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Abstract: In maneuvering target tracking applications, the performance of the traditional interacting
multiple model (IMM) filter deteriorates seriously under heavy-tailed measurement noises which are
induced by outliers. A robust IMM filter utilizing Student’s t-distribution is proposed to handle the
heavy-tailed measurement noises in this paper. The measurement noises are treated as Student’s
t-distribution, whose degrees of freedom (dof) and scale matrix are assumed to be governed by
gamma and inverse Wishart distributions, respectively. The mixing distributions of the target state,
dof, and scale matrix are achieved through the interacting strategy of IMM filter. These mixing
distributions are used for the initialization of time prediction. The posterior distributions of the
target state, dof, and scale matrix conditioned on each mode are obtained by employing variational
Bayesian approach. Then, the target state, dof, and scale matrix parameters are jointly estimated. A
variational method is also given to estimate the mode probability. The unscented transform is utilized
to solve the nonlinear estimation problem. Simulation results show that the proposed filter improves
the estimation accuracy of target state and mode probability over existing filters under heavy-tailed
measurement noises.

Keywords: IMM; filter; robust; heavy-tailed measurement noises; Student’s t-distribution; variational
Bayesian

1. Introduction

The Kalman filter is widely used for target tracking due to the low computational complexity
for real time processing and the statistic optimality under a linear state space model with Gaussian
noises. Because of the model uncertainty of target maneuvering and the heavy-tailed measurement
noises deduced by outliers, the performance of Kalman filter may break down dramatically, and even
the convergence cannot be guaranteed. Addressing model uncertainty and investigating robust filter
against heavy-tailed measurement noises are two important research topics in the target tracking field.

Model uncertainty in maneuvering target tracking exhibits that the motion model of target is
time varying and that the switching time between different models is unknown. Due to the model
uncertainty, the model used by Kalman filter may not match the actual dynamics so that the filter
may gradually diverge. Multiple-model (MM) methods are considered as the mainstream approach
to maneuvering target tracking under model uncertainty [1]. These methods establish a finite set of
models to describe the different motion patterns for maneuvering target, and achieve the ultimate
estimate of state by a certain combination of the estimates from each model. In the literature, the MM
methods can be categorized into two different types: fixed-structure MM (FSMM) methods which use a
fixed model set at all times and variable-structure MM (VSMM) methods in which the model set is not
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fixed. The generalized pseudo-Bayesian estimator of order n (GPBn) filter and the interacting multiple
model (IMM) filter [2] are the typical FSMM methods. Among them, the IMM filter is considered
to be the best compromise between complexity and performance, and has been successfully applied
in a large number of tracking applications [3–8]. In IMM filter, several sub-filters operate in parallel
and cooperate with each other through an interacting strategy, leading to improved performance of
estimation. For the FSMM methods, if the model set used does not match the set of actual models
of target movement, the performance can be degraded. To cope with this problem, several VSMM
methods have been proposed, such as likely mode set (LMS) filter [9], expected-mode augmentation
(EMA) filter [10], equivalent-model augmentation (EqMA) filter [11], and hybrid grid multiple model
(HGMM) filter [12]. These filters use different model-set adaptation schemes to adjust the model set.
For example, the EqMA filter augments the model set by a new variable model depending directly on
the history information from the recent models, while the HGMM filter adapts the model set by the
hybrid grid scheme which consists of a fixed coarse grid and an adaptive fine one. In recent years,
some researchers have proposed Sequential Monte Carlo (SMC) methods [13,14] for dealing with the
problem of model uncertainty in target tracking. These methods maintain several particle filters (PFs)
in parallel and fuse the results of PFs to provide the posterior probability of model and the posterior
distribution of state. In addition, the SMC method in [14] uses a scale parameter to detect the model
change and does not require the mode transition probabilities. This strategy of handling model change
is quite different from the above mentioned FSMM and VSMM methods.

Besides the model uncertainty, the outlier measurements existing in real tracking scenarios should
also be handled. Outliers can induce heavy-tailed non-Gaussian noises, and the performance of Kalman
filter may be seriously degraded since its underlying optimality criterion is minimum mean square error,
which is very sensitive to heavy-tailed noises. A large number of robust filters have been proposed
to improve the robustness against non-Gaussian noises. The Huber-based filter [15–19] is a classical
robust method based on a combined minimum l1 and l2 norm estimation. The maximum correntropy
Kalman filter (MCKF) [20–24] is another effective way to suppress the impact of non-Gaussian noises.
It uses the robust maximum correntropy criterion (MCC) as the optimality criterion. Simulation
experiments show that the MCKF outperforms Huber-based filter in estimation accuracy [20,22–24].
However, neither Huber-based filter nor MCKF takes advantage of the inherent heavy-tailed feature
of the noise distribution. Thus, their estimation precision is limited. The Student’s t-distribution
is robust to outliers since it has heavier tail compared with Gaussian distribution. Based on this
idea, many robust filters utilizing Student’s t-distribution has been proposed [25–30]. The Student’s t
filter [25,26] is derived by modeling the posterior distribution of the state, the heavy-tailed process
and measurement noises as Student’s t-distributions. The filter recursions are designed according
to the framework of Bayesian filter. This filter may induce significant bias since an approximated
method of moment matching is employed to prevent the growth of the degrees of freedom (dof) of
Student’s t-distribution. The variational Bayesian (VB) based Student’s t filter [27–30] represents the
Student’s t-distribution of noises as an infinite mixture of Gaussians, and employs VB approach to
jointly estimate the state and the unknown parameters of the Student’s t-distribution. This filter can
achieve higher estimation accuracy than the Student’s t filter [29,30].

In maneuvering target tracking, the problems of model uncertainty and heavy-tailed measurement
noises could exist simultaneously. Investigating robust IMM filter to cope with both model uncertainty
and heavy-tailed noises is meaningful. As far as we know, Shen et al. [31] considered utilizing Student’s
t-distribution to improve the robustness of IMM filter for the first time. They modeled the heavy-tailed
measurement noises as Student’s t-distribution and employed IMM and VB approaches to estimate
the target state, the probability of motion mode and the parameters of noises. However, the dof of
Student’s t-distribution, which is determined by the estimated parameters of an auxiliary random
variable, becomes very large after several filtering steps. Then, the Student’s t-distribution converges to
Gaussian distribution and loses the heavy-tailed property. Therefore, the robustness of this filter against
heavy-tailed measurement noises is limited. In addition, the scale matrix of Student’s t-distribution
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in this filter is assumed to be known exactly. However, this premise is usually unavailable since
the scale matrix is unknown or time varying in many actual applications. Furthermore, this filter is
based on linear systems and should be generalized to nonlinear systems which are more common in
maneuvering target tracking.

Motivated by the above discussions, we propose a new robust IMM filter to better handle the
heavy-tailed measurement noises and the system nonlinearity. The posterior distribution of target
state is approximated by Gaussian distribution, and the measurement noises are modeled as Student’s
t-distribution. The unknown dof and scale matrix of the Student’s t-distribution are assumed to obey
gamma and inverse Wishart distributions, respectively. Then, the state and the parameters of gamma
and inverse Wishart distributions for each mode are interacted via IMM mixing, and they are jointly
estimated by using VB approach. An approximation method is given to derive the mode-conditioned
predicted likelihood which is used for calculating the mode probability. The unscented transform
(UT) is employed to tackle the system nonlinearity. The growth of dof estimates is prevented and the
estimation accuracy of state is improved over existing filters under heavy-tailed measurement noises
as shown in our simulation example.

2. System Model and Assumptions

Consider the following jump Markov system{
xk = Fk−1(xk−1, rk) + wk−1(rk)

zk = Hk(xk, rk) + εk

where k is the scan time index, xk ∈ Rn and zk ∈ Rm are the state and measurement vectors respectively,
rk is the mode of target movement taking value in a finite set {1, 2, · · · , M}, M is the total number
of dynamic models, Fk−1(xk−1, rk) and Hk(xk, rk) are the state transition function and measurement
function based on the mode rk respectively, wk−1(rk) is the process noise vector based on the mode rk,
and εk is the measurement noise vector. The mode rk is assumed to be a homogeneous Markov chain
with the transition probability πi j = p(rk = j|rk−1 = i), and wk−1(rk) is assumed to be uncorrelated
zero-mean Gaussian noises with covariance matrix Qk−1(rk). Throughout this paper, we abbreviate
Fk−1(xk−1, rk = i), Hk(xk, rk = i), wk−1(rk = i) and Qk−1(rk = i) by Fi

k−1(xk−1), Hi
k(xk), wi

k−1 and
Qi

k−1, respectively. Then, the transition probability density function (PDF) of state is given by
p(xk|xk−1, rk = i) = N(xk; Fi

k−1(xk−1), Qi
k−1), where N(·; m, P) denotes a Gaussian PDF with mean m

and covariance matrix P.
When measurement outliers occur, the distribution of measurement noises has heavy-tailed

non-Gaussian characteristic. The performance of traditional IMM filter based on Gaussian noise
assumption may dramatically degrade since it is very sensitive to heavy-tailed noises. Since the
Student’s t-distribution has heavier tail and is more robust to outliers than Gaussian distribution, we
model the measurement noises as Student’s t-distribution, i.e., εk ∼ Std(εk; 0, Rk, vk), where Std(·;µ, R, v)
stands for a Student’s t PDF with mean µ, scale matrix R and dof v. The Student’s t-distribution can be
represented by an infinite mixture of Gaussian distributions as [32]

Std(x;µ, R, v) =
∫
∞

0
N(x;µ, R/λ)G(λ; v/2, v/2)dλ

where λ is an auxiliary random variable, G(·; a, b) denotes a Gamma PDF with shape parameter a and
rate parameter b. The expression for G(·; a, b) is

G(x; a, b) =
ba

Γ(a)
xa−1 exp(−bx) x ≥ 0 (1)
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where Γ(a) =
∫ +∞

0 exp(−t)ta−1dt is the Gamma function. Then, the likelihood PDF conditioned on the
mode rk = i can be written as

p(zk|xk, rk = i) = Std(zk; Hi
k(xk), Rk, vk)∫

∞

0 N(zk; Hi
k(xk), Rk/λk)G(λk; vk/2, vk/2)dλk

(2)

The tail thickness of Student’s t-distribution is controlled by the dof. When the dof decreases, the
tail becomes thicker. When the dof goes to infinity, the Student’s t-distribution approaches a Gaussian
distribution. Shen et al. [31] assumed that the posterior distribution of the auxiliary variable λk is a
Gamma distribution, i.e., p(λk|rk = i, z1:k) = G(λk; α̂i

k, β̂i
k) and used the VB approach to estimate the

parameters α̂i
k and β̂i

k. However, the estimates of both α̂i
k and β̂i

k which determine the dof of Student’s
t-distribution become large after several filtering steps. Thus, the distribution of measurement noises
loses the heavy-tailed property and the robustness of the filter cannot be guaranteed. To prevent
the growth of the dof estimates, we assume that the posterior distribution of the dof vk is a Gamma
distribution, i.e., p(vk|rk = i, z1:k) = G(vk; âi

k, b̂i
k), and estimate the parameters âi

k and b̂i
k instead.

Furthermore, in order to deal with the uncertainty of scale matrix Rk, we choose inverse Wishart
distribution as the posterior distribution of Rk, i.e., p(Rk|rk = i, z1:k) = IW(Rk; t̂i

k, Ti
k), where IW(·; t, T)

stands for an inverse Wishart PDF with degree t and inverse scale matrix T. The PDF of inverse Wishart
distribution is defined by

IW(R; t, T) =
det(T)0.5t

20.5tmΓm(0.5t)
det(R)−0.5(t+m+1) exp(−0.5tr(TR−1)) (3)

where Γm(0.5t) = π0.25m(m−1) ∏m−1
i=0 Γ(0.5(t− i)) Then, the unknown statistic of the scale matrix Rk can

be determined by estimating the parameters t̂i
k and Ti

k.

3. Design of Robust IMM Filter

3.1. Model Interaction

We assume that the mode-conditioned posterior distributions of the state xk−1, the scale matrix
Rk−1 and the dof vk−1 at time k− 1 are Gaussian, inverse Wishart, and Gamma distributions, respectively,
and that they are mutually independent. Then, the joint mode-conditioned posterior PDF of xk−1, Rk−1
and vk−1 can be expressed as

p(xk−1, Rk−1, vk−1|rk−1 = j, z1:k−1) = p(xk−1|rk−1 = j, z1:k−1)p(Rk−1|rk−1 = j, z1:k−1)p(vk−1|rk−1 = j, z1:k−1)

= N(xk−1; x̂ j
k−1, P j

k−1)IW(Rk−1; t̂ j
k−1, T j

k−1)G(vk−1; â j
k−1, b̂ j

k−1)

Let ui
k = p(rk = i|z1:k) and ui

k|k−1 = p(rk = i|z1:k−1) denote the posterior and predicted mode

probabilities respectively, and ui j
k−1 = p(rk−1 = i|rk = j, z1:k−1) denote the mixing probability, we have

u j
k|k−1 =

M∑
i=1

p(rk = j|rk−1 = i, z1:k−1)p(rk−1 = i|z1:k−1)

=
M∑

i=1
πi jui

k−1

(4)

ui j
k−1 =

p(rk= j|rk−1=i,z1:k−1)p(rk−1=i|z1:k−1)
p(rk= j|z1:k−1)

= πi jui
k−1/u j

k|k−1

(5)
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The mixing PDF of xk−1, Rk−1 and vk−1 is given by

p(xk−1, Rk−1, vk−1|rk = i, z1:k−1) =
M∑

j=1
p(xk−1, Rk−1, vk−1|rk−1 = j, z1:k−1)p(rk−1 = j|rk = i, z1:k−1)

=
M∑

j=1
u ji

k−1N(xk−1; x̂ j
k−1, P j

k−1)IW(Rk−1; t̂ j
k−1, T j

k−1)G(vk−1; â j
k−1, b̂ j

k−1)
(6)

We approximate the above summed PDF in the right side of (6) by a single one as

p(xk−1, Rk−1, vk−1|rk = i, z1:k−1) = N(xk−1; x̂0i
k−1, P0i

k−1)IW(Rk−1; t̂0i
k−1, T0i

k−1)G(vk−1; â0i
k−1, b̂0i

k−1) (7)

By matching the first and the second-order moments between (6) and (7) for the state distribution, we
obtain the mixing state x̂0i

k−1 and the covariance matrix P0i
k−1 as

x̂0i
k−1 =

M∑
j=1

u ji
k−1x̂ j

k−1 (8)

P0i
k−1 =

M∑
j=1

u ji
k−1(P

j
k−1 + (x̂ j

k−1 − x̂0i
k−1)(x̂

j
k−1 − x̂0i

k−1)
T
) (9)

However, the mixing parameters t̂0i
k−1 and T0i

k−1 cannot be computed analytically by matching the first
two moments of inverse Wishart distributions between (6) and (7) due to the complexity of second-order
moment. We adopt the method of minimizing weighted Kullback–Leibler (KL) divergence in [33] to
overcome this difficulty and derive that

t̂0i
k−1 =

M∑
j=1

u ji
k−1 t̂ j

k−1 (10)

T0i
k−1 =

M∑
j=1

u ji
k−1T j

k−1 (11)

For the Gamma distribution, we also use the method of matching the first two moments like the state.
According to (6), the conditional mean and covariance of vk−1 are given by

E(vk−1|rk = i, z1:k−1) =
∫

vk−1p(vk−1|rk = i, z1:k−1)dvk−1

=
∫

vk−1
M∑

j=1
u ji

k−1G(vk−1; â j
k−1, b̂ j

k−1)dvk−1

=
M∑

j=1
u ji

k−1

∫
vk−1G(vk−1; â j

k−1, b̂ j
k−1)dvk−1

Var(vk−1|rk = i, z1:k−1) =
∫
(vk−1 − E(vk−1|rk = i, z1:k−1))

2p(vk−1|rk = i, z1:k−1)dvk−1

=
∫
(vk−1 − E(vk−1|rk = i, z1:k−1))

2 M∑
j=1

u ji
k−1G(vk−1; â j

k−1, b̂ j
k−1)dvk−1

=
M∑

j=1
u ji

k−1

∫
(vk−1 − E(vk−1|rk = i, z1:k−1))

2G(vk−1; â j
k−1, b̂ j

k−1)dvk−1

Since the mean and covariance of a Gamma PDF G(·; a, b) are a/b and a/b2 respectively, we have

E(vk−1|rk = i, z1:k−1) =
M∑

j=1

u ji
k−1â j

k−1/b̂ j
k−1 (12)
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var(vk−1|rk = i, z1:k−1) =
M∑

j=1
u ji

k−1

∫
{(vk−1 − â j

k−1/b̂ j
k−1)

2
+ (â j

k−1/b̂ j
k−1 − E(vk−1|rk = i, z1:k−1))

2
}G(vk−1; â j

k−1, b̂ j
k−1)dvk−1

=
M∑

j=1
u ji

k−1(â
j
k−1/(b̂ j

k−1)
2
+ (â j

k−1/b̂ j
k−1 −

M∑
j=1

u ji
k−1â j

k−1/b̂ j
k−1)

2

)

(13)

On the other hand, according to (7), we have

E(vk−1|rk = i, z1:k−1) = â0i
k−1/b̂0i

k−1, (14)

Var(vk−1|rk = i, z1:k−1) = â0i
k−1/(b̂0i

k−1)
2

(15)

By combining (12)–(15), the mixing parameters â0i
k−1 and b̂0i

k−1 for the Gamma distribution can be
calculated as

â0i
k−1 =

(
M∑

j=1
u ji

k−1â j
k−1/b̂ j

k−1)
2

M∑
j=1

u ji
k−1(â

j
k−1/(b̂ j

k−1)
2
+ (â j

k−1/b̂ j
k−1 −

M∑
j=1

u ji
k−1â j

k−1/b̂ j
k−1)

2

)

, (16)

b̂0i
k−1 =

M∑
j=1

u ji
k−1â j

k−1/b̂ j
k−1

M∑
j=1

u ji
k−1(â

j
k−1/(b̂ j

k−1)
2
+ (â j

k−1/b̂ j
k−1 −

M∑
j=1

u ji
k−1â j

k−1/b̂ j
k−1)

2

)

. (17)

3.2. Time Prediction

The time prediction step is to derive the mode-conditioned predicted PDF p(xk, Rk, vk|rk = i, z1:k−1)

at time k by using the mixing PDF p(xk−1, Rk−1, vk−1|rk = i, z1:k−1) and the dynamical models at time
k− 1.

The mode-conditioned predicted PDF can be calculated by the following Chapman–Kolmogorov
equation:

p(xk, Rk, vk|rk = i, z1:k−1) =∫
p(xk−1, Rk−1, vk−1|rk = i, z1:k−1)p(xk, Rk, vk|xk−1, Rk−1, vk−1, rk = i)dxk−1dRk−1dvk−1

. (18)

We assume that the dynamical models of the state, the scale matrix and the dof are independent, i.e.,

p(xk, Rk, vk|xk−1, Rk−1, vk−1, rk) = p(xk|xk−1, rk)p(Rk|Rk−1, rk)p(vk|vk−1, rk). (19)

According to (7), (18) and (19), we have

p(xk, Rk, vk|rk = i, z1:k−1) =
∫

N(xk; Fi
k−1(xk−1), Qi

k−1)N(xk−1; x̂0i
k−1, P0i

k−1)dxk−1×∫
p(Rk|Rk−1, rk)IW(Rk−1; t̂0i

k−1, T0i
k−1)dRk−1

∫
p(vk|vk−1, rk)G(vk−1; â0i

k−1, b̂0i
k−1)dvk−1

. (20)

We can see that the mode-conditioned predicted distributions of the state, the scale matrix and the dof
are also independent. These distributions are assumed to be Gaussian, inverse Wishart and Gamma
distributions, respectively, which have the same form of PDF as the posterior distributions. Then, the
mode-conditioned predicted PDF can be represented by

p(xk, Rk, vk|rk = i, z1:k−1) = N(xk; x̂i
k|k−1, Pi

k|k−1)IW(Rk; t̂i
k|k−1, Ti

k|k−1)G(vk; âi
k|k−1, b̂i

k|k−1). (21)
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By matching the first and the second-order moments between (20) and (21) for the state, we obtain the
predicted mean and the covariance matrix as

x̂i
k|k−1 =

∫
Fi

k−1(xk−1)N(xk−1; x̂0i
k−1, P0i

k−1)dxk−1, (22)

Pi
k|k−1 =

∫
(Fi

k−1(xk−1) − x̂i
k|k−1)(F

i
k−1(xk−1) − x̂i

k|k−1)
T

N(xk−1; x̂0i
k−1, P0i

k−1)dxk−1 + Qi
k−1 (23)

However, it is hard to compute the predicted parameters of inverse Wishart and Gamma distributions
since the dynamical models of the scale matrix and the dof are usually unknown in practice. Here,
a heuristic dynamical model is chosen as in [34] by introducing a forgetting factor ρ ∈ (0, 1], which
indicates the extent of parameter fluctuation. Then, the predicted parameters are given by

Ti
k|k−1 = ρT0i

k−1, (24)

t̂i
k|k−1 = ρ(t̂0i

k−1 −m− 1) + m + 1, (25)

âi
k|k−1 = ρâ0i

k−1, (26)

b̂i
k|k−1 = ρb̂0i

k−1 (27)

When ρ = 1, the parameters are kept stationary. When ρ is close to 0, the parameters are high
time-fluctuation.

3.3. Measurement Update

We define Θ = {xk, Rk,λk, vk}. The measurement update step is to compute the mode-conditioned
posterior PDF p(Θ|z1:k, rk = i) and the posterior mode probability ui

k when a new measurement zk is
collected at time k. However, deriving the mode-conditioned posterior PDF is analytically intractable.
We employ the VB approach [35] to obtain an approximated solution.

According to the VB approach, the mode-conditioned posterior PDF is approximated by a free
form factored PDF:

p(Θ|z1:k, rk = i) ≈ qi(xk)qi(Rk)qi(λk)qi(vk)

The posterior PDFs qi(xk), qi(Rk), qi(λk) and qi(vk) are calculated by minimizing the KL divergence as

min
qi(xk),qi(Rk),qi(λk),qi(vk)

KL(qi(xk)qi(Rk)qi(λk)qi(vk)||p(Θ|z1:k, rk = i)),

where KL(q(·)||p(·)) ,
∫

q(x) ln(q(x)/p(x))dx is the KL divergence. The solutions of the above optimal
problem satisfy

ln qi(xk) = Eqi(Rk)qi(λk)qi(vk)
ln p(Θ, z1:k|rk = i) + cx, (28)

ln qi(Rk) = Eqi(xk)qi(λk)qi(vk)
ln p(Θ, z1:k|rk = i) + cR, (29)

ln qi(λk) = Eqi(xk)qi(Rk)qi(vk)
ln p(Θ, z1:k|rk = i) + cλ, (30)

ln qi(vk) = Eqi(xk)qi(Rk)qi(λk)
ln p(Θ, z1:k|rk = i) + cv (31)

where cx, cR, cλ and cv are constants independent of xk, Rk, λk and vk, respectively.
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According to (2) and (21), we have

p(Θ, z1:k|rk = i) = p(z1:k−1|rk = i)p(Θ, zk|rk = i, z1:k−1)

= p(z1:k−1|rk = i)p(xk|z1:k−1, rk = i)p(zk|xk, Rk,λk, rk = i)
×p(Rk|z1:k−1, rk = i)p(λk|vk)p(vk|z1:k−1, rk = i)

= p(z1:k−1|rk = i)N(xk; x̂i
k|k−1, Pi

k|k−1)N(zk; Hi
k(xk), Rk/λk)

×IW(Rk; t̂i
k|k−1, Ti

k|k−1)G(λk; vk/2, vk/2)G(vk; âi
k|k−1, b̂i

k|k−1)

. (32)

Substituting (1), (3) and the expression of Gaussian PDF into (32), we obtain the detailed expression of
p(Θ, z1:k|rk = i)

ln p(Θ, z1:k|rk = i) = −0.5(xk − x̂i
k|k−1)

T
(Pi

k|k−1)
−1
(xk − x̂i

k|k−1)−

0.5λk(zk −Hi
k(xk))

T
R−1

k (zk −Hi
k(xk))+

0.5(m + vk − 2) lnλk − 0.5vkλk + (âi
k|k−1 − 1) ln vk − b̂i

k|k−1vk + 0.5vk ln(0.5vk)

− ln Γ(0.5vk) − 0.5(t̂i
k|k−1 + m + 2) ln det(Rk) − 0.5tr(Ti

k|k−1R−1
k ) + c

, (33)

where c denotes a constant with respect to Θ.
Substituting (33) into (28) yields

ln qi(xk) = −0.5(xk − x̂i
k|k−1)

T
(Pi

k|k−1)
−1
(xk − x̂i

k|k−1) − 0.5(zk −Hi
k(xk))

T
(R̃k)

−1
(zk −Hi

k(xk)) + cx,

where R̃k is given by

R̃k = (Eqi(λk)
λk)
−1(Eqi(Rk)

R−1
k )
−1

, (34)

where Eqi(·) denotes the expectation with respect to the PDF qi(·). R̃k can be deemed as modified
covariance matrix of measurements taking into account the uncertainty of both and Rk and λk. Then,

qi(xk) ∝ N(xk; x̂i
k|k−1, Pi

k|k−1)N(zk; Hi
k(xk), R̃k).

According to the construction of nonlinear Gaussian filter in [36], qi(xk) can be approximated by a
Gaussian PDF, i.e.,

qi(xk) ≈ N(xk; x̂i
k, Pi

k), (35)

where
x̂i

k = x̂i
k|k−1 + Pi

xz,k|k−1(P
i
zz,k|k−1)

−1
(zk − ẑk|k−1), (36)

ẑi
k|k−1 =

∫
Hi

k(xk)N(xk; x̂i
k|k−1, Pi

k|k−1)dxk, (37)

Pi
zz,k|k−1 =

∫
(Hi

k(xk) − ẑi
k|k−1)(H

i
k(xk) − ẑi

k|k−1)
T

N(xk; x̂i
k|k−1, Pi

k|k−1)dxk + R̃k, (38)

Pi
xz,k|k−1 =

∫
(xk − x̂i

k|k−1)(H
i
k(xk) − ẑi

k|k−1)
T

N(xk, x̂i
k|k−1, Pi

k|k−1)dxk, (39)

Pi
k = Pi

k|k−1 −Pi
xz,k|k−1(P

i
zz,k|k−1)

−1
(Pi

xz,k|k−1)
T

(40)

Substituting (33) into (29) yields

ln qi(Rk) = −0.5tr({ (Eqi(λk)
λk)Ai

k + Ti
k|k−1}R

−1
k ) − 0.5(t̂i

k|k−1 + m + 2) ln det(Rk) + cR,

where
Ai

k = Eqi(xk)
(zk −Hi

k(xk))(zk −Hi
k(xk))

T
(41)
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According to (3), we can deduce that qi(Rk) is an inverse Wishart PDF with the following expression:

qi(Rk) = IW(Rk; t̂i
k, Ti

k), (42)

where
t̂i
k = t̂i

k|k−1 + 1, (43)

Ti
k = (Eqi(λk)

λk)Ai
k + Ti

k|k−1 (44)

Substituting (33) into (30) yields

ln qi(λk) = −0.5(tr((Eqi(Rk)
R−1

k )Ai
k) + Eqi(vk)

vk)λk + 0.5(m + Eqi(vk)
vk − 2) lnλk + cλ.

According to (1), qi(λk) is a Gamma PDF as

qi(λk) = G(λk; α̂i
k, β̂i

k), (45)

where
α̂i

k = 0.5(m + Eqi(vk)
vk), (46)

β̂i
k = 0.5(tr((Eqi(Rk)

R−1
k )Ai

k)) + Eqi(vk)
vk) (47)

Substituting (33) into (31), and using the Stirling’s approximation ln Γ(0.5vk) ≈ 0.5(vk − 1) ln 0.5vk −

0.5vk, we obtain

ln qi(vk) = (âi
k|k−1 − 0.5) ln vk + (0.5Eqi(λk)

lnλk − 0.5Eqi(λk)
λk − b̂i

k|k−1 + 0.5)vk + cv

According to (1), qi(vk) is also a Gamma PDF as

qi(vk) = G(vk; âi
k, b̂i

k), (48)

where
âi

k = âi
k|k−1 + 0.5, (49)

b̂i
k = b̂i

k|k−1 − 0.5Eqi(λk)
lnλk + 0.5Eqi(λk)

λk − 0.5 (50)

The unknown expectations in (34), (41), (44), (46), (47) and (50) are given by

Eqi(λk)
λk = α̂i

k/β̂i
k, (51)

Eqi(Rk)
R−1

k = (t̂i
k −m− 1)(Ti

k)
−1, (52)

Ai
k =

∫
(zk −Hi

k(xk))(zk −Hi
k(xk))

T
N(xk; x̂i

k, Pi
k)dxk

= (zk − ẑi
k)(zk − ẑi

k)
T
+

∫
(Hi

k(xk) − ẑi
k)(H

i
k(xk) − ẑi

k)
T

N(xk; x̂i
k, Pi

k)dxk
(53)

ẑi
k =

∫
Hi

k(xk)N(xk; x̂i
k, Pi

k)dxk, (54)

Eqi(vk)
vk = âi

k/b̂i
k, (55)

Eqi(λk)
lnλk = ψ(α̂i

k) − ln β̂i
k (56)

where ψ(x) is the digamma function.
Combining (36)–(40), (43), (44), (46), (47) and (49)–(56), the fixed point iteration algorithm can be

employed to acquire the unknown quantities x̂i
k, Pi

k, t̂i
k, Ti

k, α̂i
k, β̂i

k, âi
k, and b̂i

k. The iteration is terminated
when the variations of these quantities are small enough.
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The posterior mode probability can be calculated by

ui
k =

p(rk=i|z1:k−1)p(zk |rk=i,z1:k−1)
p(zk |z1:k−1)

=
ui

k|k−1p(zk |rk=i,z1:k−1)

M∑
i=1

ui
k|k−1p(zk |rk=i,z1:k−1)

(57)

In (57), the predicted mode probability ui
k|k−1 is given by (4), and the predicted likelihood p(zk|rk =

i, z1:k−1) can be derived by

p(zk|rk = i, z1:k−1) =

∫
p(Θ, zk|rk = i, z1:k−1)dΘ

However, the above integration is computationally infeasible since xk, Rk, λk and vk are coupled in
p(Θ, zk|rk = i, z1:k−1) according to (32). We use the similar variational approach in [37] to derive an
approximated predicted likelihood. The predicted likelihood can be rewritten as

ln p(zk|rk = i, z1:k−1) =
∫

qi(xk)qi(Rk)qi(λk)qi(vk) ln p(Θ,zk |rk=i,z1:k−1)

qi(xk)qi(Rk)qi(λk)qi(vk)
dxkdRkdλkdvk

+KL(qi(xk)qi(Rk)qi(λk)qi(vk)||p(Θ|rk = i, z1:k))

Since the KL divergence term in the right side of the above equation is minimized by VB approach, the
predicted likelihood can be approximated by

ln p(zk|rk = i, z1:k−1) ≈

∫
qi(xk)qi(Rk)qi(λk)qi(vk) ln

p(Θ, zk|rk = i, z1:k−1)

qi(xk)qi(Rk)qi(λk)qi(vk)
dxkdRkdλkdvk (58)

Substituting (35), (42), (45), (48) and the expression of p(Θ, zk|rk = i, z1:k−1) in (32) into (58) yields

ln p(zk|rk = i, z1:k−1) ≈ 0.5{ln det(Pi
k) − ln det(Pi

k|k−1) + n−m lnπ+ mψ(α̂i
k)

−m ln β̂i
k − (α̂

i
k/β̂i

k)tr{(t̂
i
k −m− 1)

(
Ti

k)
−1

Ai
k}+ t̂i

k|k−1 ln det(Ti
k|k−1) − t̂i

k ln det(Ti
k)

+2 ln Γm(0.5t̂i
k) − 2 ln Γm(0.5t̂i

k|k−1) − tr((Pi
k|k−1)

−1
{Pi

k + (x̂i
k − x̂i

k|k−1)(x̂
i
k − x̂i

k|k−1)
T
})

+tr((t̂i
k −m− 1)

(
Ti

k − Ti
k|k−1)

(
Ti

k)
−1
) + 2âi

k|k−1 ln b̂i
k|k−1 − 2(âi

k − 1) ln b̂i
k + 2 ln Γ(âi

k)

−2 ln Γ(âi
k|k−1) + 2(b̂i

k − b̂i
k|k−1)â

i
k/b̂i

k − 2ψ(âi
k)}

(59)

The final estimate of the state is given by a probabilistically weighted average of all the
mode-conditioned estimates, i.e.,

x̂k =
M∑

i=1

ui
kx̂i

k, (60)

and the corresponding covariance matrix is calculated as

Pk =
M∑

i=1

ui
k(P

i
k + (x̂i

k − x̂k)(x̂i
k − x̂k)

T
). (61)

3.4. Approximated Gaussian Integrations Based on Unscented Transform

Due to the nonlinearity of the state transition function Fi
k−1(xk−1) and the measurement function

Hi
k(xk), the Gaussian integrations in (22), (23), (37)–(39), (53) and (54) cannot be computed analytically.

In this paper, the UT [38] is employed to calculate the Gaussian integrations approximately.
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For the Gaussian integrations in (22) and (23), 2n + 1 sigma points are generated from the mixing
state x̂0i

k−1 and the covariance matrix P0i
k−1 as

χ0i
k−1,0 = x̂0i

k−1

χ0i
k−1,p = x̂0i

k−1 + (
√
(n + λ)P0i

k−1)p
p = 1, 2, · · · , n

χ0i
k−1,p = x̂0i

k−1 − (
√
(n + λ)P0i

k−1)p
p = n + 1, n + 2, · · · , 2n

,

where (
√

P)p denotes the p-th column of the matrix square root of P, λ = α2(n + κ) − n is a scaling
parameter, α controls the divergence of the sigma points and is usually set to a small positive value
(e.g., 0.01), κ is a secondary scaling parameter which is usually set to zero. Then, the predicted state
x̂i

k|k−1 and the covariance matrix Pi
k|k−1 are calculated as

x̂i
k|k−1 =

2n∑
p=0

wm,pFi
k−1(χ

0i
k−1,p), (62)

Pi
k|k−1 =

2n∑
p=0

wc,p(Fi
k−1(χ

0i
k−1,p) − x̂i

k|k−1)(F
i
k−1(χ

0i
k−1,p) − x̂i

k|k−1)
T
+ Qi

k−1, (63)

where the weights of sigma points are given by
wm,0 = λ/(n + λ)
wc,0 = λ/(n + λ) + (1− α2 + β)
wm,p = wc,p = 0.5/(n + λ) p = 1, 2, · · · , 2n

,

where β is used to incorporate the prior information of the distribution. β = 2 is optimal under
Gaussian distributions.

For the Gaussian integrations in (37)–(39), the sigma points generated from the predicted state
x̂i

k|k−1 and the covariance matrix Pi
k|k−1 are given by

χi
k|k−1,0 = x̂i

k|k−1

χi
k|k−1,p = x̂i

k|k−1 + (
√
(n + λ)Pi

k|k−1)p
p = 1, 2, · · · , n

χi
k|k−1,p = x̂i

k|k−1 − (
√
(n + λ)Pi

k|k−1)p
p = n + 1, n + 2, · · · , 2n

Then, the predicted measurement mean ẑi
k|k−1, the covariance matrix Pi

zz,k|k−1 and the cross-covariance

matrix Pi
xz,k|k−1 are calculated as

ẑi
k|k−1 =

2n∑
p=0

wm,pHi
k(χ

i
k|k−1,p), (64)

Pi
zz,k|k−1 =

2n∑
p=0

wc,p(Hi
k(χ

i
k|k−1,p) − ẑi

k|k−1)(H
i
k(χ

i
k|k−1,p) − ẑi

k|k−1)
T
+ R̃k, (65)

Pi
xz,k|k−1 =

2n∑
p=0

wc,p(χi
k|k−1,p − x̂i

k|k−1)(H
i
k(χ

i
k|k−1,p) − ẑi

k|k−1)
T

(66)
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We generate the sigma points from the posterior state x̂i
k and the covariance matrix Pi

k as
χi

k,0 = x̂i
k

χi
k,p = x̂i

k + (
√
(n + λ)Pi

k)p
p = 1, 2, · · · , n

χi
k,p = x̂i

k − (
√
(n + λ)Pi

k)p
p = n + 1, n + 2, · · · , 2n

.

Then, the Gaussian integrations in (53) and (54) are calculated as

ẑi
k =

2n∑
p=0

wm,pHi
k(χ

i
k,p), (67)

Ai
k = (zk − ẑi

k)(zk − ẑi
k)

T
+

2n∑
p=0

wc,p(Hi
k(χ

i
k,p) − ẑi

k)(H
i
k(χ

i
k,p) − ẑi

k)
T

(68)

With the above derivations, the proposed robust IMM filter is summarized as follows:

Step 1: Choose initial estimates x̂i
0, Pi

0, ui
0, âi

0, b̂i
0, t̂i

0 and Ti
0 for each mode i Set πi j and ρ. Let k = 1

Step 2: Calculate the predicted mode probability u j
k|k−1 and the mixing mode probability ui j

k−1 using (4)

and (5). Then, calculate the mixing quantities x̂0i
k−1, P0i

k−1, t̂0i
k−1, T0i

k−1, â0i
k−1 and b̂0i

k−1 for each mode i using
(8)–(11), (16) and (17).
Step 3: Calculate the predicted quantities x̂i

k|k−1, Pi
k|k−1, t̂i

k|k−1, Ti
k|k−1, âi

k|k−1 and b̂i
k|k−1 for each mode i

using (62), (63) and (24)–(27).
Step 4: Update the posterior quantities x̂i

k, Pi
k, t̂i

k, Ti
k, âi

k and b̂i
k for each mode i through fixed point

iterations based on VB approach as follows:
Update t̂i

k and âi
k using (43) and (49), and initialize x̂i

k = x̂i
k|k−1, Pi

k = Pi
k|k−1, Ti

k = Ti
k|k−1, b̂i

k = b̂i
k|k−1.

Repeat
Update Ai

k using (67) and (68).
Update α̂i

k and β̂i
k using (46), (47), (52) and (55).

Update Ti
k and b̂i

k using (44), (50), (51) and (56).
Update x̂i

k and Pi
k using (34), (36), (40), (51), (52) and (64)–(66).

Until converged
Step 5: Update the posterior mode probability ui

k using (57) and (59).
Step 6: Calculate x̂k and Pk using (60) and (61). Let k + 1→ k , and return to Step2.

4. Simulation Example

This section presents a two-dimensional maneuvering target tracking scenario with a period of
200 s to demonstrate the performance of the proposed filter. A maneuvering target moves following
two models: constant velocity (CV) model and coordinated turn (CT) model. The modes representing
the CV model and CT model at time k are denoted by rk = 1 and rk = 2, respectively. The state of the
CV model is xk = (xk, yk,

.
xk,

.
yk)

T including the components of the position (xk, yk) and the velocity
(

.
xk,

.
yk). The dynamics of the CV model is given by

xk =

(
I2 ∆tI2

02 I2

)
xk−1 + w1

k−1,

where ∆t is the sampling period. The covariance matrix of the process noises w1
k−1 is given by

Q1
k−1 = q1

x

 (∆t)3I2/3 (∆t)2I2/2
(∆t)2I2/2 ∆tI2

,
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where q1
x is the power spectral density. The state of the CT model is xk = (xk, yk,

.
xk,

.
yk,ωk)

T, where ωk
is the turn rate. The dynamics of the CT model is given by

xk =


1 0 sin(ωk−1∆t)/ωk−1 (cos(ωk−1∆t) − 1)/ωk−1 0
0 1 (1− cos(ωk−1∆t))/ωk−1 sin(ωk−1∆t)/ωk−1 0
0 0 cos(ωk−1∆t) − sin(ωk−1∆t) 0
0 0 sin(ωk−1∆t) cos(ωk−1∆t) 0
0 0 0 0 1


xk−1 + w2

k−1,

and the covariance matrix of the process noises w2
k−1 is given by

Q2
k−1 =


q2

x(∆t)3I2/3 q2
x(∆t)2I2/2 0

q2
x(∆t)2I2/2 q2

x∆tI2 0
0 0 qω

,

where q2
x and qω are the power spectral densities corresponding to (xk, yk,

.
xk,

.
yk) and ωk, respectively.

A sensor located at (xs, ys) collects noisy range and azimuth measurements of the target according
to the equation

zk =


√
(xk − xs)

2 + (yk − ys)
2

arctan((yk − ys)/(xk − xs))

+ εk.

The sampling period is ∆t = 1s. The target executes a −4◦/s coordinated turn from 0 s to 70 s,
moves at a constant velocity from 71 s to 120 s, and executes a 4◦/s coordinated turn from 121 s to 200
s. The power spectral densities are set to q1

x = q2
x = 0.01 m2s−3 and qω = 2× 10−6 rad2s−3. The true

initial state of target is x0 = (0 m, 0 m, 10 m/s, 10 m/s, −4◦/s)T, and the location of the sensor is
(xs, ys) = (−400 m, −400 m). The true track of the target and the sensor location are shown in Figure 1.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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Figure 1. True track of target and sensor location.

To illustrate the performance of the proposed filter, we consider the following four cases under
different conditions of measurement noises:

Case A: Gaussian noises
εk ∼ N(εk; 0, R),

where R = diag((10m)2, (0.2◦)2) is the known nominal covariance matrix.
Case B: Gaussian noises with time varying covariance matrix

εk ∼ N(εk; 0, (0.1 + 0.05 cos(2πk/100))R).

This case is used to simulate the situation that the actual covariance matrix is deviated from the nominal
one R.
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Case C: Contaminated Gaussian noises

εk ∼ (1− δ)N(εk; 0, R) + δN(εk; 0, 100R),

where N(εk; 0, R) can be seen as a normal distribution, N(εk; 0, 100R) can be considered as a perturbing
distribution with much larger covariance matrix due to outliers, and δ ∈ [0, 1] is a perturbing parameter
that represents the extent of the perturbation. This case is used to simulate the corrupted measurements
by outliers. We set δ = 0.1.

Case D: Contaminated Gaussian noises with time varying covariance matrix

εk ∼ (1− δ)N(εk; 0, (0.1 + 0.05 cos(2πk/100))R) + δN(εk; 0, 100R).

Both outliers and covariance mistuning are simultaneously simulated in this case. δ is also set to 0.1.
Four existing filters including VB based Student’s t filter (VBStdF) [30] utilizing only single CT

model, IMM filter (IMMF) [1], VB based IMM filter (IMMVBF) estimating the unknown covariance
matrix of measurement noises [33], and VB based IMM filter modeling measurement noises as Student’s
t-distribution (IMMVBStdF) [31] are compared with the proposed filter. 1000 Monte Carlo (MC) runs
are carried out for each case of measurement noises above. All the filters are implemented in MATLAB
on an Intel i7 3.6GHz processor.

The initial estimates of the degree and the inverse scale matrix with respect to the inverse Wishart
distribution in VBStdF, IMMVBF and the proposed filter are chosen as t̂0 = 7 and T0 = (t̂0 −m− 1)R.
All the initial estimates of the Gamma distribution parameters in VBStdF, IMMVBStdF and the proposed
filter are set to 0.5. For all the VB approach based filters, ρ = 1− exp(−4) is used, and the VB iteration
is terminated when the difference of position estimates between two adjacent iterations is less than 1e-6.
The mode probabilities are initialized as u1

0 = 0.1 and u2
0 = 0.9, and the mode transition probability

is set to πi j =

(
0.99 0.01
0.01 0.99

)
for all the IMM type filters. The initial covariance matrix of the state

estimate is set to P0 = diag(100 m2, 100 m2, 1 (m/s)2, 1 (m/s)2, 1× 10−5 (rad/s)2), and the initial
estimate of the state x̂0 is chosen randomly from the Gaussian distribution N(·; x0, P0) for all the filters.

The root mean square errors (RMSEs) and average RMSEs (ARMSEs) of position, velocity and
turn rate are used to evaluate the estimation accuracy of the filters. The RMSE and ARMSE of position
are defined as

RMSEpos(k) =

√√√
1
P

P∑
i=1

((x̂(i)k − x(i)k )
2
+ (ŷ(i)k − y(i)k )

2
),

ARMSEpos =
1
T

T∑
k=1

RMSEpos(k).

where P is the total count of MC runs, (x(i)k , y(i)k ) and (x̂(i)k , ŷ(i)k ) are true position and estimated position
for the i-th MC run, and T is the total count of samples. The RMSEs and ARMSEs of velocity and turn
rate are defined similar.

The RMSEs of position, velocity and turn rate in four cases are shown in Figures 2–5, and the
corresponding ARMSEs are listed in Table 1. The overall performance of VBStdF in estimation accuracy
is the worst among the filters for all cases. We do not plot the entire RMSE curves of position for
VBStdF to show other curves distinctly. The largest RMSE of position for VBStdF under four cases are
53.03 m, 50.19 m, 99.82 m and 98.30 m, respectively. The reason for the poor performance of VBStdF is
that the single-model based filter is less adaptive to target maneuvering compared with multiple-model
based filter.
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Figure 2. Root mean square errors (RMSEs) versus time in Case A. (a) Position; (b) Velocity; (c) Turn rate.
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Figure 3. RMSEs versus time in Case B. (a) Position; (b) Velocity; (c) Turn rate.
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Figure 4. RMSEs versus time in Case C. (a) Position; (b) Velocity; (c) Turn rate.
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Figure 5. RMSEs versus time in Case D. (a) Position; (b) Velocity; (c) Turn rate.
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Table 1. Average root mean square errors of filters in four cases.

Case VBStdF IMMF IMMVBF IMMVBStdF Proposed
Filter

Position (m)

A 19.9747 4.3292 4.3755 4.3812 4.5475
B 17.1240 2.3064 1.7662 1.7485 1.8055
C 39.8238 17.5279 9.1497 9.7692 5.1772
D 37.3586 16.9337 8.1700 8.9868 2.0456

Velocity
(m/s)

A 1.8595 0.8287 0.8410 0.8361 0.8627
B 1.5341 0.6204 0.5097 0.5018 0.5136
C 2.9977 3.3905 1.3687 1.4143 0.9405
D 2.7279 3.3061 1.2562 1.3375 0.5493

Turn rate
(rad/s)

A 0.0125 0.0098 0.0100 0.0099 0.0101
B 0.0111 0.0077 0.0071 0.0072 0.0071
C 0.0149 0.0316 0.0130 0.0130 0.0106
D 0.0138 0.0309 0.0122 0.0125 0.0073

In Case A, the estimation accuracy of the proposed filter is lower than IMMF and IMMVBF.
The reason is that the assumed Student’s t-distribution for measurement noises deviates from the
actual Gaussian distribution. The performance of the proposed filter in estimation accuracy is also
poorer than IMMVBStdF. That is because the scale matrix of Student’s t-distribution is required to be
estimated additionally for the proposed filter, while the scale matrix is known exactly for IMMVBStdF.
However, the accuracy degradation of the proposed filter is not obvious compared with IMMF,
IMMVBF, and IMMVBStdF.

In Case B, IMMF has larger RMSEs than IMMVBF, IMMVBStdF, and the proposed filter since IMMF
utilizes mistuned covariance matrix of measurement noises, while the IMMVBF and the proposed filters
can learn the covariance matrix adaptively. The IMMVBStdF seems to have the ability of capturing the
unknown covariance matrix either. The performance of the proposed filter in estimation accuracy is
also slightly worse than IMMVBF and IMMVBStdF as Case A.

In Case C, the proposed filter outperforms other filters obviously in estimation accuracy. IMMF
and IMMVBF are based on the assumption of Gaussian noises so that they cannot cope with heavy-tailed
measurement noises. Figure 6 shows the estimates of the dof parameters α̂1

k , β̂1
k , α̂2

k and β̂2
k versus time

for IMMVBStdF and the proposed filter in one MC run. We can see that the estimates of dof parameters
for IMMVBStdF become large after several time steps. Therefore, the distribution of measurement
noises converges to a Gaussian distribution and loses the heavy-tailed property. The estimates of
dof parameters for the proposed filter maintain small values overall, except some high peaks for β̂1

k
and β̂2

k curves caused by outliers. Therefore, the proposed filter is more robust against heavy-tailed
measurement noises than IMMVBStdF. In addition, we can see that the IMMVBF and IMMVBStdF are
more robust than IMMF.

The results under Case D are similar to Case C.
The 1000 MC runs averaged estimates of mode probabilities for CV model are shown in Figure 7.

In Case A, we can see that the estimation results are nearly the same for all the filters. In Case B, the
accuracy of IMMF estimates is lower than other filters and the response to mode changes for IMMF
is more lagging than other filters. The reason is also that the covariance matrix of the measurement
noises utilized by IMMF is mistuned. In Case C and D, the proposed filter achieves more accuracy
estimates of mode probabilities than other filters, indicating that the proposed filter can also improve
the estimation accuracy of mode probability under heavy-tailed measurement noises.



Sensors 2019, 19, 4830 17 of 20

Sensors 2019, 19, x FOR PEER REVIEW 16 of 20 

 

D 37.3586 16.9337 8.1700 8.9868 2.0456 

Velocity 
(m/s) 

A 1.8595 0.8287 0.8410 0.8361 0.8627 
B 1.5341 0.6204 0.5097 0.5018 0.5136 
C 2.9977 3.3905 1.3687 1.4143 0.9405 
D 2.7279 3.3061 1.2562 1.3375 0.5493 

Turn rate 
(rad/s) 

A 0.0125 0.0098 0.0100 0.0099 0.0101 
B 0.0111 0.0077 0.0071 0.0072 0.0071 
C 0.0149 0.0316 0.0130 0.0130 0.0106 
D 0.0138 0.0309 0.0122 0.0125 0.0073 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Estimates of degrees of freedom parameters versus time. (a) 1ˆ kα ; (b) 1ˆ
kβ ; (c) 2ˆ kα ; (d) 2ˆ

kβ . 

The 1000 MC runs averaged estimates of mode probabilities for CV model are shown in Figure 
7. In Case A, we can see that the estimation results are nearly the same for all the filters. In Case B, 
the accuracy of IMMF estimates is lower than other filters and the response to mode changes for 
IMMF is more lagging than other filters. The reason is also that the covariance matrix of the 
measurement noises utilized by IMMF is mistuned. In Case C and D, the proposed filter achieves 
more accuracy estimates of mode probabilities than other filters, indicating that the proposed filter 
can also improve the estimation accuracy of mode probability under heavy-tailed measurement 
noises. 

0 50 100 150 200
0

10

20

30

40

50

60

t(s)

α k1

 

 

IMMVBStdF
Proposed filter

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

t(s)

β k1

 

 

IMMVBStdF
Proposed filter

0 50 100 150 200
0

10

20

30

40

50

60

t(s)

α k2

 

 

IMMVBStdF
Proposed filter

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

t(s)

β k2

 

 
IMMVBStdF
Proposed filter

Figure 6. Estimates of degrees of freedom parameters versus time. (a) α̂1
k ; (b) β̂1

k ; (c) α̂2
k ; (d) β̂2

k .
Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7. 1000 Monte Carlo runs averaged estimates of mode probabilities for constant velocity 
model in four cases. (a) Case A; (b) Case B; (c) Case C; (d) Case D. 

We use the number of floating points operations (flops) [39] to measure the computational 
complexity of filter. The computational complexity of VBStdF, IMMF, IMMVBF, IMMVBStdF and 
the proposed filter are listed in Table 2. We can see that the proposed filter has the highest 
computational complexity among the filters. According to Table 2, the computational complexity of 
proposed filter is higher than VBStdF mainly because of multiple model operations, and is higher 
than IMMF mainly because of fixed point iterations. The proposed filter requires more flops 
compared with IMMVBF and IMMVBStdF since the proposed filter involves more parameters to be 
estimated in the filter recursions. 

Table 2. Computational complexity of filters, where m denotes the dimension of measurements, n 
denotes the dimension of target state, M denotes the number of models for interacting multiple 
model type filters, and N denotes the number of fixed point iterations for variational Bayesian 
approach based filters. 

Filter Number of Flops 

VBStdF 
(4m3 + 2n3/3 + 14m2n + 20mn2 + 10m2 + 8n2 + 15mn + 4m + n + 15)N + 31n3/3 + m2 + 

12n2 + 5n 

IMMF (4n2 + 3n + 5)M2 + (4m3/3 + 32n3/3 + 8m2n + 12mn2 + 5m2 + 19n2 + 9mn + 4m + 4n + 
6)M + 3n 

IMMVBF (m3 + 2n3/3 + 14m2n + 20mn2 + 9m2 + 8n2 + 15mn + 3m + n + 3)MN + (2m 2 + 4n2 + 3n + 
7)M2 + (8m3/3 + 14n3 + 15n2 + 3m + 7n + 33)M + 3n 

IMMVBStdF 
(3m3 + 2n3/3 + 14m2n + 20mn2 + 6m2 + 8n2 + 15mn + 4m + n + 1)MN + (4n2 + 3n + 

13)M2 + (14n3 + 15n2 + 7n + 39)M + 3n 

Proposed filter (4m3 + 2n3/3 + 14m2n + 20mn2 + 10m2 + 8n2 + 15mn + 4m + n + 15)MN + (2m2 + 4n2 + 
3n + 15)M2 + (8m3/3 + 14n3 + 15n2 + 3m + 7n + 68)M + 3n 

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(s)

m
od

e 
pr

ob
ab

ili
ty

 f
or

 C
V

 m
od

el

 

 
IMMF
IMMVBF
IMMVBStdF
Proposed Filter
True

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(s)

m
od

e 
pr

ob
ab

ili
ty

 f
or

 C
V

 m
od

el

 

 
IMMF
IMMVBF
IMMVBStdF
Proposed Filter
True

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(s)

m
od

e 
pr

ob
ab

ili
ty

 f
or

 C
V

 m
od

el

 

 
IMMF
IMMVBF
IMMVBStdF
Proposed Filter
True

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(s)

m
od

e 
pr

ob
ab

ili
ty

 f
or

 C
V

 m
od

el

 

 
IMMF
IMMVBF
IMMVBStdF
Proposed Filter
True

Figure 7. 1000 Monte Carlo runs averaged estimates of mode probabilities for constant velocity model
in four cases. (a) Case A; (b) Case B; (c) Case C; (d) Case D.
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We use the number of floating points operations (flops) [39] to measure the computational
complexity of filter. The computational complexity of VBStdF, IMMF, IMMVBF, IMMVBStdF and the
proposed filter are listed in Table 2. We can see that the proposed filter has the highest computational
complexity among the filters. According to Table 2, the computational complexity of proposed filter is
higher than VBStdF mainly because of multiple model operations, and is higher than IMMF mainly
because of fixed point iterations. The proposed filter requires more flops compared with IMMVBF and
IMMVBStdF since the proposed filter involves more parameters to be estimated in the filter recursions.

Table 2. Computational complexity of filters, where m denotes the dimension of measurements, n
denotes the dimension of target state, M denotes the number of models for interacting multiple model
type filters, and N denotes the number of fixed point iterations for variational Bayesian approach
based filters.

Filter Number of Flops

VBStdF (4m3 + 2n3/3 + 14m2n + 20mn2 + 10m2 + 8n2 + 15mn + 4m + n + 15)N + 31n3/3 +
m2 + 12n2 + 5n

IMMF (4n2 + 3n + 5)M2 + (4m3/3 + 32n3/3 + 8m2n + 12mn2 + 5m2 + 19n2 + 9mn + 4m +
4n + 6)M + 3n

IMMVBF (m3 + 2n3/3 + 14m2n + 20mn2 + 9m2 + 8n2 + 15mn + 3m + n + 3)MN + (2m2 + 4n2

+ 3n + 7)M2 + (8m3/3 + 14n3 + 15n2 + 3m + 7n + 33)M + 3n

IMMVBStdF (3m3 + 2n3/3 + 14m2n + 20mn2 + 6m2 + 8n2 + 15mn + 4m + n + 1)MN + (4n2 + 3n
+ 13)M2 + (14n3 + 15n2 + 7n + 39)M + 3n

Proposed filter (4m3 + 2n3/3 + 14m2n + 20mn2 + 10m2 + 8n2 + 15mn + 4m + n + 15)MN + (2m2 +
4n2 + 3n + 15)M2 + (8m3/3 + 14n3 + 15n2 + 3m + 7n + 68)M + 3n

We further test the computational cost of filters for the above tracking scenario. The 1000 MC
runs averaged computation time in four cases are shown in Table 3. It can be seen that the proposed
filter expends more computational cost than other filters, demonstrating that the proposed filter has
higher computational complexity than other filters.

Table 3. Computation time of filters in four cases.

Case VBStdF IMMF IMMVBF IMMVBStdF Proposed Filter

A 0.3900 s 0.1092 s 0.5304 s 0.4992 s 0.8736 s
B 0.3588 s 0.1092 s 0.4836 s 0.4836 s 0.8424 s
C 0.5148 s 0.1092 s 0.4992 s 0.4524 s 1.1076 s
D 0.4836 s 0.1092 s 0.4524 s 0.4368 s 0.9516 s

5. Conclusions

We propose a robust IMM filter against heavy-tailed measurement noises for maneuvering
target tracking. The heavy-tailed measurement noises are treated as Student’s t-distribution, and
the unknown dof and scale matrix are assumed to be governed by Gamma and inverse Wishart
distributions, respectively. Then, the filter recursions for the target state and the parameters of Gamma
and inverse Wishart distributions are designed in the IMM framework. In the model interaction
step, the mixing distributions of the state, dof, and scale matrix are achieved by using the methods
of matching the first two moments and minimizing weighted KL divergence. In the measurement
update step, the state and the unknown parameters are jointly estimated by employing the VB
approach. The problem of system nonlinearity is solved by utilizing UT to compute the Gaussian
integrations approximately. Simulation results show that the proposed filter outperforms other related
filters in terms of the estimation accuracy for the state and the mode probability under heavy-tailed
measurement noises.

The main contributions of this paper are summarized as follows. Firstly, a robust IMM filter
is proposed to properly handle both model uncertainty and outlier measurements. Secondly, by
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treating the unknown dof of Student’s t-distribution of heavy-tailed measurement noises as a Gamma
distributed random variable, the heavy-tailed property of Student’s t-distribution is maintained and
the robustness is improved over the existing filter. Finally, the problem of system nonlinearity is
addressed by using UT technology.
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