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The stochastic simulation algorithm (SSA) describes
the time evolution of a discrete nonlinear Markov
process. This stochastic process has a probability
density function that is the solution of a differential
equation, commonly known as the chemical master
equation (CME) or forward-Kolmogorov equation. In
the same way that the CME gives rise to the SSA,
and trajectories of the latter are exact with respect to
the former, trajectories obtained from a delay SSA are
exact representations of the underlying delay CME
(DCME). However, in contrast to the CME, no closed-
form solutions have so far been derived for any kind
of DCME. In this paper, we describe for the first
time direct and closed solutions of the DCME for
simple reaction schemes, such as a single-delayed
unimolecular reaction as well as chemical reactions
for transcription and translation with delayed mRNA
maturation. We also discuss the conditions that have
to be met such that such solutions can be derived.

1. Introduction
The Markov jump formalism has been widely used
to describe the stochastic nature of chemical reactions
[1,2], gene regulation [3] and other systems involving
randomly fluctuating population sizes [4]. In the
terminology of chemical reactions, the number of
molecules of all present chemical species determines
the state of the system, and the system dynamics are
governed by a set of reactions involving these species.
Specifically, this can be modelled as a continuous-
time, discrete space Markov process and represented
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by a system of ordinary differential equations, the so-called chemical master equation (CME),
describing the temporal evolution of the probability distribution over all possible states of
the system.

The CME can be directly, analytically solved only for very simple, linear systems [5]. In some
cases, approximate numerical solutions are possible by truncating the state space [6,7], but when
the probability mass is distributed over a very large number of states this task can still be
computationally infeasible. Alternatively, one can use sampling methods such as the stochastic
simulation algorithm (SSA) [1], which generates trajectories in the state space that are exact
realizations of the Markov process.

Rather recently, the CME framework has been extended by the concept of delays, to a
delay CME, leading to the acronym DCME [3]. For certain biochemical models such as gene
transcription and translation, it has been shown that delays become necessary to describe the
system dynamics more accurately. In order to deal with time delays in discrete stochastic systems
Barrio et al. [3] proposed a delay SSA (DSSA) and the corresponding master equation formulation.

Essentially, in chemical reaction kinetics, delays are used to lump complex processes that often
consist of many chemical reactions and species, or even represent diffusion processes [3,8]. That
is, instead of modelling every single detail of a chemical or diffusion process, a task that is quite
computationally intensive, a delayed reaction is used to describe and mimic the effects of these
processes on the overall system dynamics. For instance, delays are used to model transcription
and translation processes without including any underlying mechanisms, such as each movement
of RNA polymerase along the DNA strand, or decoding of mRNA by the ribosomal machinery
[3]. Diffusion from the plasma membrane to the nucleus (and vice versa) can also be accurately
modelled in a purely temporal manner, by introducing a transport reaction with an associated
delay distribution [8].

By incorporating all relevant information into a delayed model, computational simulations
of relevant biochemical processes that would otherwise be computationally prohibitive can be
performed. Likewise, exact model reduction methodologies have been developed, through the
appropriate use of delays [9,10].

Hence, a better understanding of the DCME becomes essential. For that, and to ease readability
throughout this article, we will first introduce the different algorithms covering delay stochastic
kinetics. We will then define a simple DCME, followed by a general DCME framework covering
all possible chemical kinetics scenarios. From here, we will show how an exact solution can be
derived in certain cases, and also portray cases in which the DCME can be equivalently solved by
a CME with time-varying parameters. These two observations have never been described in the
literature before, opening up both applications and alternative methodologies to solve stochastic
chemical kinetics with prescribed delays.

2. Delay stochastic simulation algorithms
In recent years, several DSSA implementations have been proposed. The first DSSA algorithm
was presented in [11]. Albeit helpful, this approach had a couple of flaws: (i) it ignored waiting
times for delayed reactions and (ii) the update of both reactant and product species involved in a
delayed reaction always happened at the end of the time delay. The latter aspect causes delayed
reactions to be initiated for the very same reactants over and over again, which may not reflect the
biochemical reality. For instance, the authors in [11] allowed a protein to start a process of delayed
degradation after it had already initiated such a degradation process (and was still undergoing
this process). This has been shown to cause artificial oscillatory dynamics in the protein levels
[12]. Hence, this algorithm is usually not considered accurate.

Independently, Barrio et al. [3] developed the first exact DSSA, where the concept of non-
consuming and consuming reactions was introduced. In short, when a non-consuming reaction
occurs, the numbers of all its reactant molecules remain unchanged (as in [11]). However, for
consuming reactions, the numbers of reactant molecules are updated at the time of initiation
while numbers of product molecules are updated at the end of the time delay. The choice of the
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reaction type, consuming or non-consuming, strongly depends on the biochemical context. For
instance, a transport process should be defined by a consuming reaction: a molecule physically
leaves a compartment and appears at a different location after some time, implying updates at
the initiation of the reaction and at the end of the delay. Transcription and translation processes,
on the other hand, can be defined as non-consuming reactions: a single gene is transcribed
simultaneously (by several RNA polymerases) and the DNA itself is not consumed by the first
transcription. The algorithm in [3] was later termed ‘rejection algorithm’ because of the way it
deals with the update of delayed reactions [13]. Here it was also confirmed that the rejection
method is fully accurate, as is also the approach in [13].

Of note, it is the very distinction between consuming and non-consuming reactions that
enables exact DSSAs to accurately represent biochemical processes. Likewise, it is these
definitions that allow for the analytical description of a DCME, as will be explained in the
following section. Thus, it is important to define delayed reactions properly with respect to their
update points (consuming versus non-consuming), as different classifications may yield different
simulation results.

The second exact DSSA [13], termed the ‘direct method’, avoids reaction rejections by
calculating the piecewise probability density function (PDF) for the next reaction to appear in
any of the time intervals [T0, T1), [T1, T2), . . . , [Tk−1, Tk), [Tk, +∞), given k update time points Ti
for delayed reactions that had been initiated in the past (and by defining T0 = t). This PDF is
defined for each distinct interval, since the propensity functions are piecewise constant (i.e. they
only change at every update point Ti). Then, the interval [Ti, Ti+1) in which the next reaction is
about to occur is obtained by finding the index i such that

i∑
j=1

(Tj − Tj−1) a0 (X(Tj−1)) ≤ ln
(

1
r

)
<

i+1∑
j=1

(Tj − Tj−1) a0 (X(Tj−1)),

for r ∈ U(0, 1), and a0(X(t)) being the sum of all reaction propensities for the system state X(t) at
time t. The direct method updates the system state according to the delayed reactions that are due
at update time points T1, . . . Ti and advances the time to

t = Ti +
ln (1/r) −∑i

j=1(Tj − Tj−1) a0 (X(Tj−1))

a0 (X(Ti))
.

It has been argued that this algorithm is faster as it does not waste random numbers. However,
calculating the correct piecewise PDF also entails computational costs. Thus, the performance
comparison of the two algorithms likely depends on each system under investigation, including
the number of update points during simulation time and other factors.

It is also worth noting the direct method is closely related to simulation methods for reaction
systems with time-dependent propensity functions [14,15]. In [14], a modified next reaction
method for time-dependent propensities and time delays was proposed. In similarity to the SSA
next reaction method, each reaction has a putative reaction time, but here it also includes update
time points of delayed reactions. The next reaction to be either executed (if it is non-delayed)
or initiated or updated (for delayed reactions) is always the one with the shortest putative
reaction time.

3. The delay chemical master equation
Assume that the given chemical reaction system contains N molecular species S = {S1, . . . , SN}.
Let Xi(t) denote the number of species Si at time t. Then the vector X(t) = (X1(t), . . . , XN(t))
describes the system’s state at time t. As is also the case for the CME, the DCME is valid under
the assumption of well-mixedness of all chemical species.

Among M reactions, the first M0d reactions are assumed to be non-delayed, Mdc reactions
are delayed consuming reactions, and Mdn reactions are non-consuming delayed reactions. The
corresponding sets of reactions are denoted with R0d, Rdc and Rdn, respectively. In addition,
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we define Rd =Rdc ∪ Rdn (the set of all delayed reactions) and R=Rd ∪ R0d (the set of all
reactions). The delay of a reaction Rj ∈Rd is denoted with τj.

As explained in the previous section, non-delayed and delayed non-consuming reactions have
only one update point (for updating both reactant and product molecule numbers): the former
when the non-delayed reaction happens, the latter when the delay finishes. Their corresponding
stoichiometric (update) vectors are denoted with ν. Only delayed consuming reactions have two
update points: at the time of initiation and the end of the delay. Here, we denote with νr the
update vector at time of initiation for updating reactant molecule numbers while we denote with
νp the update vector at the end of the delay for updating product molecule numbers. For each
reaction Rj ∈R, aj denotes the corresponding propensity function.

Moreover, the system is assumed to be at time t0 in state X(t0) = X0 and to have a history
(memory) of K previously initiated but still unfinished (ongoing) reactions as described by the
set H0 = {(Ri,, Ti)|Ri ∈Rd, Ti > t0 ∀ i = 1..K}, where reaction Ri is a delayed reaction that is due for
completion at time Ti.

At this stage, it is useful to recall that for a reaction system without delays the CME has
the form

∂

∂t
P(X, t) = −

M0d∑
j=1

aj(X)P(X, t) +
M0d∑
j=1

aj(X − νj)P(X − νj, t), (3.1)

where P(X, t) = P(X, t|X0, t0) is the conditional probability of finding the system in state X at time
t provided it had been in the initial state X0 at time t0. By using a similar notation, the DCME was
first introduced in [3] and given as

∂

∂t
P(X, t) = −

M0d∑
j=1

aj(X)P(X, t) +
M0d∑
j=1

aj(X − νj)P(X − νj, t) −
M∑

j=M0d+1

∑
Xi∈I(X)

aj(Xi)P(X, t; Xi, t − τj)

+
M∑

j=M0d+1

∑
Xi∈I(X)

aj(Xi)P(X − νj, t; Xi, t − τj). (3.2)

Here, I(X) represents the set of all possible system states in the past from which state X was
able to follow (via a chain of chemical reactions). The probability P(X, t) = P(X, t|X0, t0,H0) is the
conditional probability of finding the system in state X at time t provided it had been in the initial
state X0 at time t0 with initial history H0.

The idea behind this formulation of the DCME is that, for a reaction Rj with delay τj, the current
system state should depend on the historical state at time t − τj. Keeping this in mind, the third
term on the right-hand side of the equation above can be interpreted as the probability that a
reaction Rj occurred in [t − τj, t − τj + dt) that is about to be updated in [t, t + dt), which will push
the system out of state X. In the same context, the last term can be seen as the probability that the
system is an update of reaction Rj away from state X and this update will happen in [t, t + dt).

This formulation has a problem, though. It does not distinguish between consuming and
non-consuming reactions. To be more precise, it is a correct DCME but only for systems with
non-delayed and delayed non-consuming reactions when the update happens only at the end of
a time delay. The following scenario is not reflected in the equation: for systems with consuming
reactions it is possible that such a reaction Rj is initiated in [t, t + dt) and the state update via
νr

j brings the system from state X − νr
j to state X. Likewise, it is possible that such a reaction is

triggered in [t, t + dt) and hence reduces the probability that the system remains in state X during
the interval [t, t + dt).

Along those lines, in [16], it has been stated that the DCME in [3] is incorrect. However, this
interpretation is wrong in that the description in [3] is just a special case of the general DCME.
This probably stems from a misinterpretation of concepts (consuming versus non-consuming
reactions). Furthermore, the work in [16] proposes two DSSAs, which incidentally are just special
cases of the DSSA in [3]. Nevertheless, the work in [16] is quite useful in that it shows how specific
DCMEs can be derived, and this in turn allowed us to derive the correct general expression.
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In summary, by incorporating the above-mentioned scenarios into one formula, we obtain the
following correct DCME, accounting for both consuming and non-consuming delay reactions:

∂

∂t
P(X, t) = −

∑
Rj∈M0d

aj(X)P(X, t) +
∑

Rj∈M0d

aj(X − νj)P(X − νj, t)

−
∑

Rj∈Mdn

∑
Xi∈I(X)

aj(Xi)P(X, t; Xi, t − τj) +
∑

Rj∈Mdn

∑
Xi∈I(X)

aj(Xi)P(X − νj, t; Xi, t − τj)

−
∑

Rj∈Mdc

∑
Xi∈I(X)

aj(Xi)P(X, t; Xi, t − τj) +
∑

Rj∈Mdc

∑
Xi∈I(X)

aj(Xi)P(X − ν
p
j , t; Xi, t − τj)

−
∑

Rj∈Mdc

aj(X)P(X, t) +
∑

Rj∈Mdc

aj(X − νr
j )P(X − νr

j , t). (3.3)

The first term refers to the probability that the system is in state X at time t while a non-delayed
reaction Rj occurs, while the second term refers to the probability that the system is one non-
delayed reaction Rj removed from state X and reaction Rj happens, yielding system state X. The
next term refers to the probability that the system is in state X at time t while a delayed non-
consuming reaction Rj gets updated that had been previously triggered at time t − τj. The fourth
term corresponds to the opposite case, where the system is one update of Rj away from state X,
namely in X − νj, and the update due to happen yields state X. The last four terms refer to the
occurrence of a delayed consuming reaction Rj. The fifth and sixth terms are equivalent to the
third and fourth terms, with respect to state changes originating from the second update point
(after the reaction finished). The last two terms, seventh and eighth, refer to the probability that
the system is in state X at time t when Rj occurs and to the probability that the system is one
reaction Rj removed from state X and reaction Rj is initiated, yielding system state X.

Note that this most general expression is different to any previously published DCME. Even
though the DCMEs in [16] come quite close to the general expression, they are, just like the DCME
in [3], special cases.

We can now even go a step further and introduce distributed delays instead of constant delays.
Then, equation (3.3) becomes

∂

∂t
P(X, t) = −

∑
Rj∈M0d

aj(X)P(X, t) +
∑

Rj∈M0d

aj(X − νj)P(X − νj, t)

−
∑

Rj∈Mdn

∑
Xi∈I(X)

∫ t

0
τj(s)aj(Xi)P(X, t; Xi, t − s) ds

+
∑

Rj∈Mdn

∑
Xi∈I(X)

∫ t

0
τj(s)aj(Xi)P(X − νj, t; Xi, t − s) ds

−
∑

Rj∈Mdc

∑
Xi∈I(X)

∫ t

0
τj(s)aj(Xi)P(X, t; Xi, t − s) ds

+
∑

Rj∈Mdc

∑
Xi∈I(X)

∫ t

0
τj(s)aj(Xi)P(X − ν

p
j , t; Xi, t − s) ds

−
∑

Rj∈Mdc

aj(X)P(X, t) +
∑

Rj∈Mdc

aj(X − νr
j )P(X − νr

j , t), (3.4)

where τj denotes the PDF of the delay distribution associated with reaction Rj.
Importantly, while the CME describes a continuous-time Markov process (i.e. a memory-less

process), this property no longer holds for the DCME. In other words, by introducing delays, the
master equation loses its Markov property, since transitions from the current state to any future
state no longer solely depend on the current state but also on reactions that have been triggered in
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k10, t41(t)

original reaction scheme:

abridged reaction scheme:

0 1

0 4

2 3 4

Figure 1. A simple linear five-state (species) reaction system and its abridged scheme.

the past. Indeed, any implementation of a DSSA necessarily requires storage of delayed reactions
that have been triggered in the past and need to be updated in a future time point. This storage can
be thought of as a memory of the process. Nonetheless, the apparently non-Markovian process
described by the DCME could still have a Markovian representation. Here, typically the trick
is to expand the description of the current and/or future state. Intuitively, one could include
future update points in the description of current states. However, the expanded state space in this
case is no longer countable and transitions cannot be represented with a transition rate matrix, a
requirement for this process to be a continuous-time Markov process.

Finally, calculating the DCME is not straightforward even when using constant delays and
for simplest cases, due to the very complicated probability terms and the sums over all possible
previous system states Xi. In contrast to the CME, not a single example could be found in the
literature where the DCME is explicitly calculated. In this paper, and for a special case, we solve
the DCME directly for the first time.

4. Exact closed-form solution of a delay chemical master equation
So far, the DCME has only been studied by generating trajectories with a DSSA. Here, we show
how it may be possible to actually solve and study the DCME by means of closed-form analytical
solutions, for certain types of systems. To do so, let us consider the five-state system illustrated
in figure 1.

As has been previously shown [9,10], the temporal dynamics of the number of molecules in
state 0 and state 4 of the original linear reaction scheme can be described exactly by an abridged
(reduced) reaction scheme that only involves states 0 and 4. The latter consists of a reaction with
a waiting time identical to that of the original reaction 0 → 1 and an associated first-passage
delay distribution τ41 describing the transition 1 → 4. As such, the abridged system can be easily
simulated with a DSSA.

The delay distribution τ41(t) is simply the PDF of the sum of three random variables,
each describing the time of a transition j → j + 1 and having an exponential distribution
with parameter kj+1,j( j = 1, 2, 3). In other words, τ41(t) is the convolution of such exponential
distributions, namely

τ41 = τ21 ∗ τ32 ∗ τ43, (4.1)

where * denotes the convolution of the PDFs. At this stage, we introduce also the PDF for the
first-passage time describing the transition 0 → 4, which, following the same argument, is

τ40 = τ10 ∗ τ41. (4.2)

For convenience, let us assume k10 = k21 = k32 = k43 = k, albeit scenarios with distinct rates are
equally possible [9,10]. The closed form of τ41(t) is then given as

τ41(t) = k3t2

2
e−kt, (4.3)
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and the one for τ40(t) is simply

τ40(t) = k4t3

6
e−kt = kt

3
τ41(t), (4.4)

for t ≥ 0. A general formula can be found in [17].
The corresponding cumulative distribution functions (CDFs) are then given as

T41(t) = 1 − e−kt
2∑

j=0

k2−j

(2 − j)!
t2−j = 1 − e−kt

(
k2

2
t2 + kt + 1

)
(4.5)

and

T40(t) = 1 − e−kt
3∑

j=0

k3−j

(3 − j)!
t3−j = 1 − e−kt

(
k3

6
t3 + k2

2
t2 + kt + 1

)

= T41(t) − e−kt k3

6
t3 = T41(t) − 1

k
τ40(t). (4.6)

With X(t) = (X1(t), X2(t)), where the first entry corresponds to the number of walkers in state 0
and the second entry refers to walkers in state 4, the corresponding DCME of the first abridgment
scheme becomes

∂

∂t
P(X, t) = −kX(1)P(X, t) + k(X(1) + 1)P(X + (1, 0)T, t) −

∑
Xi∈I(X)

∫ t

0
kXi(1)τ41(s)P(X, t; Xi, t − s) ds

+
∑

Xi∈I(X)

∫ t

0
kXi(1)τ41(s)P(X − (0, 1)T, t; Xi, t − τ ) ds. (4.7)

Both integral terms include a propensity that depends on a previous state Xi, thus preventing any
simplification of the integral terms.

Now, we will ask a different question: can one find a direct, closed-form solution for this
system?

For a single walker in state 0 at time 0, i.e. P((1, 0)T, 0) = 1, we know that the probability of the
walker being in state 4 is

P((0, 1)T, t) = T40(t). (4.8)

Also, since the delayed reaction is consuming, we know that

P((1, 0)T, t) = e−kt = 1 − F(t), (4.9)

where F(t) = 1 − e−kt is the CDF of the exponential distribution with parameter k.
Note there is a third possible state, namely (0,0)T. The time evolution of its probability is

P((0, 0)T, t) = 1 − (1 − F(t)) − T40(t) = F(t) − T40(t). (4.10)

More generally, the probability of finding m out of N walkers in state 4 is

P((∗, m)T, t) = N!
m!(N − m)!

(T40(t))m(1 − T40(t))N−m. (4.11)

Likewise, the probability of finding n out of N walkers in state 0 is

P((n, ∗)T, t) = N!
n!(N − n)!

(1 − F(t))n(F(t))N−n. (4.12)
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Figure 2. (a) Time evolution of the mean number of molecules in states 0 and 4, obtained from DSSA simulations (solid lines)
or the mean of the multinomial distribution in equation (4.14). Here, k = 0.2 and the system is in state (100,0) at time t =
0. (b) Absolute error of the DSSA-derived probability distribution with respect to the closed-form solution (equation (4.14))
at time t = 12. The error is at most approximately 7 × 10−4. Statistics were obtained from 105 DSSA simulations.

In addition, we know that the probability of finding l of N walkers neither in state 0 nor in state 4 is

P((∗, ∗)T, t) = N!
l!(N − l)!

(F(t) − T40(t))l(1 − F(t) + T40(t))N−l, (4.13)

where (*,*)T denotes the set of states {(n, m)T|l + m + n = N}.
Putting all arguments together we arrive at a solution for P((n, m)T, t), for any state (n, m)T with

n + m ≤ N. Namely, it is simply the multinomial

P((n, m)T, t) = N!
n!m!(N − (n + m))!

(1 − F(t))n(T40(t))m

(F(t) − T40(t))N−(n+m).

(4.14)

The latter is not surprising, since the work in [5] suggests such a distribution as the solution of
the CME for the unabridged system. Here, however, we obtain a similar distribution by using
a delay. The three so-called ‘event probabilities’ of our multinomial distribution are 1 − F(t), T40,
and F(t) − T40(t), i.e. the time-dependent probabilities of a walker to be in state 0, state 4, or neither
state 0 nor state 4 (the walker is on its way), respectively.

Figure 2a shows a comparison of the result of the mean numbers of molecules in states 0 and 4
over time, as obtained from the multinomial distribution in equation (4.14) and DSSA simulations.
Figure 2b presents the absolute error between the calculated (equation (4.14)) and statistically
derived (DSSA) probability distributions at time t = 12.

Importantly, the specific form of the delay distribution (here obtained from three consecutive
linear unidirectional reactions with identical rate) does not change the form of the solution
distribution. In other words, the solution of the DCME for a single unimolecular reaction S0 → S1
with rate k and delay PDF τ (t) is always a multinomial distribution with event probabilities
1 − F(t), T(t) and F(t) − T(t) with T(t) being the CDF of ke−kt ∗ τ (t). One can readily see that if
the delay is zero, i.e. τ (t) = δ0, then T(t) = 1 − e−kt = F(t) and the last event probability F(t) − T(t)
drops out. This makes sense since without delays the number of molecules of S0 and S1 has
to be constant at all times (m + n = N). Then, as expected, the resulting probability distribution
simply becomes the binomial distribution with parameters N and e−kt. In the case that the delay
is constant, τ (t) = δs = δ(t − s) for a constant time delay s. Then ke−kt ∗ δs = ke−k(t−s) for t ≥ s (and
0 otherwise). The CDF of this distribution is then 1 − e−k(t−s) for t ≥ s (and 0 otherwise). The rest
follows as described above.
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Figure 3. (a) Original model of mRNAmaturation [18]. (b) Abridged model.

In summary, in this section we described a closed-form solution of the DCME for a single-
delayed reaction in terms of its delay distribution. This is the first closed-form solution described
for a delayed stochastic system. An ansatz for further analysis of this DCME can be found in the
electronic supplementary material, S1.

5. Direct solution, without simulations, of the delay chemical master equation
As mentioned in the previous sections, the DCME had only been studied by generating
trajectories with a DSSA. In this section, we show how it may be possible to numerically solve the
DCME, without deriving an analytical closed-form solution, and without resorting to simulating
independent trajectories by a DSSA. To do so, we will consider an mRNA maturation example.

We start with the model presented in [18], with r intermediate chemical steps, illustrated
in figure 3a. The associated reaction network can be exactly lumped by the system shown in
figure 3b [9,10].

The abridged system consists of one delayed reaction for mRNA production (reaction R1:
DNA → DNA + mRNA) and three non-delayed reactions (R2: mRNA → mRNA + Protein, R3:
mRNA → 0, R4: Protein → 0). The delayed reaction has a rate that is equal to the production rate
km of mRNA1 times the probability p for arriving at state ‘mRNA’ (as opposed to being degraded)
and a delay distribution that describes a random walker’s first-passage time to state ‘mRNA’ after
starting in state ‘mRNA1’.

In the original model in [18], protein production is represented by a single reaction.
Biochemically, this is not very accurate, as translation is a complex, time-consuming process.
Likewise, any kind of feedback mechanisms in the form of transcription factor(s) binding to
DNA are not considered here. Usually, such mechanisms are phenomenologically introduced into
models in the form of Hill-type kinetics of the mRNA production reaction, or mechanistically
in the form of one or more additional species representing DNA-bound states together with
associated binding/unbinding reactions. In our abridged model we follow [18]. Specifically,
we do not consider feedbacks and include protein production only as a non-delayed reaction.
However, including Hill-type reactions, transcription factor binding, or a delayed translation
reaction does not pose any problems with respect to DSSA simulations, but it is likely to
complicate the derivation of a DCME that is solvable (see below).

Let us start by assuming μ = μ1 = · · · = μr and k = k1 = · · · = kr. This will simplify the
derivation of a DCME without any loss of generality. As a first step, we obtain the delay
distribution and compare SSA and DSSA simulations of the two reaction schemes. The PDF of
the delay distribution is obtained as the convolution of exponential distributions with parameters
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corresponding to the absolute values of the eigenvalues of the associated transition matrix (4.5).
Assuming the matrix rows/columns correspond to the states ‘mRNA1’, ‘mRNA2’, . . . ‘mRNAr’,
this transition matrix has entries k on its subdiagonal and −β = −(μ + k) on its diagonal. Hence,
we obtain one eigenvalue of multiplicity r with absolute value β.

In this case, the PDF of the delay distribution has the following closed form (4.13)

f (t) = βrtr−1

(r − 1)!
e−βt, (5.1)

for t ≥ 0.
The CDF is then given as

F(t) = 1 − e−βt
r−1∑
k=0

βr−1−k

(r − 1 − k)!
tr−1−k. (5.2)

Let X = (−, X(2), X(3))T be a state of our abridged system, where X(2) is the number of mRNA
and X(3) the number of protein molecules in the system. Note here X(1) serves as a placeholder
and has no meaning. I(X) denotes the set of all possible system states in the past from which state
X is able to follow via a chain of chemical reactions.

The corresponding DCME is

∂

∂t
P(X, t) = −(kpX(2) + μmX(2) + μpX(3))P(X, t) + kpX(2)P(X − (0, 0, 1)T, t)

+ μm(X(2) + 1)P(X + (0, 1, 0)T, t) + μp(X(3) + 1)P(X + (0, 0, 1)T, t)

−
∑

Xi∈I(X)

∫ t

0
k′

mf (τ )P(X, t; Xi, t − τ ) dτ

+
∑

Xi∈I(X)

∫ t

0
k′

mf (τ )P(X − (0, 1, 0)T, t; Xi, t − τ ) dτ , (5.3)

where we use k′
m = km p, and p is the probability of arriving at state ‘mRNA’ (as opposed to being

degraded). As it has been previously shown [10], we can calculate the probability p as

p =
∏r

i=1 ki∏r
k=1 λk

, (5.4)

where the λk are the absolute values of the eigenvalues of the r × r transition matrix describing the
mRNA maturation; here λk = β. This corresponds to a part of the original model in [18], illustrated
in figure 3a, surrounded by a grey-dashed line.

In general, the DCME is not solvable given the joint probabilities are usually unknown.
However, the following simplification has been previously proposed for DCMEs with constant
delays [19]: if the time delays are large and there is a relatively large number of reactions in the
time interval [t − τ , t) then the coupling of the system states at t and t − τ is weak and one can use
the following approximation: P(X, t; Xi, t − τ ) ≈ P(X, t)P(Xi, t − τ ).

In our particular example, the triggering of the delayed reaction is fully independent of the
occurrences of other reactions and of the state Xi at the time of triggering. This allows us to
simplify the joint probability terms without loss of accuracy. The probability that the system is
in state X at time t while a delayed reaction gets updated in [t, t + dt) that has been previously
triggered at time t − τ with delay τ is then:

∑
Xi∈I(X)

k′
mP(X, t; Xi, t − τ ) = k′

m

∑
Xi∈I(X)

P(X, t|Xi, t − τ )P(Xi, t − τ ) = k′
mP(X, t). (5.5)
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Figure 4. Time evolution of the DCME solution with initial state (M, P)= (0, 0). Different slices correspond to different time
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Replacing the constant delay with our delay distribution we obtain

k′
mP(X, t)

∫ t

0
f (τ )dτ = k′

mP(X, t)F(t). (5.6)

Likewise, for a constant delay τ , the probability that the system is one update of R1 away from
state X (namely in X − (0, 1, 0)T) and the due update yields state X in [t, t + dt) is,

∑
Xi∈I(X)

k′
mP(X − (0, 1, 0)T, t; Xi, t − τ ) = k′

mP(X − (0, 1, 0)T, t), (5.7)

while for a distributed delay it is

k′
mP(X − (0, 1, 0)T, t)

∫ t

0
f (τ ) dτ = k′

mP(X − (0, 1, 0)T, t)F(t). (5.8)
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points T = 4, 8, 12, 16 and 20. DCME solutions are drawnas solid lines. Probabilities obtained from 1 000 000 SSA runs are shown
as dots. Both solutions match perfectly.

In summary, we can write down the DCME of the abridged reaction system as

∂

∂t
P(X, t) = −(kpX(2) + μmX(2) + μpX(3))P(X, t) + kpX(2)P(X − (0, 0, 1)T, t)

+ μm(X(2) + 1)P(X + (0, 1, 0)T, t) + μp(X(3) + 1)P(X + (0, 0, 1)T, t)

+ k′
m(P(X − (0, 1, 0)T, t) − P(X, t))F(t). (5.9)

It is important to note that this simplification is possible due to the propensity function of the
delayed reaction being constant. This is only the case if none of the reactions in the system
(including the delayed reaction) effectively change the number of reactants of the delayed
reaction, nor its kinetic function.

So, how do we solve this homogeneous system of linear first-order ODEs with variable
coefficients? Unfortunately, our system is not purely governed by monomolecular reactions but
also by a catalytic reaction (R2). Otherwise we could apply the theory from [5] and obtain a closed
solution. In our case this approach is not possible. Instead, we employ the finite state projection
method [6] and solve the finite number of ODEs numerically. For the latter, we use Matlab’s
ODE solver.

Figure 4 presents the time evolution of the DCME solution of our system for r = 7, μ = μm =
μp = 0.2, and k = km = kp = 1, when starting at state (M, P) = (0, 0) and assuming a single DNA.
Figure 5 shows a comparison of the DCMC direct numerical solution against statistics obtained
from independent SSA simulations. The number of molecules M and P were limited to values
between [0, 9] and [0, 14], respectively. For this state space, the error of the FSP is around 0.1%,
and results show a remarkably good fit.

Lastly, in figure 6 we show a comparison of the PDF for the number of proteins in the system at
steady state at time t = 70 time units. The data is shown as a histogram obtained from 100 000 SSA
simulations, by solving the DCME at very large t, and using the following steady-state generating
function

G(z) = lim
N→∞

exp
(

N
{

1F1

[
keq/N

μp
;
μm

μp
;

kp

μp
(z − 1)

]
− 1

})
,

derived in [18]. Here, keq = km(k1/(k1 + μ1) · · · (kr/(kr + μr)) and 1F1 is a generalized
hypergeometric function. Additionally, we show the histogram from 100 000 DSSA simulations
of the abridged system using the previously calculated delay distribution.

Of importance, this is the first time a DCME has been directly, numerically solved. Note that
the DCME in equation (5.9) is simply a CME with a single time-varying factor. Interestingly, as
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Figure 6. Comparison of DCME solution (black dots), P(n) using the generating functionG (red circles) and histograms obtained
from SSA (red dashed line) or DSSA (blue line) simulations after 70 time units. For the same number of simulations, and when
recording system states every 0.1 time units, the DSSA is roughly a factor of 2.3× faster than the SSA.

shown in the electronic supplementary material, S2, its solution can also be obtained by using an
SSA for time-varying rates.

6. Conclusion
Calculating exact solutions of CMEs is possible only when the system is either linear or the state
space is reasonably small. This task becomes even more ambitious when introducing reactions
with constant or distributed delays. In contrast to the CME, not a single example could be found
in the literature where the DCME is explicitly calculated (or approximately calculated other than
by using a DSSA sampling algorithm).

In this paper, we solve the DCME directly for two very simple reaction schemes: (i) a single
unimolecular delayed reaction and (ii) a simple model of unregulated, delayed transcription and
non-delayed translation. For the former example, we obtained a delay distribution by lumping a
chain of linear, unidirectional reactions. By consequence, the analytic solution of the DCME was
a multinomial distribution where the delay appeared in two out of three event probabilities. We
show that this result generalizes to all kinds of delay distributions.

In the second example we do not simulate, but solve the DCME numerically. This is possible
without relying on any approximations of joint probabilities as the propensity of the delayed
reaction is independent of the current system state. Interestingly, the DCME in this particular
case can be simplified to a CME with a time-varying rate representing the effect of the delay.
This allowed us to simulate the system also with an SSA for time-varying rates (cf. electronic
supplementary material, S2) yielding results close to that of DSSA simulations and our numerical
solution of the DCME. However, it remains unclear to which extent there is a dualism between
delays and time-varying rates. So far, there does not seem to be a way to show this holds
for more general scenarios involving other delayed reactions—in particular those that have
consuming/state-dependent delayed reactions, where simplifications of the DCME do not seem
possible and, hence, the delay cannot be simply transformed.

For the other direction—namely, where we have a time-varying rate and want it to be treated
as a delay—we have the (minimal) requirement that the time-varying factor has the properties of
a CDF, i.e. it is non-decreasing, right-continuous, and has limits 0 and 1 when the time approaches
0 and infinity, respectively. The time-varying rate can then be expressed as an integral of its
corresponding PDF, which describes the delay distribution. However, even in this limited case, it
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is not obvious how to derive a proper delayed reaction representation of a reaction with a time-
varying rate. Let us illustrate this with an example: assume a reaction A → B with time-varying
rate kF(t) that meets the requirements above, i.e. F(t) is a CDF. The CME consists of two terms,
both have kF(t) as a factor, one is kF(t)X(1)P(X, t). A valid DCME will have terms P(X, t; Xi, t − τ )
for a delay τ and previous states Xi (unless they vanish as in our example above) but there is no
natural or intuitive way to introduce these. In this context, note that for a constant delay the time-
varying factor simply vanishes—however, this only implies that a constant delay would never
suffice to mimic a time-varying rate.

Lastly, for nonlinear reaction systems, very efficient CME solvers have been proposed that
approximate the true solution with acceptable accuracy by using finite state projection methods
[6,20]. Moment-closure approximations [21–25] provide an alternative to sampling methods and
numerical solutions of CMEs. For the latter, the otherwise infinite set of moment equations for
the number of molecules is ‘closed’ by setting the moments above a certain order equal to zero.
However, it remains to be seen whether similar methods are applicable to the stochastic reaction
kinetics with delays and, if so, what their limitations are.
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