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Analogue cosmological particle creation in an
ultracold quantum fluid of light
Jeff Steinhauer 1,2✉, Murad Abuzarli1, Tangui Aladjidi1, Tom Bienaimé1, Clara Piekarski1, Wei Liu1,

Elisabeth Giacobino1, Alberto Bramati1 & Quentin Glorieux 1✉

The rapid expansion of the early universe resulted in the spontaneous production of cos-

mological particles from vacuum fluctuations, some of which are observable today in the

cosmic microwave background anisotropy. The analogue of cosmological particle creation in

a quantum fluid was proposed, but the quantum, spontaneous effect due to vacuum fluc-

tuations has not yet been observed. Here we report the spontaneous creation of analogue

cosmological particles in the laboratory, using a quenched 3-dimensional quantum fluid of

light. We observe acoustic peaks in the density power spectrum, in close quantitative

agreement with the quantum-field theoretical prediction. We find that the long-wavelength

particles provide a window to early times. This work introduces the quantum fluid of light, as

cold as an atomic Bose-Einstein condensate.
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The expansion of a universe stretches all length scales,
including the wavelengths of the particle modes. Thus, the
frequencies of the modes evolve with time1, which implies

that the modes at early and late times are related by a Bogoliubov
transformation2–6. This field theory approach avoids the micro-
scopic details, and predicts the spontaneous production of cos-
mological particles, including the primordial density fluctuations
which led to the acoustic peaks in the cosmic microwave back-
ground (CMB) spectrum4,6,7. It is particularly relevant since the
acoustic peaks can be described by linear perturbation theory8.

The field theory approach inspired the subject of analogue
cosmological particle creation, in which laboratory experiments
mimic the dynamics of scalar fields in curved space times9–15.
The experiments even allow for measurement over time, which is
impossible in the real universe, for which there is only one time of
observation. Since the model is independent of the microscopic
description of the medium, various quantum fluids were pro-
posed for the study of cosmological particle creation in analogue
universes9–15. In a two-dimensional atomic Bose-Einstein con-
densate, a qualitative comparison with cosmological particle
creation was reported16. In a 1-dimensional experiment not
related to quantum fluids, a rapid switch in the trapping field of
two ions led to phonon pair creation and formation of spatial
entanglement17.

Analogue cosmological particle creation is a type of dynamical
Casimir effect18–20, which was observed in a superconducting
circuit21 and an optical fiber22. The classical, stimulated version
of the effect was reported in a Bose-Einstein condensate23, but the
observation of the quantum effect in a quantum fluid has not
been reported. Pairs can also be produced by a modulational
instability24.

We simulate expanding and contracting universes in a
3-dimensional quantum fluid of light, as coherent as an atomic
Bose-Einstein condensate, and we observe time-resolved analogue
cosmological particle creation out of vacuum fluctuations. Our
quantum fluid is a near-resonant laser pulse traversing a warm
atomic vapor cell, as illustrated in Fig. 1a. Within the vapor cell,
the repulsive interactions between photons are mediated by the
atoms, due to Kerr nonlinearity induced by the atomic

resonance25. The interactions are suddenly quenched to zero
when the laser beam exits the vapor cell26. This configuration
mimics an expanding universe, since a rapid reduction of the
interactions causes a sudden red shift of the energy spectrum9–13.
We also observe the reverse process at the cell entrance, in which
the interaction suddenly appears, mimicking a contracting uni-
verse. We demonstrate that both processes produce pairs of
analogue cosmological particles, which confirms the predictions
of Ref. 26.

Results
Theoretical techniques. Our approach relies on the analogy
between light propagation in a Kerr nonlinear medium, and the
temporal dynamic of an atomic Bose-Einstein condensate. The
effective time is τ ¼ z=c, where z is the position in the direction
of propagation, and c is the speed of light. This effective time is
equivalent to true time for the sake of quantum mechanical
quasiparticle creation26,27. With no approximation other than the
usual paraxial and slowly-varying envelope approximations28, we
extend the standard monochromatic limit28 and find that our
fluid is described by the 3-dimensional Gross-Pitaevskii equation

i_
∂ψ

∂τ
¼ � _2

2m
∇2ψ þ Uðr; τÞψ þ gðr; τÞjψj2ψ ð1Þ

where ψ is the slowly-varying envelope of the electric field, ψ
�� ��2 is

the volume density of the photons, m is their effective mass, U is
an external potential, and g ψ

�� ��2 is the mean-field interaction
energy. The three spatial dimensions of ∇ correspond to the
transverse coordinates ðx; yÞ and to z0 ¼ γðvgt � cτÞ, which is a
coordinate comoving with the laser pulse at the group velocity vg,

and compressed by the factor γ ¼ ð�v2gk0D0Þ�1=2, where k0 is the
wavenumber of the laser, and D0 is the group velocity dispersion
(see 3-dimensional Gross-Pitaevskii equation in Supplementary
Methods). In other words, a laser pulse viewed in the z0 coordi-
nate would appear stationary and compressed relative to its
length in the z coordinate.

Fig. 1 The analogue universe. a The fluid of light (red) is a laser pulse traversing a heated 85Rb vapor cell. The axial position gives the effective time τ. The
quenches occur at the entrance and exit of the vapor cell. τ= 0 corresponds to quench 2. The time between the two quenches is τ12. b The true time gives
an effective third spatial dimension z′. c Typical image of the fluid of light integrated along z′, given in units of photon density. An effective time τ= 103 ps
after quench 2 is shown.
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We study the analogue cosmological particles using the static
structure factor, in analogy with the CMB power spectrum. The
static structure factor has been used to study density fluctuations in
Bose-Einstein condensates16,29, and we apply this technique to a
fluid of light. It is given by Sðkx; ky; kz0 Þ ¼ hjδρðkx; ky; kz0 Þj2i=M,
where δρðkx; ky; kz0 Þ is the spatial Fourier transform of the density
fluctuation at time τ, and M is the total number of particles in the
fluid. With this definition, a zero-temperature, non-interacting gas
has SðkÞ = 1, reflecting the presence of spatial shot noise. The

operator b̂
y
k corresponds to the creation of a quasiparticle after the

quench, in mode k ¼ ðkx; ky; kz0 Þ oscillating at frequency ωk. In the

presence of quasiparticle populations N � hb̂yk b̂ki and correlations
C � hb̂k b̂�ki, the static structure factor within the Bogoliubov
approximation is given by (see SðkÞ including absorption
in Supplementary Methods)

S kð Þ ¼ 1þ 2N þ 2Re Ce�i2ωkτ
� �

: ð2Þ
The populations and correlations are given by

N ¼ β2 þ N0 α2 þ β2
� �þ 2αβRe C0

� � ð3Þ

C ¼ αβþ C0α
2 þ C�

0β
2 þ 2αβN0 ð4Þ

where N0 � hâyk âki and C0 � âk â�k

� �
are the populations and

correlations before the quench, respectively, âyk corresponds to the
creation of a quasiparticle before the quench, and the operators
are related by the Bogoliubov transformation b̂k ¼ αâk þ βây�k .
For our series of two quenches, Eqs. (3) and (4) are applied twice.
Since each quench either starts or ends with no interactions, α
and β are the same Bogoliubov coefficients which diagonalize the
Hamiltonian of a weakly-interacting quantum fluid (see SðkÞ
including absorption in Supplementary Methods). In the absence
of quasiparticles before a given quench, the pair production is
spontaneous, and Eqs. (3) and (4) become N ¼ β2 and C ¼ αβ.
On the other hand, a distribution of quasiparticles before the
quench, thermal or otherwise, will stimulate additional pairs.

Experimental design. To create the fluid of light, we use a laser
pulse with a 4 mm Gaussian waist and a power of 100 mW,
propagating in an 85Rb vapor cell heated to 150 °C. A pulse length
of 100 ns is employed to avoid saturating the camera used for
observation. The laser is detuned −1.5 GHz (90 natural line-
widths, 6 times the Doppler broadening) from the D2 5S1=2; F ¼
3 ! 5P3=2 transition, giving vg = 0.007c. The interaction energy
and healing length ξ = 60 µm are determined by the nonlinear
change in the refractive index 4n, which is computed from the
experimental parameters (see Determination of 4n in Methods).
By taking into account the compression factor γ, this configura-
tion leads to a weakly interacting photon gas with a thickness of
2 mm in the z0 coordinate, and a dimensionless interaction
coefficient ρa3s = 7 × 10−14, where ρ is the average photon density,
and as is the effective scattering length.

The fluid of light is imaged on a sCMOS camera, as shown in
Fig. 1c. We tune the imaging system to pick out a certain z after
the cell (fixing the effective time τ after the second quench), and
the camera integrates over true time (thus integrating over z’), as
illustrated in Fig. 1b. According to the Fourier slice theorem, this
integration in position space gives a slice in k-space30. Thus, an
ensemble of 200 images is obtained for each τ, and the power
spectrum Sðkx; ky; kz0 ¼ 0Þ is computed by 2-dimensional Fourier
transforms within the dashed square shown in Fig. 1c. The
computation partially removes the effects of any drifts such as
thermal convection, and accounts for the measured quantum
efficiency of the camera (see Computation of Sðkx; ky; kz0 ¼ 0Þ in
Methods).

Observation of analogue cosmological particle creation. In
Fig. 2a we observe ring patterns in Sðkx; ky; kz0 ¼ 0Þ, oscillating as
a function of k. These oscillations are the experimental signature
of analogue cosmological particle creation, in close analogy with
the acoustic peaks in the angular spectrum of the CMB. Pairs of
quasiparticles with momenta ± k are generated at the moment of
the quench with a random overall phase, but a definite phase
relationship between þk and �k, and oscillate with various
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Fig. 2 Analogue cosmological particle creation in a quantum fluid of light. a The static structure factor S(kx, ky, kz′= 0) at various times after the second
quench. The dashed green curves indicate the first minimum of the red curves in (b). The symmetric white points near the center of all panels are due to
spurious fringes in the imaging system. b Radial profiles of (a). The black curves are the experimental data. The red curves are the prediction for analogue
cosmological particle creation, from Eq. (2). c Density-density correlations. The experimental (black) and theoretical (red) curves are obtained from b by
the spherical Fourier transform of Eq. (5).
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frequencies ωk. Only certain k-values interfere constructively at
the observation time τ, resulting in a ring pattern. The rings
shrink with τ since lower frequencies take longer to develop
oscillations. The shrinking pattern of rings is described quanti-
tatively by Eq. (2). The radius of the first minimum in Fig. 2a is
seen to be in good agreement with the theoretical prediction of
Eq. (2), indicated by the dashed green curve. The azimuthal
averages SðkÞ of Sðkx; ky; kz0 ¼ 0Þ are indicated in black in Fig. 2b.
The red curves are calculated from Eq. (2), taking into account
the two quenches, and the variations in α, β, and ωk which result
from the measured absorption (see SðkÞ including absorption
in Supplementary Methods). Very good agreement between the
experimental black and theoretical red curves is seen.

We also determine the spatial density correlations produced by
the analogue cosmological particle creation. We derive the
density-density correlation function gð2ÞðrÞ from S kð Þ by the
3-dimensional spherically-symmetric Fourier transform

gð2ÞðrÞ � 1 ¼ 1
2π2ρ

Z
dk k2

sin krð Þ
kr

S kð Þ � 1½ �: ð5Þ

Figure 2c shows gð2ÞðrÞ � 1, found by applying Eq. (5) to
Fig. 2b. The oscillations are spherical shells propagating outward.
The correlations are seen to reach increasing distances as time
increases. They are on the order of 10−6, which implies that the
relative density fluctuations are on the order of 10−3. The
oscillations are clear despite the small signal, due to the high
sensitivity of the optical detection. The theoretical red curves are
obtained by applying Eq. (5) to Eq. (2), and quantitative
agreement with the experimental curves is seen.

Spontaneous particle creation in the first quench. The low-k
behavior of S kð Þ provides a window into the early times before the
quenches, since the frequency of these modes approaches zero, so
the modes do not have sufficient time to evolve during the
experiment. The first peak in SðkÞ corresponds to the frequency
1=4τ, the lowest frequency which has time to oscillate. Well below
this k-value, Eq. (2) reduces to S kð Þ ¼ 1þ 2N1, where N1 is the
incoherent population before the first quench, and the unity term
corresponds to the quantum shot noise, which is scale invariant
(independent of k). Thus, the value of S kð Þ gives a direct measure
of N1. Figure 3a shows the SðkÞ curves for all τ plotted together.
We observe that SðkÞ is at most 1.4 for low k, as indicated by the
dashed green line, giving N1 ≤ 0.2. This value is finite and
approximately scale invariant, which implies a negligible thermal
component, since a thermal population diverges like 1=k. Fur-
thermore, it is less than unity, implying that the spontaneous
contribution dominates. Thus, the analogue cosmological particle
creation is spontaneous in the first quench. This is verified by the
blue and green curves in Fig. 3c, which show that stimulation in
the first quench by thermal noise and white noise, respectively,
would produce larger values of S kð Þ than those of the experiment,
for low k.

Stimulated particle creation in the second quench. The quasi-
particles spontaneously created during the first quench stimulate
pair creation in the second quench. However, if the particle
production in the second quench were stimulated by the first-
quench quasiparticles only, S kð Þ would oscillate about unity, as
indicated by the magenta curve in Fig. 3d. Rather, SðkÞ features an
upward shift relative to unity, and a downward slope for large k.
The downward slope is due to the finite resolution of the imaging
system, measured to be 10 µm (see Measuring the imaging
resolution in Supplementary Methods), and is included in the
theoretical curves. The upward shift results from absorption and
spontaneous reemission of photons from the atomic medium. By

the first two terms of Eq. (2), SðkÞ oscillates about the value
1þ 2 N1 þ Nb

� �
, where Nb is the background population present

in the fluid between the two quenches. The population sponta-
neously created in the first quench does not contribute to this
expression, since its spectrum (given by β2 in Eq. (3)) does not
extend to large k. The upward shift in Fig. 3a suggests Nb = 1.2, a
value which agrees well with our estimate for spontaneous ree-
mission (see Absorption and spontaneous reemission in Supple-
mentary Methods). The theoretical curves in Fig. 2b include this
additional stimulation. While this incoherent, flat spectrum of 1.2
quasiparticles per mode implies that the fluid is not in its ground
state, like a finite-temperature Bose-Einstein condensate, it does
not negate the oscillatory behavior of S kð Þ, and it even enhances
the visibility of the oscillations. We can control this population by
tuning the atomic density, the pulse duration, intensity, and
detuning. In Fig. 3e we verify that this population vanishes for
long weak pulses as expected, due to the finite coherence time of
the spontaneous reemission. The unity value of S kð Þ confirms that
the fluid is shot-noise limited, when the effect of the atomic
medium is absent.

Although our fluid of light is not in thermal equilibrium
between the two quenches, we can put an upper limit on the
effective temperature of the thermal component before the second
quench. The blue curve in Fig. 3d includes thermal stimulation
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from Fig. 2b. The blue curve employs a pulse which is 500 times weaker
and longer. The red curve is the theoretical prediction for the long, weak
pulse.τ= 87 ps is shown.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30603-1

4 NATURE COMMUNICATIONS |         (2022) 13:2890 | https://doi.org/10.1038/s41467-022-30603-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with an effective temperature 2mc2s = 30mK, where cs is the
speed of sound for the Bogoliubov quasiparticles, which results in
a greatly enhanced first peak. Since this enhanced peak is absent
from the experimental curve, we estimate the effective tempera-
ture of the thermal component to be less than 2mc2s , as in an
atomic Bose-Einstein condensate. For the second quench, the
thermal component does not diverge like 1=k since the zero-
temperature static structure factor in the fluid of light goes to zero
for low k (Ref. 31).

Interference pattern and the dispersion relation. Figure 3a
exhibits a beating pattern in the envelope of the various curves,
resulting from interference between analogue cosmological par-
ticles created in the two quenches. The theoretical curves in
Fig. 3b show a similar pattern. The envelope has nodes and
antinodes at ω12kp

¼ πp=2τ12, where p is an integer (see Beating

pattern in Supplementary Methods). By identifying each kp as
shown in Figs. 3a, 4 points on the dispersion relation are found,
as indicated by blue points in Fig. 4a. These points agree well with
the dispersion relation in the medium, calculated from the
interactions, and indicated by the blue curve.

Individual modes. Figure 4b shows the curves of Fig. 3a, one
above the other. By plotting the SðkÞ values along the dashed line,
we obtain the time dependence of a given mode k, as shown in
Fig. 4c. Each mode is seen to oscillate sinusoidally after the sec-
ond quench, with no visible damping. The frequencies of the
oscillations, indicated by the black curve in Fig. 4a, agree well
with the free-particle spectrum, which is relevant after the second
quench.

Comparison with the CMB power spectrum. We compare and
contrast our observed spectra with the CMB power spectrum in
Fig. 5. Since 1990, several successive space missions have
improved the resolution of the CMB measurements32–35, and
Fig. 5b shows the latest results35. In the CMB spectrum, the
oscillations occur as a result of the well-defined phase between the
cosmological particles36,37, which is also true for our spectra. In
the early universe, the density fluctuations relevant for the
acoustic peaks oscillated until the effective time of observation τ,
when the photons decoupled from matter38. The mode number
l shown in Fig. 5b is proportional to k, when mapped back to the
density fluctuations in the early universe, and the first peak likely
corresponds to ωkτ � π (Refs. 39–41). In contrast, the Bogoliubov
transformation predicts a first peak in the CMB spectrum at
ωkτ � π=2 (Ref. 5). Figure 5a shows our spectra for τ>0. For
visual comparison with the CMB spectrum, k is divided by k0,
which satisfies ωk0

τ ¼ π=2, where ωk is the magenta curve of
Fig. 4a. There are features which are common to our spectra and
that of the CMB, in addition to the oscillations: the decay of the
oscillations for large k or l, and the approximately scale-invariant
region for small k or l. The oscillations in the CMB spectrum
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decay for large l due to damping by photon diffusion39. In contrast,
the oscillations in our spectra decay because the β Bogoliubov coef-
ficient in Eq. (4) decreases for high k. The scale-invariant region of
the CMB spectrum arises from quantum fluctuations42–44, assuming
that the inflation model is correct45–48. Similarly, the scale invariant
part of our spectra reflects the quantum nature of the particle pro-
duction, as a result of the vacuum of incoming particles. However,
our incoming vacuum is a property of our shot-noise limited laser, as
opposed to red-shifting of the modes which possibly occurred during
inflation42,49,50. Red-shifting was observed in the laboratory51, and it
would be interesting to combine it with analogue cosmological par-
ticle production.

Discussion
This work establishes the paraxial fluid of light as a quantum
fluid. The results demonstrate that quantum field theory applies
to a system in which a spatial coordinate plays the role of time.
The effective temperature is less than twice the interaction energy,
which is comparable to many atomic Bose-Einstein condensates.
On the other hand, the apparatus is an order of magnitude
simpler, smaller, and less expensive. The direct detection of the
photon fluid is also an advantage.

In conclusion, we observe both spontaneous and stimulated
analogue cosmological particle creation in a quantum fluid of
light. The particle production in the first quench is seen to be
spontaneous, while the second includes stimulation by the first
quench quasiparticles, as well as by an incoherent background.
We quantitatively confirm the quantum field-theoretical predic-
tion. The long wavelength part of the spectrum provides a win-
dow into early times before the particle creation. From an
alternative perspective, we observe the spontaneous and stimu-
lated dynamical Casimir effects in a quantum fluid.

Methods
Determination of 4n. The interaction between photons is quantified by the
nonlinear contribution to the index of refraction n, given by 4n ¼ n Ið Þ � nð0Þ. We
would like to express 4n in terms of easily measurable quantities. The index of

refraction is given by n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Re χ

� �q
, where χ is the atomic susceptibility. Since

n � 1, one obtains 4n ¼ 4 Re χ
� �� 	

=2. Furthermore, the absorption coefficient is
given by αa ¼ k0Im χ

� �
. Thus,

4n ¼ αa
2k0

4 Re χ
� �� 	

Im χ
� � ð6Þ

Also, χ is proportional to i� 2δ=Γ
� �

1þ 2δ=Γ
� �2 þ I=Isat

h i�1
, where δ is the

detuning from resonance, Γ is the linewidth, and Isat is the saturation intensity.
This gives

4n ¼ αa
2k0

� 2δ
Γ

1þ 2δ
Γð Þ2þ I

Isat

þ 2δ
Γ

1þ 2δ
Γð Þ2

1
1þ 2δ

Γð Þ2þ I
Isat

ð7Þ

The detuning is δ=−1.5 GHz relative to the 85Rb cooling transition, and the
self-broadened linewidth is Γ=2π= 16MHz (Ref. 52, for the vapor cell temperature
of 150 °C, corresponding to an atomic density of 1 × 1020 m−3. The intensity is
given by I ¼ 2P=πw2, where the waist of the beam is w= 4 mm, and the laser
power P decays exponentially due to absorption, from 100 mW at the entrance to
the vapor cell, to 20 mW at the exit. We estimate Isat to be the far-detuned,
π-polarized value, 25 Wm−2 (Ref. 53. The absorption coefficient is given by
αa ¼ � lnTð Þ=L, where T = 0.2 is the transmission through the vapor cell of length
L= 10 mm. The wavenumber is given by k0 ¼ 2π=λ, where λ= 780 nm. Equation
(7) yields 4n=−8.6 × 10−6 and −1.7 × 10−6 for the entrance and exits of the
vapor cell, respectively. We have neglected the effect of optical pumping into the
dark ground state. Via measurements of 4n and αa, we find the optical pumping
time to be a few microseconds, so optical pumping is negligible during the 100 ns
pulse employed in this work.

Computation of Sðkx ; ky; kz0 ¼ 0Þ. The power spectrum (static structure factor)
Sðkx ; ky ; kz0Þ of a system of M particles (photons in our case) is given by

S kx ; ky ; kz0

 �

¼
δρ kx ; ky ; kz0

 ���� ���2� 


M

ð8Þ

where δρðkx ; ky ; kz0 Þ ¼
R
dx dy dz0 δρðx; y; z0Þ e�iðkxxþkyyþkz0 z

0 Þ and the density fluc-
tuation δρðx; y; z0Þ ¼ ρðx; y; z0Þ � hρðx; y; z0Þi. Setting kz0 ¼ 0, one obtains the
2-dimensional Fourier transform

δρ kx ; ky ; kz0 ¼ 0

 �

¼
Z

dx dy δeρ x; y
� �

e�i kxxþkyyð Þ ð9Þ

where eρ x; y
� � ¼ R

dz0ρ x; y; z0
� �

is the number density integrated in the z0 direc-
tion, a quantity we measure directly on the camera.

The density fluctuation δeρ ¼ eρ� eρ� �
5 is computed for each image, where eρ� �

5

is the average of 5 adjacent images rather than the average eρ� �
over the entire

ensemble. This technique reduces the effects of drifts in the experimental
parameters during the 7 s required to obtain the ensemble. As mentioned in
relation to Fig. 2c, the relative density fluctuation δeρ= eρ� �

is on the order of 10−3, so
small drifts can play a role. For example, thermal convection of the 85Rb gas may
induce small changes in the shape of the fluid of light from image to image. The
2-dimensional Fourier transform in Eq. (9) is computed for each image within the
dashed square of Fig. 1c. The power spectrum Sðkx ; ky ; kz0 ¼ 0Þ is computed by Eq.

(8). The use of eρ� �
5 rather than eρ� �

reduces the fluctuations by a factor of 4/5.
Thus, Sðkx ; ky ; kz0 ¼ 0Þ is multiplied by 5/4 to correct this effect. Furthermore, the
finite quantum efficiency Q= 0.485 of the camera tends to randomize the photon
density and bring Sðkx; ky ; kz0 ¼ 0Þ closer to unity. Thus, Sðkx ; ky ; kz0 ¼ 0Þ � 1 is
multiplied by the factor 1=Q.

Data availability
Source data are provided with this paper. The images generated in this study have been
deposited in Zenodo (https://doi.org/10.5281/zenodo.6438403). Source data are provided
with this paper.
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