to determine CNA

On the basis of low-input DARE results, we next applied
single-cell DARE (scDARE) to 10 HepG2 and 10 K562 sin-
gle cells. On average, we obtained 11.1 million reads per cell
with an average mapping efficiency of 89% (Supplementary
Table S3), significantly higher than bisulfite-based single-
cell methylation assays (24–32%) (27,35). First, we investi-
gated the performance of scDARE for single-cell CNA de-
tection. Between two cells of the same cell line, there was
a high degree of correlation between the normalized read
counts at 500 kb window resolution (Figure 4A and B), in-
dicating a high degree of reproducibility. As a measure of
data quality, we calculated the MAPD scores for scDARE
samples to be 0.22 ± 0.03. Low MAPD values (<0.45) indi-
cate low noise and evenness of whole genome amplification
of this method. Following the similar approach as earlier,
the median ploidy for the HepG2 and K562 cells was cal-
culated to be 2 and 3 respectively (Supplementary Figure
S3A and B), in agreement with published literature (23,36).
ROC analysis showed good agreement between CNA calls
from scDARE and reference dataset (AUC = 0.87 ± 0.05)
(Supplementary Figure S3C) as well as between scDARE
and DARE (AUC = 0.86 ± 0.04) (Supplementary Figure
S3D). The CNA values obtained were visualized by chro-
mosome and different regions of amplification and deletion
were observed in single cells from each cell line in agreement
with published literature (Figure 4C) (23,36). To estimate
the sensitivity of CNA calling depending on total sequenc-
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Figure 3. Unbiased coverage and DNA methylation accuracy of DARE assay from 100 ng HepG2 genomic DNA. (A) Theoretical distribution of promot-
ers, exons, introns and intergenic regions in the genome, as well as in WGBS, DARE and RRBS sequenced library. (B) Pearson correlation coefficient of
methylation values at CCGG sites in HepG2 100 ng DNA with ENCODE WGBS data. Only sites with five or more reads were considered. Pearson r =
0.92. (C) Average DNA methylation of CpGs in CCGG context of genes and its 15 kb upstream and downstream region for HepG2 DARE and ENCODE
WGBS data. (D) Promoter and gene body methylation profile of individual genes ranked by expression level. (E) Range of methylation values of promoter,
introns and exons, stratified by gene expression level. (F) Circos plot showing CNAs in DARE 100ng HepG2 (outer circle) and the loci of allele-specific
methylation (inner circle). Height of the red bar represents the methylation level of the reference allele and height of the blue bar represents the methylation
level of the alternate allele at these regions.
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Figure 4. CNAs in single cells. (A) Scatter plot of normalized read counts in 500 kb for two HepG2 single cells. Pearson r = 0.87. (B) Pairwise correlation
matrix of copy number for all HepG2 (purple) and K562 (green) single cells. (C) Heat map of CNAs detected at 500kb resolution for HepG2 (purple) and
K562 (green) 100 ng gDNA and single cells. Red represents amplification and blue represents deletion with respect to its median ploidy.

ing reads, we performed CNA calling with subsets of reads
ranging from 0.2 million to 10 million mapped reads ex-
tracted by random sampling of reads of a single HepG2 cell.
As expected, CNA calling performance deteriorates with
decreasing sequencing reads (Supplementary Figure S3E)
due to reduced coverage. Nevertheless, at 1 million reads
(513 318 unique reads) for a single cell, a high AUC of >0.90
is obtained, indicating that low pass sequencing for high
throughput scDARE is feasible.

DNA methylation in single cells

On the methylation front, scDARE was able to cover an
average of 27% (381 033/1.38 million) of assayable DARE
CpG sites per cell. On merging data from 10 HepG2 sin-
gle cells, we were able to cover more than 90% of the as-
sayable sites (Supplementary Figure S4A), with an average
read depth of >4 (Supplementary Figure S4B). Compar-
ing the methylation values of CCGG sites with read depth

≥5 of the merged single HepG2 cells data with DARE re-
sults from 100 ng HepG2 DNA, we obtained a high Pearson
correlation of 0.87 (Supplementary Figure S4C). We com-
pared the global methylation of the two cell lines and ob-
served that K562 was hypomethylated, in agreement with
literature (Supplementary Figure S4D) (37). Also evident is
the binary nature of the methylation profile at the single-cell
level, which is observed in all the single cells assayed (Fig-
ure 5A) compared to low-input samples. We then compared
the representation of different genomic regions by scDARE
and other single-cell bisulfite sequencing based assays (Fig-
ure 5B) and showed that scDARE had comparable repre-
sentation in most genomic regions.

DNA methylation across the genome is typically vari-
able according to its functional context. To visualize this,
we plotted the distribution of HepG2 single-cell methyla-
tion across a selected region of chromosome 1. It can be
seen that methylation is homogeneously low in CGIs within
promoters, and becomes homogeneously high in the gene
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Figure 5. DNA methylation in single cells. (A) Distribution of DNA methylation values in scDARE, DARE low-input and WGBS samples. (B) Percentage
of genomic regions covered by scDARE, scRRBS, scBS from 10, 8, 10 single cells respectively. (C) DNA methylation rates for each HepG2 cell (represented
by different colour) in a short region of chromosome 1. The methylation rates of ENCODE WGBS data is shown by the blue dotted line. The region shown
as an example includes the Cyclin L2 (CCNL2), and mitochondrial ribosomal protein L20 (MRPL20) locus. (D) Pairwise correlation matrix for all single-
cell HepG2 (purple) and K562 (green) DNA methylation at assayed CCGG sites. (E) Average DNA methylation of CpGs in CCGG context of genes and its
15 kb upstream and downstream regions. (F) Average DNA methylation across functional genomic regions of 10 HepG2 and K562 single cells compared to
the respective WGBS ENCODE data. Error bar represents the standard deviation. (G) Unsupervised clustering of the 1000 most differentially methylated
1 kb regions between K562 (green) and HepG2 (purple) covered by at least 8 cells of each cell line.
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body regions (Figure 5C). Greatest cell-to-cell heterogene-
ity is found at CpG shores flanking the CGIs. High inter-cell
type variation and low intra-cell type variation are observed
between individual cells from cell lines (HepG2 and K562),
based on Pearson correlation analysis of CCGG methyla-
tion levels between single cells (Figure 5D). On a global
scale, individual K562 cells have significantly lower DNA
methylation compared to their HepG2 counterparts, espe-
cially in gene bodies and intragenic regions (Figure 5E),
consistent with trends observed in WGBS assays (Figure
5F).

Cell-to-cell comparison of single cell DNA methylation
data at individual CpG level is challenging due to the sparse
coverage. Aggregation of multiple measurements across ge-
nomic windows could allow for quantitative cell-to-cell
analysis of DNA methylation variation. We show that a
third of the 10 kb windows containing DARE CpGs are
covered by 80% or more single cell samples for compari-
son of regional methylation levels between individual cells
(Supplementary Figure S4E). We examined the 1000 most
variable 10 kb regions among all the single cells, and showed
that the methylation profiles of these regions robustly sep-
arate the HepG2 and K562 cells (Figure 5G). This result
demonstrates that differences in cell types are encoded in
their epigenetic profiles, and can be detected at the indi-
vidual cell level using scDARE. Similarly, the single cells
cluster according to cell types when examining the 1000
most variably methylated promoters (Supplementary Fig-
ure S4F), corroborating the role of epigenetic control that
underlie gene regulation of different cells.

DISCUSSION

Here we report DARE, a novel LM-PCR Whole Genome
Amplification-based approach to assay for genetic and
epigenetic alterations in low-input DNA and single
cells. Methylation-specific whole-genome amplification is
achieved by sequential DNA digestion with methylation
sensitive/insensitive isoschizomers followed by ligation of
specific sequence tags. DARE provides deterministic and
proportional coverage across the genome for robust read-
count based copy number calling. At the same time, this
is the first report of a bisulfite-free method that can si-
multaneously provide genome-wide DNA methylation in-
formation at base-resolution in single cells. We provide
proof-of-principle of this novel multimodal assay by simul-
taneously detecting copy number variations and consistent
DNA methylation differences between single cells from two
different cell lines.

Fundamentally, DARE is an LM-PCR to whole
(epi)genome amplification. The deterministic amplification
properties of LM-PCR has been shown to provide superior
performance compared to other WGA approaches in
terms of reduced allelic bias and dropouts (8)––important
considerations in single-cell assays. Judicious choice of
enzymes in DARE results in excellent genome coverage:
>93% of 500kb windows are covered by >50 unique
DARE fragments, this enables robust CNA determination
at 500kb resolution.

Nonspecific sample loss due to harsh chemical treatment
and multiple sample cleanup is an inherent limitation of

bisulfite sequencing, and becomes a critical bottleneck for
comparison of methylation status at specific CpGs in mul-
tiple low-input samples including single cell applications.
These problems are resolved in the DARE approach, due to
the mild restriction enzyme steps, high efficiency of sticky-
end ligation and single-tube protocol. Although DARE
covers only ∼4.8% (1.8 million) of the total CpG sites, these
sites are consistently covered due to the low loss nature of
the protocol. Furthermore, due to the strong spatial corre-
lation of CpG methylation states, specific methylation mea-
sured at DARE CpGs can be used to infer regional methy-
lation. Thus, DARE directly profiles the methylation states
of CCGG sites while indirectly provides information on the
surrounding region.

Decrease in DNA complexity upon bisulfite conversion
can lead to significantly reduced alignment rate and ambi-
guity in base calling. In the bisulfite-free DARE approach,
consistent high mapping efficiencies are obtained in both
low-input and single-cell samples. Sequencing reads from
DARE can be used for genetic analysis including robust
SNV calling. We detected 89% (81 099/90 894) of SNV calls
made by whole genome deep sequencing in high-coverage
DARE fragments on DNA from HepG2 cells. Of these
SNVs, 35% (29 110/81 099) were C→T or G→A conver-
sions that would otherwise be difficult to distinguish from
induced deamination of cytosine in bisulfite approaches.
Concurrent genomic (SNV) and epigenomic (CpG methy-
lation) analysis using DARE also enabled allele-specific
methylation analysis. We observed a significant enrichment
of loci with allele-specific methylation at genomic regions
harboring CNAs. Although further work is needed to better
understand this phenomena, our hypothesis is that allele-
specific methylation could play a role in silencing the aber-
rantly amplified genome copies, thus providing gene dosage
compensation. The most well-known dosage compensation
by DNA methylation mediated silencing is X chromosome
inactivation in female. Our experimental observations indi-
cate that analogous mechanisms could take place in cancer
cells.

There have been several alternative approaches that make
use of the HpaII/MspI isoschizomers pair to elucidate
methylation information (14,16,38,39). Unlike bisulfite-
based methods, these approaches often employ separate en-
richment and detection of methylated and unmethylated
DNA, which limits the quantitative precision of the analy-
sis. A novel technique, DREAM, employs sequential DNA
digestion with methylation sensitive SmaI and methyla-
tion insensitive XmaI to directly measure DNA methylation
(40). However, the frequency of assayable sites afforded by
these 6-base cutters was low, being able to cover only ∼0.15
million CpGs in the human genome. In comparison, DARE
utilizes a frequent 4-base cutting HpaII/MspI pair to in-
crease the assayable CpGs to ∼1.38 million, comparable to
the ∼2.5 million CpG sites that can be assayed by RRBS
(41).

Incomplete DNA digestion by HpaII could lead to occa-
sional errors in methylation state calling in MSRE-based
approaches. Using the normally unmethylated mitochon-
drial DNA as an internal control, we observed low per-
centages of <10% M-tag adapter in all except one single-
cell sample. For this reason, DARE may not perfectly de-
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tect minor differences between cells at every single assayable
CCGG site. However, it has been reported that function-
ally relevant methylation differences are generally associ-
ated with genomic regions rather than individual CpGs
(42). By applying the tiling window approach commonly
used in bisulfite-based single-cell methylome assays to sc-
DARE (43), we show that coordinated DNA methylation
differences between cells involving multiple CCGG sites are
robustly detected at single-cell level using DARE assay (Fig-
ure 5G), pointing to the sensitivity of DARE for detecting
differences between different cell populations.

In this work, we rely on manual single-cell isolation
to perform scDARE in PCR tubes. However, the simple,
single-tube DARE protocol is particularly amenable to high
throughput single-cell isolation and processing workflows
afforded by flow cytometry sorting and microfluidic so-
lutions. Currently, scDARE enables multimodal measure-
ment of genetic and epigenetic information in single cells,
but it is expected to be compatible with reported techniques
that separate mRNA from genomic DNA (25,44) to si-
multaneously profile and investigate the relationship be-
tween genetic, epigenetic and transcriptomic profiles in sin-
gle cells.

LM-PCR based WGA has been shown to be compat-
ible with fixed samples including formalin fixed paraffin
embedded (FFPE) tissue samples (45). Future work will
focus on optimizing DARE for processing fixed tissues,
which will greatly expand its use for clinical samples. Fi-
nally, MSRE-based methylation profiling approaches have
also found applications for investigating other DNA modi-
fications such as 5-hydroxymethylation (5hmC) (46). We ex-
pect that the principles of DARE may be extended to simul-
taneously profile genome-wide unmodified cytosines, 5mCs
and 5hmC in the same sample.

CONCLUSIONS

Recent discoveries of extensive genetic intratumor hetero-
geneity have sparked the development of various single-
cell WGA and analysis technologies to better understand
tumorigenesis and stratify patients for treatment. At the
same time, emerging evidence point to epigenetic abnor-
malities as a hallmark of cancer, including cases of conver-
gent genetic and epigenetic evolution in tumors and their
metastatic subclones (47). Recent studies have also high-
lighted the functional relevance of DNA methylation pro-
files in single circulating tumor cells (CTCs) or CTC clusters
that relates to metastatic potential (48). Hence, a technology
that enables WGA to concurrently report on genome-wide
DNA methylation states will bridge the gap and expand on
the current genome-centric view of tumor heterogeneity

In this study, we established DARE as an adapter-
linker PCR based WGA approach to detect copy num-
ber aberrations at 500kb resolution in low-input and
single-cell samples, and provided proof-of-concept for de-
tecting SNVs. At the same time, the combined use of
methylation sensitive/insensitive restriction enzymes and
methylation-specific adapters allow genome-wide determi-
nation of methylation state at ∼1.38 million CCGG sites. To
validate the technique, we demonstrate the ability of DARE
to distinguish cell-type specific CNA and DNA methyla-

tion profiles in single cells. We anticipate that DARE will
enable a wide range of applications, including interrogat-
ing genetic and epigenetic heterogeneity in different spa-
tial regions of tumor by combining tissue microdissection
with low-input DARE, and multimodal profiling of isolated
CTCs for precise molecular classification of cancer patients
with scDARE.
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