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Interspecies hybrids of Saccharomyces species are found in a variety of industrial
environments and often outperform their parental strains in industrial fermentation
processes. Interspecies hybridization is therefore increasingly considered as an
approach for improvement and diversification of yeast strains for industrial application.
However, current hybridization methods are limited by their reliance on pre-existing or
introduced selectable phenotypes. This study presents a high-throughput phenotype-
independent method for isolation of interspecies Saccharomyces hybrids based on dual
dye-staining and subsequent mating of two strains, followed by enrichment of double-
stained hybrid cells from a mating population by fluorescence-activated cell sorting
(FACS). Pilot experiments on intra-species mating of heterothallic haploid S. cerevisiae
strains showed that 80% of sorted double-stained cells were hybrids. The protocol was
further optimized by mating an S. cerevisiae haploid with homothallic S. eubayanus
spores with complementary selectable phenotypes. In crosses without selectable
phenotype, using S. cerevisiae and S. eubayanus haploids derived from laboratory
as well as industrial strains, 10 to 15% of double-stained cells isolated by FACS
were hybrids. When applied to rare mating, sorting of double-stained cells consistently
resulted in about 600-fold enrichment of hybrid cells. Mating of dual-stained cells
and FACS-based selection allows efficient enrichment of interspecies Saccharomyces
hybrids within a matter of days and without requiring selectable hybrid phenotypes, both
for homothallic and heterothallic strains. This strategy should accelerate the isolation
of laboratory-made hybrids, facilitate research into hybrid heterosis and offer new
opportunities for non-GM industrial strain improvement and diversification.

Keywords: FACS, Saccharomyces eubayanus × Saccharomyces cerevisiae hybrids, heterosis, marker-free
mating, lager beer brewing, non-GMO
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INTRODUCTION

Saccharomyces yeasts are used in various biotechnological
industries including beer brewing, wine making,
biopharmaceutical protein synthesis, and biofuels production
(Balat, 2011; Nielsen, 2013; Marsit and Dequin, 2015; Jansen
et al., 2017; Krogerus et al., 2017a). Nine Saccharomyces species
have currently been described (Hittinger, 2013; Nueno-Palop
et al., 2017), which are separated by a post-zygotic barrier that
causes interspecies hybrids to be sterile (Naumov et al., 2000;
Greig et al., 2002; Pfliegler et al., 2012; Hou et al., 2014). Although
Saccharomyces hybrids occur in natural contexts such as the guts
of wasps (Stefanini et al., 2016), strains with chimeric genomes
are most commonly found in domesticated environments
(Almeida et al., 2014; Boynton and Greig, 2014). For instance,
lager beer is brewed by S. cerevisiae × S. eubayanus hybrids,
collectively indicated as S. pastorianus (Libkind et al., 2011),
S. uvarum × S. eubayanus hybrids called S. bayanus are used for
cider brewing among other applications (Naumov et al., 2001),
and various double and triple hybrids between S. cerevisiae,
S. kudriavzevii, and S. uvarum play an important role in aroma
production during wine fermentation (González et al., 2006).
In addition, interspecies hybridization likely contributed to the
evolution of domesticated Saccharomyces strains by facilitating
horizontal gene transfer (Peter et al., 2018). Genetic admixture
contributed to the distinct phenotypes of, for instance, cider-
fermenting S. uvarum strains and wine-fermenting S. cerevisiae
strains (Naumova et al., 2011; Dunn et al., 2012).

The genomes of hybrids from different Saccharomyces species
have been shown to act synergistically, a phenomenon called
‘heterosis’ or ‘hybrid vigor,’ in which a hybrid performs better
than either of its parents in specific environments (Rainieri et al.,
2006; Belloch et al., 2008; Querol and Bond, 2009; Tronchoni
et al., 2009). Heterosis is a complex phenomenon, involving
copy number effects, interactions between different dominant
and recessive alleles, and epistatic interactions (Shapira et al.,
2014). Hybrid physiology largely depends on the specific parental
strains (Mertens et al., 2015; Krogerus et al., 2017b). While
some traits such as cryotolerance or flocculation appear to be
completely inherited from one of the parental strains (Coloretti
et al., 2006; Hebly et al., 2015), hybrids can also show phenotypes
intermediary to their parental strains, as has been demonstrated
for production of flavor compounds and other metabolites
(Bellon et al., 2011; Krogerus et al., 2015).

Saccharomyces hybrids have been generated in the laboratory
by crossing strains from different species (Banno and Kaneko,
1989). By analogy to the chimeric hybrids used for industrial
applications, laboratory hybridization can yield strains with novel
or improved properties for industrial applications. For instance,
laboratory-made S. cerevisiae × S. eubayanus hybrids displayed
increased cold tolerance, faster oligosaccharide consumption,
different flavor profiles, higher fermentation rates and higher
ethanol titres than their parental strains (Steensels et al., 2014a;
Hebly et al., 2015; Krogerus et al., 2015). Pioneering studies on
reconstruction of naturally-occurring hybrids have inspired the
generation of hybrids from novel combinations of species, such
as S. cerevisiae × S. paradoxus hybrids (Bellon et al., 2011),

S. cerevisiae × S. mikatae hybrids (Bellon et al., 2013; Nikulin
et al., 2017), S. cerevisiae × S. arboricola hybrids (Nikulin et al.,
2017), and S. cerevisiae× S. uvarum hybrids (Masneuf-Pomarède
et al., 2002; Bellon et al., 2015; Lopandic et al., 2016). Their
phenotypic diversity showed promise for applications ranging
from the fermented beverage industry to the production of
biofuels (Masneuf-Pomarède et al., 2002; Steensels et al., 2014b;
Nikulin et al., 2017; Peris et al., 2017; Nikulin et al., 2018).

Analogous to intra-species mating, interspecies hybridization
occurs either by mating haploid cells of opposite mating type,
or by rare mating based on spontaneous mating-type switching
caused by loss of heterozygosity at the MAT locus (Gunge and
Nakatomi, 1972). However, interspecies hybridization occurs at
a relatively low rate; reported hybridization frequencies range
from 1.5 to 3.6% for mass mating of spores (Mertens et al.,
2015; Krogerus et al., 2016) to frequencies as low as 1 × 10−6

to 1 × 10−8 for mass mating of cells dependent on rare mating
(Gunge and Nakatomi, 1972; Krogerus et al., 2016). While the
efficiency of interspecies mating can be improved by genetic
modification (GM) techniques, for example by overexpression
of HO-endonuclease (Alexander et al., 2016) or by the use of
spore micromanipulation (Naumov, 1996), isolation of bona fide
hybrids from mating cultures remains necessary.

When parental strains have different selectable phenotypes,
hybrids can be isolated by transferring the mating culture to
conditions requiring both phenotypes for growth. Selectable
phenotypes such as auxotrophies can either occur naturally
(Sato et al., 2002; Fernández-González et al., 2015; Magalhães
et al., 2017), or they can be obtained by mutagenesis and/or
laboratory evolution under conditions favoring auxotrophic
strains (Boeke et al., 1987; Scannell et al., 2011; Pérez-Través
et al., 2012; Krogerus et al., 2015). However, generation of
auxotrophic mutants is time- and labor-intensive (Alexander
et al., 2016) and can be further complicated by the polyploid
or aneuploid nature of many industrially-relevant Saccharomyces
strains (Pérez-Través et al., 2012; Gorter de Vries et al., 2017b).
Alternatively, selectable phenotypes such as antibiotic resistance
can be introduced using GM techniques (Jimenez and Davies,
1980; Goldstein and McCusker, 1999; Piotrowski et al., 2012;
da Silva et al., 2015; Hebly et al., 2015). However, industrial
strains can be resilient to GM, and customer acceptance and
legislation issues still largely preclude use of GM technology for
applications in the food and beverages industry (Wunderlich and
Gatto, 2015; Gorter de Vries et al., 2017a).

Fluorescence-activated cell sorting (FACS) can be used to
isolate fluorescent cells from populations, even if they occur at
extremely low frequencies (Cormack et al., 1996). By labeling
each parental strain with a fluorescent dye, FACS has previously
been used to sort mated Saccharomyces cerevisiae cells from their
mating culture, resulting in a threefold enrichment of mated
cells (Bell et al., 1998). Although a threefold enrichment would
not be sufficient to isolate interspecies hybrids from a mating
culture, this early study raised the question whether it might
be possible to sufficiently modify staining, mating, and FACS
procedures to accomplish this goal. To address this question,
we explored a method to isolate interspecies Saccharomyces
hybrids based on dual fluorescent labeling of parental strains
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and subsequent FACS-based selection of double-stained cells,
without any dependency on any selectable phenotypes. After
reproducing the isolation of intra-species S. cerevisiae crosses, we
optimized isolation of interspecies S. cerevisiae × S. eubayanus
hybrids using strains with selectable phenotypes. The resulting
method was then tested for phenotype-independent isolation of
S. cerevisiae× S. eubayanus hybrids.

MATERIALS AND METHODS

Strains, Media, and Cultivation
Saccharomyces cerevisiae and S. eubayanus strains used in this
study are listed in Table 1. Strains were routinely grown in
complex medium (YP), containing 10 g L−1 yeast extract and
20 g L−1 peptone, supplemented with 20 g L−1 glucose for
YPD, and with 20 g L−1 trehalose for YPT. Synthetic medium
(SM) containing 20 g L−1 glucose, 3 g L−1 KH2PO4, 5.0 g L−1

(NH4)2SO4, 0.5 g L−1 MgSO4·7H2O, 1 mL L−1 of a trace element
solution and 1 mL L−1 of a vitamin solution, was prepared as
described previously (Verduyn et al., 1992), and the pH was
set to 6.0 using 2 M KOH. Presence of the KanMX marker
cassette was selected for in SM+G418: SM supplemented with
0.2 g L−1 of G418 (Invitrogen, Carlsbad, CA, United States)
in which (NH4)2SO4 was replaced by 1 g L−1 monosodium
glutamate (Cheng et al., 2000). For solid media, 20 g L−1 agar
was added to media. Strains were grown in 500 mL round-bottom
shake flasks with 100 mL medium at 200 RPM in an Innova 44
incubator shaker (Eppendorf, Nijmegen, Netherlands). Cultures
of S. cerevisiae and S. eubayanus were grown at 30◦C and 20◦C,
respectively. Liquid sporulation medium contained 20 g L−1

potassium acetate and its pH set to 7.0 using acetic acid (Bahalul
et al., 2010). Frozen stocks were prepared by addition of glycerol
(30% v/v) to exponentially growing shake-flask cultures, after
which 1-mL aliquots were aseptically stored at−80◦C.

Sporulation, Spore Isolation,
and Germination
Sporulation was performed by aerobic incubation at 20◦C during
at least 72 h on sporulation medium. Presence of asci was
verified using phase-contrast microscopy at a magnification of
400x. Spores were isolated as described by Herman and Rine
(1997) with minor modifications. In short, spores were pelleted
(1000 g, 5 min), resuspended in softening buffer (10 mM
dithiothreitol, 100 mM Tris-SO4, pH set to 9.4 with H2SO4)
and incubated at 30◦C for 10 min. Cells were then washed
using demineralized water, resuspended in spheroplasting buffer
[2.1 M sorbitol, 10 mM KH2PO4, pH set to 7.2 with 1 M
NaOH, 0.8 g L−1 zymolyase 20-T (AMS Biotechnology, Ltd.,
Abingdon, United Kingdom)] and incubated overnight at 30◦C.
After incubation, the culture was pelleted (1000 g, 10 min),
washed with demineralized water and resuspended in 0.5%
Triton X-100 (Sigma-Aldrich, Zwijndrecht, Netherlands). Spores
were then sonicated for 15 s at 50 Hz with an amplitude of
6 µ while kept on ice using a Soniprep 150 (MSE, London,
United Kingdom). During initial optimization of the protocol,
a short protocol with only the zymolyase-step was also tested.

Isolation of spores was confirmed by microscopic inspection
as described above. For germination, spores were washed once
with YPD and subsequently resuspended in 20 mL YPD to a
concentration of approximately 106 cells mL−1

. The germination
culture was incubated in a 100 mL round bottom flask at 30◦C
and 200 RPM for 5 h. A protocol using different incubation times
in 2% glucose medium and in YPD was tested during initial
optimization of the interspecies mating.

Staining of Saccharomyces Cultures
For staining, CellTraceTM Violet, CellTraceTM CFSE and
CellTraceTM Far Red fluorescent dyes (Thermo Fisher Scientific,
Waltham, MA, United States) were prepared according to the
manufacturers’ recommendations. Cultures were stained with
2 µL CellTraceTM dye per mL culture and incubated overnight
in the dark at 12◦C and 200 RPM. Stained cultures were washed
twice with YP medium, as remaining unbound dye molecules
would bind to the amide groups in yeast extract and peptone.

Intra-Species Mating
Heterothallic haploid parental strains were propagated until
mid-exponential phase. The cultures of two parental strains
were washed and diluted in sterile Isoton II (Beckman Coulter,
Woerden, NL, United States) to a final cell density of
approximately 106 cells mL−1, stained with CellTraceTM Violet
or CellTraceTM CFSE and washed to remove unbound stain.
100 µL of each stained culture was transferred to an Eppendorf
tube and centrifuged briefly (2000 g, 1 min) to increase proximity
of the cells for more efficient mating. Subsequently, the mating
culture was statically incubated up to 42 h at 12◦C in the dark
until FACS analysis. Longer incubation and higher temperatures
yielded significant dilution of staining due to cell division.

Interspecies Mating and Rare Mating
Diploid parental strains and heterothallic haploid parental strains
were propagated until mid-exponential phase. Haploid parental
cells from homothallic strains were obtained via sporulation,
spore isolation and germination. Cells were washed and diluted
in sterile Isoton II (Beckman Coulter) to a final cell density
of approximately 106 cells mL−1, stained with CellTraceTM

Violet or CellTraceTM CFSE, and washed to remove unbound
stain, as described. For rare mating, a final cell density of
approximately 2 × 107 cells mL−1 was used and cells were
stained with CellTraceTM Far Red or CellTraceTM CFSE. 100 µL
of each stained culture was transferred to an Eppendorf tube
and centrifuged briefly (2000 g, 1 min) to increase proximity
of the cells for more efficient mating. Subsequently, the mating
culture was statically incubated up to 30 h at 12◦C in the dark
until FACS analysis. Longer incubation and higher temperatures
yielded significant dilution of staining due to cell division.

FACS Analysis and Sorting
Cultures for FACS analysis and sorting were diluted in sterile
Isoton II and vortexed thoroughly to disrupt cell aggregates. For
rare mating, 50 mM EDTA was added to disrupt cell aggregates
formed by flocculation. The cultures were analyzed on a BD
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TABLE 1 | Saccharomyces strains used in this study.

Name Species Parental strain(s) Relevant genotype Origin

CEN.PK113-5A S. cerevisiae – MATa URA3 his3-11 leu2-3,112
trp1-289

Entian and Kötter, 2007

IMK439 S. cerevisiae CEN.PK113-1A MATα HIS3 LEU2 TRP1
ura31::KanMX

González-Ramos et al., 2013

IMK440 S. cerevisiae CEN.PK113-7D MATa HIS3 LEU2 TRP1
ura31::KanMX

González-Ramos et al., 2013

CEN.PK122 S. cerevisiae – MATa/MATα URA3/URA3 Entian and Kötter, 2007

CBS 12357 S. eubayanus – MATa/MATα Libkind et al., 2011

CEN.PK113-7D S. cerevisiae – MATa Entian and Kötter, 2007; Salazar
et al., 2017

IMS0408 S. eubayanus × S. cerevisiae CBS 12357 × IMK439 MATa/MATα

SeubURA3/Scura31::KanMX
Hebly et al., 2015

CDFM21L.1 S. eubayanus – MATa/MATα Kindly provided by F.-Y. Bai,
Chinese Academy of Sciences
(Bing et al., 2014)

Ale28 S. cerevisiae – MATa/MATα Kindly donated by HEINEKEN
Supply Chain, Zoeterwoude,
Netherlands

IMX1471 S. cerevisiae IMK439 × IMK440 MATa/MATα

ura31::KanMX/ura31::KanMX
This study

IMH001 S. eubayanus × S. cerevisiae CBS 12357 × CEN.PK113-7D MATa/MATα This study

IMH002 S. eubayanus × S. cerevisiae CBS 12357 × CEN.PK113-7D MATa/MATα This study

IMH003 S. eubayanus × S. cerevisiae CDFM21L.1 × Ale28 MATa/MATα This study

IMH004 S. eubayanus × S. cerevisiae CDFM21L.1 × Ale28 MATa/MATα This study

IMH005 S. eubayanus × S. cerevisiae CDFM21L.1 × Ale28 MATa/MATα This study

IMH006 S. eubayanus × S. cerevisiae CDFM21L.1 × Ale28 MATa/MATα This study

IMH007 S. eubayanus × S. cerevisiae CDFM21L.1 × Ale28 MATa/MATα This study

FACSAriaTM II SORP Cell Sorter (BD Biosciences, Franklin
Lakes, NJ, United States) equipped with 355, 445, 488, 561, and
640 nm lasers and a 70 µm nozzle, and FACSFlowTM sheath fluid
(BD Biosciences). Correct cytometer performance was evaluated
prior to each experiment by running a Cytometer Setup &
Tracking cycle using a CS&T bead kit (BD Biosciences) for
calibration. Drop delay for sorting was determined by running an
Auto Drop Delay cycle using Accudrop Beads (BD Biosciences).
CellTraceTM Violet fluorescence was excited by the 355 nm laser
and emission was detected through a 450 nm bandpass filter
with a bandwidth of 50 nm. CellTraceTM CFSE was excited by
the 488 nm laser and emission was detected through a 545 nm
bandpass filter with a bandwidth of 30 nm. CellTraceTM Far
Red was excited by the 640 nm laser and emission was detected
through a 780 nm bandpass filter with a bandwidth of 60 nm.
Morphology of the cells was analyzed by plotting forward scatter
(FSC) against side scatter (SSC). Fluorescence of mating cultures
was analyzed on either a CFSE versus Violet or a CFSE versus
Far Red plot. Prior to sorting, at least 105 events were analyzed.
Sorting regions (‘gates’) were set on these plots to determine
the types of cells to be sorted. Gated single cells were sorted in
96-well microtiter plates containing YPD using a “single cell”
sorting mask (0/32/16), and the plates were incubated at RT
for 2 days. When cells with selectable phenotypes were used,
the fraction of mated cells was determined by replica-plating to
96-well plates with selective medium (SM or SM+G418), using
an ethanol-flame sterilized 96-pin replicator. FACS data were

analyzed using FlowJo R© software (version 3.05230, FlowJo, LLC,
Ashland, OR, United States).

Determination of the Fraction of
Growing Cells
After FACS sorting, the fraction of growing cells was determined
by counting the number of wells in which growth was observed.
For populations with low viabilities, up to 1000 cells were sorted
per well and Poisson statistics were used to estimate the fraction
of growing cells (Dube et al., 2008). The fraction of growing cells
was calculated from (P), the fraction of wells containing a colony,
(W) the total number of wells and (n), the total number of cells
sorted into the wells (Eq. 1).

Fraction of growing cells =
− ln(1− P)∗W

n
(1)

Imaging
Cells were imaged using a Zeiss Axio Imager Z1 (Carl Zeiss
AG, Oberkochen, Germany). For fluorescent imaging, cells were
excited with a xenon lamp. Fluorescence from CellTraceTM CFSE
was imaged through a GFP filter set (Carl Zeiss AG) containing
a 470 nm bandpass excitation filter with a bandwidth of 20 and
540 nm emission filter with a bandwidth of 25 nm. CellTraceTM

Far Red was imaged through a Cy5 filter set (Carl Zeiss AG)
containing a 640 nm bandpass excitation filter with a bandwidth
of 30 nm and a 690 nm emission filter with a bandwidth of 50 nm.
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Images were processed using AxioVision SE64 (Rel. 4.9.1. Carl
Zeiss AG) and FIJI (Schindelin et al., 2012).

Ploidy Determination by Flow Cytometry
For ploidy determination, samples were fixed using ethanol as
previously described (Hebly et al., 2015). Staining of cells with
SYTOX R© Green Nucleic Acid Stain (Invitrogen) was performed
as previously described (Haase and Reed, 2002) with some minor
modifications. Cells were washed in 50 mM Tris-HCl (pH 7.5)
and resuspended in 100 µL RNase solution (1 mg/mL RNase
A in 50 mM Tris-HCl). 100 µL of cells was added to 1 mL
of SYTOX R© Green solution. When processing large numbers of
samples, a high-throughput protocol in 96-well microtiter plates
was used with a PIPETMAN R© M multichannel electronic pipette
(Gilson, Middleton, WI, United States). In this modified protocol,
100 µL sample was fixated by adding 150 µL 70% ethanol and
in the final step 20 µL sample was added to 180 µL SYTOX R©

Green solution. An unstained control was included along with
every sample. Fluorescence of the samples was measured on a
BD AccuriTM C6 CSampler Flow Cytometer (BD Biosciences).
The fluorophore was excited with the 488 nm laser of the flow
cytometer and emission was detected through a 533 nm bandpass
filter with a bandwidth of 30 nm. Ploidy data was analyzed using
FlowJo R© software (version 3.05230, FlowJo).

Identification of Interspecies Hybrids
by PCR
The presence of genetic material from S. cerevisiae and from
S. eubayanus and the mating type of potential hybrids was verified

by PCR using DreamTaq PCR Mastermix (Life Technologies), as
described previously (Hebly et al., 2015). To ensure that single
cells isolates were tested, sorted dual-stained cells were grown
in YPD and a second FACS step was used to sort a single cell
from each culture. DNA from the single cell isolate cultures was
released by boiling 2 µL of a liquid culture in 2 µL of NaOH
for 15 min at 99◦C. The S. cerevisiae-specific MEX67 gene was
amplified using primers 8570 and 8571 (Supplementary Table 1)
and the S. eubayanus-specific FSY1 gene was amplified using
primers 8572 and 8573 (Muir et al., 2011; Pengelly and Wheals,
2013). The mating type was determined by amplifying MAT-loci,
using primers 11, 12, and 13 (Huxley et al., 1990). PCR products
were separated on a 2% (w/v) agarose gel in 0.5X TBE buffer
(45 mM Tris-borate, 1 mM EDTA, pH 8).

RESULTS

Isolating Intra-Species Hybrids From a
Mating Culture Using FACS
A functional protocol for dual staining of parental strains, mating
and FACS-based sorting of double-stained cells was developed
using the heterothallic haploid S. cerevisiae strains CEN.PK113-
5A (MATa, His−, Lys−, Trp−) and IMK439 (MATα, Ura−).
Due to their complementary auxotrophies, the fraction of mated
cells could easily be quantified before and after FACS-based
selection of double-stained cells by measuring the ability to
grow on synthetic medium without histidine, lysine, tryptophan,
and uracil. CEN.PK113-5A and IMK439 were stained using the
commercially-available fluorescent CellTraceTM dyes CFSE and

FIGURE 1 | Intra-species mating of S. cerevisiae strains CEN.PK113-5A (MATa URA3 his3-11 leu2-3,112 trp1-289) and IMK439 (MATα HIS3 TRP1 LEU2
ura31::KanMX ). (A) Fluorescence contour plots of unstained CEN.PK113-5A, CEN.PK113-5A stained with CellTraceTM CFSE, IMK439 stained with CellTraceTM

Violet, and of the mating culture after 18, 24, and 42 h. The indicated gated areas were used for sorting cells, event rates of each gate are indicated as a percentage
of total cell counts. (B) Microscope image (400×) of zygotes sorted from the double-stained population (C+V+) after 42 h of mating. (C) Percentage of cells able to
grow on synthetic medium without auxotrophy-complementing supplements in different populations sorted by FACS, as indicated in (A).
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Violet, respectively. These dyes covalently bind to amine groups
and thereby irreversibly label the parental cells (Filby et al.,
2015). Mated cells should then be identifiable by the presence of
fluorescent material from both parental strains. Efficient staining
of the parental strains was confirmed for both dyes using flow
cytometry (Figure 1A). To minimize dilution of the dye due to
cell division, stained cells were mated by co-incubation in YPT
medium at 12◦C, which resulted in slow growth of S. cerevisiae.
Flow cytometry of the mating culture indicated a progressive
increase of the incidence of double-stained cells, from 0.90% after
18 h to 5.25% after 42 h (Figure 1A). Approximately 10% double-
stained cells exhibited a morphology (Figure 1B) characteristic
of Saccharomyces zygotes (Herskowitz, 1988). To determine the
fraction of mated cells, cells from the total population and
from the double-stained population were sorted on SM using
FACS. Only 4% of the total population was able to grow on
SM, while 74–82% of double-stained cells grew on this medium,
indicating a 20-fold enrichment of mated cells in the double-
stained population (Figure 1C).

Isolation of Interspecies Hybrids From a
Mating Culture Using FACS
The developed protocol was applied to obtain interspecies
hybrids between S. eubayanus strain CBS 12357 and S. cerevisiae
strain IMK439 (MATα, ura31::KanMX). Hybrids of these strains
can be easily identified due to combined uracil prototrophy and

resistance to the antibiotic G418. As CBS 12357 is a homothallic
strain it was sporulated prior to staining and mating. To limit a
bias toward self-mating of sister spores, a protocol for digestion
of the ascus sack was developed based on a combined treatment
with the surfactant Triton X-100 and zymolyase (Herman and
Rine, 1997) (Supplementary Figure 1). When staining isolated
spores of S. eubayanus CBS 12357, approximately half of the
population was not fluorescently labeled after staining and
incubation (Supplementary Figure 2). As the dye may not be
able to penetrate the spore cell wall, the observed loss of staining
could be due to loss of bound fluorophores during germination,
when the spore cell wall is lost. To allow for efficient germination
of spores while minimizing cell division prior to staining, a 5 h
incubation on YPD at 30◦C was implemented (Supplementary
Figure 3). Using a protocol that included these optimizations,
germinated spores of S. eubayanus CBS 12357 stained with
CellTraceTM CFSE were mated with haploid cells of S. cerevisiae
strain IMK439 stained with CellTraceTM Violet dye (Figure 2A).
As the lack of necessity for trehalose consumption would broaden
the applicability of our method, we mated the cells in YPD as
well as on YPT medium at 12◦C. The fraction of hybridized
cells was monitored during mating by sorting double-stained cells
onto YPD and determining the fraction of sorted cells which
could grow on selective medium (Figure 2B). After 7 h, 1% of
the double-stained population of both mating cultures on YPT
and YPD was hybrid (Figure 2C). In contrast to intra-species

FIGURE 2 | Optimization of interspecies hybridization between haploid S. eubayanus and S. cerevisiae strains. (A) Overview of the optimized protocol for
interspecies spore-to-cell mating. (B) Fluorescence contour plots of mating cultures of stained CBS 12357 spores and IMK439 cells after 30 h of mating on YPD and
YPT. The gated areas were used for sorting cells, event rates of each gate are indicated as a percentage. (C) Percentages of cells in the double-stained population
able to grow on SM+G418 after 3.5, 7, 24, and 30 h of incubation on YPT (black) and YPD (white). Mating on YPT was only assessed at 7 and 30 h.
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S. cerevisiae mating, mating on YPT yielded no increase in the
fraction of hybrids upon prolonged incubation for interspecies
mating. However, in YPD, the fraction of hybrids among the
double-stained cells increased to 18% after 24 h and remained
stable up to 30 h (Figure 2C). In contrast, after 30 h incubation
in YPD without sorting, only 0.3% of the total population was
able to grow on selective medium. These results indicated that
FACS-based sorting of double-stained cells resulted in a 70-fold
enrichment of interspecies hybrids by sorting.

Enrichment of Interspecies Hybrids
Without Selectable Phenotypes
To test applicability of the dual fluorescent staining FACS
protocol for isolation of hybrids without selectable genetic

markers, spores of S. eubayanus CBS 12357 (Libkind et al., 2011)
were crossed with the haploid S. cerevisiae strain CEN.PK113-7D
(MATa) (Entian and Kötter, 2007). In parallel, we crossed spores
of the Tibetan S. eubayanus isolate CDFM21L.1 (Bing et al.,
2014) with spores of the ale-brewing S. cerevisiae isolate Ale28,
which was provided by HEINEKEN Supply Chain. These diploid
strains were sporulated and germinated as described previously
(Figure 2A). S. eubayanus parents were stained with CellTraceTM

CFSE, S. cerevisiae parents with CellTraceTM Violet, and cells
were co-incubated in YPD during 30 h at 12◦C. Individual
double-stained cells were sorted into 96 well plates containing
100 µL YPD per well, and incubated at 30◦C until cultures
were fully grown (Figure 3A). To eliminate false positives
due to co-sorting of S. eubayanus/S. cerevisiae combinations,

FIGURE 3 | Enrichment of interspecies hybrids without selectable phenotypes from CBS 12357 (S. eubayanus, sporulated) and CEN.PK113-7D (MATa) and from
CDFM21L.1 (S. eubayanus, sporulated) and Ale28 (S. cerevisiae, sporulated). (A) Fluorescence contour plots of mating cultures between CBS 12357
(CFSE) × CEN.PK113-7D (Violet) and CDFM21L.1 (CFSE) × Ale28 (Violet). Gated areas were used for sorting cells, event rates of each gate are indicated as a
percentage of the total population size. (B) Flow cytometric quantification of the genome content of constructed hybrids using SYTOX Green staining. S. cerevisiae
strains CEN.PK113-7D and CEN.PK122 were used as a haploid and diploid control, respectively. (C) Multiplex PCR amplification of the S. cerevisiae specific MEX67
gene (150 bp) and the S. eubayanus specific FSY1 gene (228 bp) in single-cell isolates of the double-stained populations from CBS 12357 × CEN.PK113-7D and
CDFM21L.1 × Ale28 mating cultures. For CBS 12357 × CEN.PK113-7D, 4 of the 22 tested isolates are shown. Genomic DNA of S. cerevisiae Ale26, S. eubayanus
CDFM21L.1 and S. cerevisiae × S. eubayanus IMS0408 were used as controls. Hybrid isolates are indicated by arrows. L: Generuler 50 bp DNA Ladder.
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a single cell from each well was sorted into a second 96 well
plate containing YPD. After incubation at 30◦C, the presence
of genetic material from both parents was verified by PCR
amplification of the S. cerevisiae specific MEX67 gene and
of the S. eubayanus specific FSY1 gene (Muir et al., 2011;
Pengelly and Wheals, 2013). For the CBS 12357 × CEN.PK113-
7D cross, a band corresponding to MEX67 and to FSY1 was
observed for 2 of 22 tested single-cell isolates. These isolates
were stored as IMH001 and IMH002 (Figure 3C). For the
CDFM21L.1 × Ale28 cross, a band corresponding to MEX67
and to FSY1 was produced for 5 of 34 tested single-cell
isolates, which were stored as IMH003-IMH007 (Figure 3C).
To verify if strains IMH001-IMH007 were hybrids and not
mixtures of haploid S. cerevisiae and S. eubayanus cells, the
ploidy of the sorted cells was determined by DNA staining
using SYTOX Green and flow cytometric analysis. The genome
content of IMH001-IMH006 was diploid, whereas IMH007 was
aneuploid (Figure 3B), indicating successful mating. Therefore,
9% of tested cells from the mating between CBS 12357 and
CEN.PK113-7D and 15% of cells from the mating between
CDFM21L.1 and Ale28 were hybrids. These results indicate that
fluorescent staining and FACS enable a substantial enrichment
of hybrid cells both for laboratory and industrial-relevant
strains. A simple PCR protocol was sufficient to identify hybrids
after enrichment.

Enrichment of Interspecies Hybrids by
Rare Mating
Polyploidy and aneuploidy are commonly observed in industrial
Saccharomyces hybrids (González et al., 2006; Querol and Bond,
2009; Peris et al., 2012), and chromosome copy number can
play a key role in industrial performance (Krogerus et al.,
2016; Gorter de Vries et al., 2017b). The poor sporulation
efficiency of many industrial strains can preclude hybridization
by conventional mating (Anderson and Martin, 1975). We
explored the use of dual fluorescent staining and FACS to enrich
hybrids obtained by rare mating by testing combinations of

haploid and diploid S. eubayanus and S. cerevisiae strains. To
evaluate low fractions of hybrid cells, we used S. eubayanus
strains with uracil prototrophy and S. cerevisiae strains with
uracil auxotrophy and resistance to the antibiotic G418. To
obtain a diploid S. cerevisiae strain with uracil auxotrophy
and resistance to the antibiotic G418, we first crossed IMK439
(MATα ura31::KanMX) and IMK440 (MATa ura31::KanMX)
using fluorescent staining and FACS, resulting in IMX1471
(MATa/MATα, ura31::KanMX/ura31::KanMX). The mating
types, ploidy, ability to sporulate, uracil prototrophy and G418
resistance of IMX1471 were verified (Supplementary Figure 4).
Due to the anticipated low frequency of rare mating, S. eubayanus
cells were stained with CellTraceTM CFSE and S. cerevisiae cells
with CellTraceTM Far Red, as these dyes have little spectral
overlap (Supplementary Figure 4). In total, three different
crosses were made: CBS 12357 (sporulated, 1n)× IMX1471 (2n),
CBS 12357 (2n)× IMK439 (1n) and CBS 12357 (2n)× IMX1471
(2n). The frequency of hybrid cells in each mating culture
was assessed by plating 2 × 108 cells on SM+G418 plates
and counting colonies. In parallel, the mating culture was
analyzed by FACS and double-stained cells were sorted and
replica-plated to SM+G418 to determine the frequency of
hybrid cells after sorting. Due to the low frequency of rare
mating, wells were inoculated with 1, 10, or 100 double-stained
cells and the fraction of growing cells was calculated using
Poisson statistics.

For the CBS 12357 (2n) × IMK439 (1n) cross, the
fraction of hybrids in the total population varied between
1.6 × 10−6 and 7.2 × 10−6 between 24 and 168 h. After
sorting, the fraction increased on average by a factor of
590 to between 4.3 × 10−4 and 1.3 × 10−3 (Table 2). For
the CBS 12357 (1n) × IMX1471 (2n) cross, the fraction of
hybrids in the total population varied between 3 × 10−7

and 1.5 × 10−6 between 24 and 168 h. Sorting only yielded
a single hybrid after 96 h, at a fraction on 4.3 × 10−4,
corresponding to a 540-fold enrichment. For the CBS
12357 (2n) × IMX1471 (2n) cross, a single hybrid was
observed after 96 h of incubation, corresponding to a

TABLE 2 | Fraction of hybrid cells after interspecies rare mating between S. eubayanus strain CBS 12357 and S. cerevisiae strains IMK439 (1n) and IMX1471 (2n) as
determined by the ability to grow on SM+G418.

CBS 12357 × IMK439 CBS 12357 (spores) × IMX1471 CBS 12357 × IMX1471

(2n × 1n) (1n × 2n) (2n × 2n)

Mating time (h) Total population After sorting Total population After sorting Total population After sorting

24 – 4.3 × 10−4 – – – –

48 4.6 × 10−6 2.9 × 10−3 8 × 10−7 – – –

72 – 4.1 × 10−3 – – – –

96 7.2 × 10−6 4.3 × 10−3 8 × 10−7 4.3 × 10−4 1 × 10−7 –

120 1.9 × 10−6 1.3 × 10−3 9 × 10−7 – – –

144 1.6 × 10−6 4.3 × 10−4 3 × 10−7 – – –

168 4.7 × 10−6 3.6 × 10−3 1.5 × 10−6 – – –

Due to propagation of non-mated cells, the fraction of hybrid cells does not necessarily increase over time. The fraction of hybrids in the total population was determined
by plating approximately 2 × 108 cells of the mating culture on SM+G418. For the fraction of hybrid cells in the double-stained population, 1 cell was sorted into 48 wells,
10 cells into 24 wells and 100 cells into 24 wells of a 96-well plate with YPD, which was replica-plated to SM+G418. Fractions of growing cells were calculated using with
Poisson statistics. The sign “-” indicates that no hybrids were identified.

Frontiers in Microbiology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 871

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00871 April 25, 2019 Time: 16:15 # 9

Gorter de Vries et al. Phenotype-Independent Isolation of Saccharomyces Hybrids

rate of 1 × 10−7, while no hybrids were identified after
sorting. Overall, while rare mating was possible between
the haploid and diploid strains, mated cells were present
in very low frequencies both in the mating cultures and
in the double-stained cells. In theory, fluorescent staining
and FACS could be combined with high throughput PCR
screening for hybrids in the sorted population. However,
hundreds of cells would need to be screened for the diploid
CBS 12357 × haploid IMK439 cross, and even more for
the other crosses.

DISCUSSION

This study presents a new method for the enrichment of
interspecies Saccharomyces hybrids that does not require parental
strains and/or the resulting hybrids to have selectable phenotypes.
By dual staining of parental cells with commercially-available
fluorescent dyes prior to mating, mated cells could be enriched
by up to 600-fold through sorting double-stained cells using
FACS. In order to be able to mate homothallic strains, we
developed a protocol for sporulation and germination prior
to staining. Double-stained subpopulations selected by FACS
after application of this protocol contained about 80% mated
cells for intra-species crosses and 10–15% of mated cells for
interspecies hybridization. By screening sorted double-stained
cells using PCR, hybrids were successfully isolated from crosses
of both laboratory strains and industrially relevant strains
that did not have selectable phenotypes. By circumventing
the need of conventional hybridization techniques for pre-
existing or engineered selectable phenotypes (Pérez-Través
et al., 2012; da Silva et al., 2015; Fernández-González et al., 2015;
Krogerus et al., 2015), this method enables the isolation of
hybrids from a wide range of strains within just a few days.
Interspecies hybrids have been obtained previously by fluorescent
staining and protoplast fusion (Katsuragi et al., 1994). However,
while protoplast fusion is considered as a GM technique in
some countries, hybridization by mating is not, making it
suitable for application in the globalized food and beverage
industry (Gibson et al., 2017). The use of staining is not
problematic for industrial application as it is rapidly lost by
dilution during subsequent cell division of the hybrid cells
(Filby et al., 2015).

The isolation of interspecies hybrids using fluorescent labeling
and FACS provides new opportunities for the use of laboratory-
made hybrids for applications such as the production of
fermented beverages and biofuels (Bellon et al., 2011, 2015;
Mertens et al., 2015; Magalhães et al., 2017; Peris et al., 2017).
Since hybrid physiology depends strongly on the combination
of parental strains (Mertens et al., 2015; Krogerus et al., 2017b),
the possibility to mate strains without any selectable phenotype
could widen the phenotypic diversity of laboratory-made hybrids.
Germination, staining and/or mating conditions could be
optimized to account for traits of specific parental strains
such as temperature optima, carbohydrate utilization, and
growth kinetics. In the future, mass-mating of more than
two fluorescently-labeled parental strains could broaden the

phenotypic diversity of obtained laboratory-hybrids. Due to the
inability of many industrial strains to produce viable spores
(Steensels et al., 2014b), and due to the potential value of
higher-ploidy hybrids (Krogerus et al., 2016; Gorter de Vries
et al., 2017b), the isolation of interspecies hybrids by rare
mating would also be valuable for industrial strain development.
While fluorescent labeling and FACS did enable a 600-fold
enrichment of interspecies hybrids obtained by rare mating,
the isolation of hybrids would require extensive screening due
to the high incidence of false positives. The presence of both
stains in virtually all sorted cells, as verified by microscopy,
indicated that false positives are not due to unwanted co-sorting
of single stained cells. Instead, staining may be transferred
between cells without resulting in hybrid cells. Due to the
covalent binding of stains, such transfer would likely involve
transfer of significant amounts of cell components, such as
cell membrane or cytoplasm. Such transfer could result from
abortive mating or cytoduction, which result in cytoplasmic
fusion without nuclear fusion and would likely increase in
frequency as mating efficiency decreases (Sigurdson et al., 1981).
However, PCR based screening of hundreds of candidates is
not impossible in industrial strain improvement programs.
Moreover, the development of high throughput methods such
as microfluidic lab-on-a-chip setups could further simplify
screening after FACS sorting of rare hybrids (Schmitz et al., 2009;
Gach et al., 2017).

The genome composition and stability of laboratory hybrids
has been extensively researched (Sipiczki, 2018). However, the
ability to generate diverse interspecies hybrids using fluorescent
labeling could simplify ongoing research on, for example, hybrid-
specific phenomena such as heterosis (Shapira et al., 2014;
Bernardes et al., 2017), the inheritance of mitochondrial DNA
in hybrids (Hsu and Chou, 2017), genome stability and loss of
heterozygosity (Smukowski Heil et al., 2017) or hybrid sterility
(Greig et al., 2002; Lee et al., 2008). Overall, the interspecies
mating procedure presented here may be strongly accelerate
industrial strain improvement programs and fundamental
research into hybrid yeasts. Moreover, the described method
can be complementary with subsequent strain improvement:
laboratory evolution can result in admixture of parental genomes,
resulting in further adaptation and potentially in improved
performance, analogous to the admixed genomes of industrial
chimeric strains (Pérez Través et al., 2014; Peris et al., 2017;
Gorter de Vries et al., 2019).
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