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Abstract

With the deepening of the genome project study, attention on noncoding

RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new

research hotspot. A growing number of studies have revealed that lncRNAs

are involved in tumorigenesis and tumor suppressor pathways. Aberrant

expressions of lncRNAs have been found in a variety of human tumors

including hepatocellular carcinoma (HCC). In this review, we provide a brief

introduction to lncRNA and highlight recent research on the functions and

clinical significance of lncRNAs in HCC.
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1 | BACKGROUND

Primary hepatocellular carcinoma (HCC) is a common
human malignancy. The fatality rate of HCC ranks third
among all malignancies worldwide [1], and HCC is one of
the main causes of cancer‐related death in China. With the
development of medical technology in recent years, strategies
for the diagnosis and treatment of HCC have made
increasing progress. However, the recurrence, metastasis
and mortality rates of HCC have not sufficiently improved
and early detection of HCC remains challenging. The main
reason for these obstacles is that the molecules and factors

involved in early symptoms and various pathological
manifestations of primary HCC are still unclear. Therefore,
the molecular mechanisms underlying the development and
occurrence of HCC have become the focus of research
studies in recent years.

A great deal of research has demonstrated that long
noncoding RNAs (lncRNAs) are widely involved in
physiological and pathological processes, and aberrations
in lncRNAs have been found to be related to many human
diseases, particularly cancer. Alterations in lncRNA expres-
sions have been detected in a variety of human tumors,
including HCC [2–6] and may be associated with tumor
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occurrence and development. Furthermore, several
lncRNAs have been shown to be sensitive and specific
tumor markers. Together, these findings have led to a new
understanding of the molecular mechanisms of HCC with
implications for HCC diagnosis.

2 | LncRNAs

Early scientific research suggested that RNA was the only
medium for transmitting information between DNA and
protein. RNA was considered an intermediate for transmit-
ting information for protein synthesis but was not thought
to participate in the regulation of this process. However,
with the development of technology, later studies revealed
that less than 2% of genes encode protein and most DNA is
transcribed into noncoding RNA (ncRNA) [7, 8]. A large
number of ncRNAs constitute a huge molecular network
that plays important regulatory roles in eukaryotes.

LncRNAs are RNAs more than 200 nt long, and most
lack protein coding ability [9, 10]. The update defines
lncRNAs as RNA molecules that may function as either
primary or spliced transcripts and excluding known
classes of small RNAs, such as miRNAs, small nucleolar
RNAs, piwi‐interacting RNAs, or into classes of struc-
tural RNAs including transfer RNAs, small nuclear
RNAs, spliceosomal RNAs and so on [11].

2.1 | Classification of lncRNAs

The classification of lncRNA has not been well established.
According to the position of LncRNA relative to host protein‐
coding genes (PCG), the classifications of LncRNA include
nature antisense RNA, intronic antisense RNA, bidirectional
RNA, exon‐sense overlapping RNA, intergenic RNA, intron‐
sense RNA and promoter‐ or enhancer‐correlated RNA [10,
11]. Other researchers classified lncRNA into three groups:
lincRNAs, which are transcribed from intergenic regions;
LucrRNAS, which are transcribed from ultra‐conserved
regions (UCRs); and other lncRNAs [12].

2.2 | Functions of lncRNAs

LncRNAs were initially believed to be a by‐product of
transcription or the “noise” generated from transcription of
the genome with no biological function [13, 14]. However,
research has confirmed that lncRNAs are involved in
multiple regulatory roles and biological processes including
genomic imprinting [15], X chromosome inactivation [16],
chromatin structure [17], enhancer function [18, 19],
transcriptional activation, transcriptional interference and

gene expression regulation by cis or trans regulatory
mechanisms [17, 20]. LncRNAs play important biological
roles in multiple levels of chromosome modification,
transcription, and posttranscription [21].

LncRNA has been shown to regulate the expression
of genes by various mechanisms, including transcrip-
tional regulation, chromatin modification, post-
transcriptional regulation, and so on (Figure 1).
LncRNAs silence or activate gene expression by regulat-
ing DNA methylation or histone modification and
chromatin remodeling. For example, Imamura et al.
found that lncRNA Khpsla originates from a CpG island
and overlaps with a tissue‐dependent differentially
methylated region (T‐DMR) of SPHK1. Overexpression
of two fragments of Khps1 caused demethylation of CG
sites in the T‐DMR [22]. Silencing of the Kcnq1ot1 gene
was found to involve H3K9me2 and H3K27me3 histone
modifications, which are partly caused by G9a and Ezh2
histone methyltransferases, resulting in cluster‐wide
repressive histone marks, gene silencing and DNA
methylation of CpG islands of promoters [23]. A similar
observation was reported with Ari, Xist, and BACE1‐AS,
which bind PRC2, TRX, and G9a and impart specific
silencing of genomic loci both in cis and trans [17, 24‐26].
In a study in leukemia, Yu et al. found that lncRNA
antisense P15 expression resulted in p15 silencing
through heterochromatin formation [27].

LncRNAs act as transcriptional regulators or coregula-
tors to modulate gene expression; they can inhibit gene
transcription via transcriptional interference [28]; and
interact with transcription inhibiting complexes to influ-
ence the expression of target genes. LncRNAs interact with
RNA polymerase II, interfere with the formation of the
transcription initiation complex and inhibit transcription
initiation, resulting in rapid changes in gene expression
patterns. For example, B2 RNA in mice and Alu RNA in
humans repress mRNA transcription in response to heat
shock; these lncRNAs inhibit the polymerase and DNA
contacts by binding with RNA polymerase II and assemble
into complexes on the promoter [29].

LncRNAs regulate mRNA splicing, transport, editing,
translation, and degradation. Base pairing between sense
and antisense RNAs masks the splice sites that trigger
alternate splicing [30]. LncRNA stabilize or promote target
gene translation by extended base pairing [31]. For
example, the upregulation of BACE1‐AS is linked to
BACE1 mRNA stabilization through extended base‐
pairing with BACE1, resulting in increased protein level
[32]. Conversely, some base pairing facilitates mRNA
decay or inhibits mRNA translation. For example, the
cytoplasmic 1/2‐sbsRNAs promotes decay by partial base
pairing with specific target mRNAs and recruitment of
Staufen1 [31, 33]. Moreover, some lncRNAs form
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complementary double‐stranded with transcripts of
protein‐coding genes, and further produced endogenous
siRNA under Dicer cleavage, resulting in mRNA degrada-
tion and influencing gene expression levels [34]. LncRNAs
also bind with RNA binding proteins to suppress mRNA
splicing and translation and can function as ceRNAs to
increase expression of mRNA, the miRNA target [31]. For
example, lncRNA MALAT1 was implicated in splicing of
precursor mRNA (pre‐mRNA) by influencing the

distribution of serine/arginine‐rich proteins [35]. LncRNA
BACE1‐AS competes with miR‐485‐5p to interact with
BACE1 mRNA, representing another mechanism by
which BACE1‐AS controls the stability of BACE1 mRNA
[36]. LncRNAs can act as a scaffold for various proteins to
form ribonucleoprotein complexes [37].

In addition, LncRNA also directly interact with
specific proteins to directly regulate their activity or alter
their subcellular localization [38].

FIGURE 1 Regulation of gene expression by long noncoding RNA through transcriptional regulation, chromatin modification and
posttranscriptional regulation mechanisms.
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3 | LncRNAs RELATED TO HCC

Increasing research has shown that abnormal lncRNA
expression is related to the occurrence and development
of tumors, and lncRNAs have been shown to play
important regulatory roles in these processes. Several
studies have shown that some tumors did not harbor
mutations in protein‐encoding genes and instead ex-
hibited abnormal expressions of lncRNAs [39]. Pan et al.
[40] examined differentially expressed lncRNAs in a
hepatoma carcinoma group and control group and found
that the lncRNA expression profiles in the two groups
were different, suggesting these differentially expressed
lncRNAs may be involved in the molecular mechanisms
of HCC. In the following section, we discuss the recent
research related to lncRNAs in HCC (Table 1).

3.1 | LncRNAs promote the progression
of HCC

Research has identified multiple lncRNAs that promote the
occurrence or progression of HCC. The lncRNAs with
oncogenic roles include HULC, H19, MALAT1, HEIH,
MVIH, HOTAIR, and HOTTIP/HOXA13. Several lncRNAs
associated with cell metabolism that promote HCC were
recently reported, such as lncRNA RP11‐386G11.10 [41],
SNHG6 [42], FASRL [43], and DACT3‐AS1 [44].

3.1.1 | LncRNAs related to liver cancer cell
proliferation

3.1.1.1 | Highly upregulated in liver
cancer (HULC)
Various lncRNAs have been shown to regulate the
proliferation of liver cancer cells, including HULC, SNHG6,
lncRNA RP11‐386G11.10, MIAT, and ALKBH3‐AS1. Among
these lncRNAs, HULC has been relatively well studied.
HULC is located on chromosome 6p24.3 and has a length of
approximately 500 nt. HULC is expressed at higher levels in
human liver cancer cells compared with noncancerous liver
cells. In contrast,HULC expression showed small differences
or no differences in other tumor cells compared with the
corresponding nontumor cells [45]. HULC is detectable in
blood of HCC patients, and it is expected to be a potential
biomarker of HCC [45]. Ruan et al. [46] found high
expression of HULC in HCC, especially in HBV‐related
HCC. These studies suggest that HULC is a biological
marker of HCC.

Knockdown of HULC in liver cancer cells resulted in
changes in the expressions of tumor‐related genes. Hepatitis
B virus‐related HCC was directly related with the

upregulation of the expression of HULC [46]. Subsequent
studies demonstrated that HULC prevented the proliferation
of hepatic cells induced by hepatitis B virus through the
upregulation of p18. This would provide a treatment ideal for
hepatitis B virus‐positive patients with HCC [47]. These
effects of HULC are achieved by its targeting and inhibiting
miRNAs, like miR‐372. One study showed that different
genotypic variations of rs7763881 in HULC reduced the
susceptibility of Han Chinese patients with long‐term
hepatitis B virus [48].

3.1.2 | LncRNAs related to drug resistance
in HCC

Several differentially expressed lncRNAs in HCC are closely
related to drug resistance of liver cancer cells such as H19,
lncRNA GAS5 [49], lncRNA NIFK‐AS1 [50], lncRNA CRNDE
[51],MALAT1, and lncRNA PCGEM1 [52]. H19 was the first
identified lncRNA and is derived from a paternal gene. H19
is highly expressed in embryo somatic cells and is down-
regulated in most tissues rapidly after birth [53]. Notably,
H19 was found to be highly expressed in different types of
tumor tissues [54]. A study revealed that H19 upregulation
was related to HCC [55]. Methylated forms of H19 were
related to the overexpression of H19 in HCC. Researchers
found that there are three methylated forms of
H19 in HCC: hyper‐, medium‐, and hypomethylated H19;
the hypo‐ and hyper‐profiles were related to H19 aberrant
imprinting [56].

H19 influences gene expression and affects cancer
occurrence and development, but the mechanism is not
completely understood. H19 is believed to induce P‐
glycoprotein expression and multidrug resistance 1 gene
(MDR1)‐associated drug resistance through regulation of
MDR1 promoter methylation in HCC cells, which is involved
in drug resistance, and thus knockdown of H19 may be a
target in HCC chemotherapy [57]. Knockdown of H19 in
HCC and gastric carcinoma cells prevented the anchoring
growth of cancer cells after restoration from hypoxia [58].
Other research results also showed that H19 prevents the
development and growth of cells under hypoxia [59], which
has specific implications for tumor tissues with high oxygen
consumption, as tumor cells are in the hypoxic state because
of the rapid growth of tumor tissues.

3.1.3 | LncRNAs related to liver cancer cell
invasion, metastasis, and apoptosis

Multiple lncRNAs such as lncRNA HOXD‐AS1 [52],
MALAT1, CEBPA‐DT [60], lnc‐CTHCC [61], and HO-
TAIR are associated with the metastasis of HCC. Below
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TABLE 1 Long noncoding RNA (lncRNA) related to hepatocellular carcinoma (HCC).

Function Genes Result

LncRNAs promotes the
progression of HCC

Liver cancer cell
proliferation

HULC (1) HULC is not only that it is a biological mark of HCC, but
more importantly, it has also been determined that it can be
proven to promote HCC cells proliferation.

(2) HULC could prevent the proliferation of hepatic cells
induced by Hepatitis B virus through the upregulation of
P18, which is one of the treatment methods for the Hepatitis
B virus positive patients with HCC.

(3) Different genotypic variations of rs7763881 in HULC can
reduce the sensitive susceptibility degree of the patients
with long‐term carrying of Hepatitis B virus within the Han
Chinese population.

(4) HULC could be expected to be a novel biomarker of HCC.

Drug resistance in HCC H19 (1) H19 could methylate the promoter of the multidrug
resistance 1 gene (MDR1 gene), by which the HCC cells
produce the corresponding drug resistance, and could be
used as a target for chemotherapy of HCC.

(2) Knockdown of H19 in HCC and gastric carcinoma cells
could prevent the anchoring growth of cancer cells after
their restoration from the hypoxia state.

(3) H19 could prevent the development and growth of cells
under hypoxia, which had specific meaning for the tumor
tissues with high oxygen consumption.

Liver cancer cell
invasion, metastasis,
apoptosis

MALAT1 (1) The reduction of the expression of MALAT1 in HCC cells
can not only effectively reduce the invasion and metastasis
of HCC cells, also promote apoptosis of cancer cells.

(2) MALAT1 may be a potential biomarker for predicting the
metastasis of HCC and therapeutic targets.

(3) The silencing and suppressing of the gene MALAT1 by
shRNA could block the cell growth cycle and invasive
properties of many malignant tumors.

(4) The inhibition of MALAT1 could prevent the tumor cells
proliferation and invasion in HCC and bladder cancer, also
could promote tumor cell apoptosis.

HOTAIR (1) The inhibition of HOTAIR in HCC cells can decrease MMP9
production, as well as the vascular endothelial growth factor
68, which were found to be very important for the
movement and transfer of the cells.

(2) Decreasing its expression is expected to become a new type
of treatment for HCC.

HBV infection HEIH (1) The expression levels of HEIH could be as a biomarker for
predicting the survival time.

(2) lncRNA‐HEIH participates in regulating cell cycles, which
could recruit PRC2 might by combining with EZH2, and
thereby inhibiting the expression of the downstream target
genes, as well as affecting its regulation function.

Liver cancer prognosis MVIH (1) The high expression of MVIH was closely related to
microvascular invasion, intrahepatic metastasis, and poor
prognosis.

(2) MVIH could inhibit the secretion of PGK1, and also
promote the angiogenesis of tumors.

HOTTIP/
HOXA13

(1) HOTTIP has a possible as an early predictive marker
of HCC.
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we describe several lncRNAs that have been extensively
studied.

3.1.3.1 | MALAT1
The MALAT1 gene is located on chromosome 11q13
and is over 8000 nt in length. MALAT1 regulates gene
expression and influences posttranscriptional modifi-
cations of the primary transcripts. MALAT1 is
conserved among all species, indicating the impor-
tance of its functions. MALAT1 was found to be
upregulated in multiple tumor types [4]. Reduced
expression of MALAT1 in HCC cells inhibited the
invasion and metastasis and promoted the apoptosis
of HCC cells. MALAT1 may thus be a potential
biomarker for predicting the metastasis of HCC and
a therapeutic target. MALAT1 was also shown to be an

independent prediction index for the recurrence of
HCC. Increased expression of MALAT1 was identified
in HCC cell lines and HCC tissues. Patients with
highly expressed MALAT1 in HCC cells, even follow-
ing liver transplantation, still face the significant
possibility of recurrence [62].

MALAT1 was found to be related with many
malignant characteristics of tumors. Inhibition of
MALAT1 expression could reverse malignant char-
acteristics of tumor cells, such as invasiveness,
metastasis, and proliferation. Silencing of MALAT1
by shRNA blocked cell growth and invasion activity of
many malignant tumors through a mechanism involv-
ing the regulation of multiple genes, including
Caspase‐3, Caspase‐8, and Bax genes [63]. Inhibition
of MALAT1 prevented tumor cell proliferation and

TABLE 1 (Continued)

Function Genes Result

(2) Combined clinicopathological with HOTTIP/HOXA13
expression data, which revealed that HOTTIP/HOXA13
upregulation expression is related to metastasis of HCC
patients and poor prognosis.

LncRNAs can inhibit the
progression of HCC

Apoptosis of liver cancer
cells

MEG3 (1) Increasing MEG3 RNA could inhibit reduce the growth of
HCC cells and induce cell apoptosis.

(2) Meg3 also plays an important role in other diseases such as
ischemia‐reperfusion injury and inflammation.

(3) It can also directly bind to RNA‐binding proteins, affecting
the function of tumor cells.

Tumor inhibitory LET (1) It was considered to have tumor suppressor activity.
(2) The research on lncRNA LET has been reported in gastric

cancer, bladder cancer, breast cancer, and so on. It mainly
plays its tumor inhibitory function by competing to bind
miRNA.

Inhibit the growth and
metastasis of HCC

Dreh (1) It could inhibit HCC cells proliferation and metastasis.
(2) Dreh could potentially interact with intermediate filament

protein, inhibit its expression, and could also prevent HCC
cells migration by changing the structure and morphology
of cell cytoskeletons.

(3) Dreh's function mainly focuses on liver cancer and glucose
transport, moreover, there are few reports on related
signaling pathways.

T‐UCRs (1) If TUC338 was knocked down, the anchorage‐dependent, as
well as anchorage‐independent growth of the HCC cells,
would be inhibited. This suggested that T‐UCR played
significantly role in HCC cells, also provided new ideas for
the therapy of HCC targeting lncRNA.

(2) T‐UCR300a also could block the malignant pathological
manifestations of the invasive performance of tumor cells.

Apoptosis of liver cancer
cells

uc002mbe.2 (1) uc002mbe.2 played regulatory role in inducing apoptosis of
the HCC cells induced by Trichostatin A.

(2) uc002mbe.2 knockdown could reduce apoptosis induced by
TSA and promote the proliferation of cancer HCC cells.
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invasion in HCC and bladder cancer, and promoted
tumor cell apoptosis [64].

3.1.3.2 | HOTAIR
HOTAIR is highly expressed in both primary and
metastatic tumor tissues in breast carcinoma [65] and
HCC [66]. The expression of HOTAIR in liver cancer
tissue is significantly higher than that in adjacent
tissues, and its expression level significantly correlated
with tumor differentiation degree, tumor size, and TNM
staging. Patients with distant metastasis, intravascular
invasion, or advanced disease have significantly higher
expression levels of HOTAIR, indicating that high
expression of HOTAIR may play a role in promoting
liver cancer proliferation, migration, and invasion.
Furthermore, tumors with HOTAIR upregulation were
associated with low survival rates [67] and a high
recurrence rate [65]. Inhibition of HOTAIR in HCC cells
decreased MMP9 production and vascular endothelial
growth factor [68], which are critical for cell migration.
These studies demonstrated that HOTAIR is related to
the invasion and metastasis of HCC cells. Decreasing
its expression may be a potential treatment strategy
for HCC.

3.1.4 | LncRNAs associated with HBV
infection

HEIH is a highly and specifically expressed lncRNA in
HCC tissues that was discovered by Sun et al. in a
study on the lncRNA expression spectrums in HCC in
para‐carcinoma tissues of hepatitis B virus‐infected
patients using lncRNA chip analysis [6]. Kaplan‐
Meier analysis determined that HEIH expression level
may be a biomarker for predicting survival and its
expression highly correlated with cancer recurrence.
A functional study indicated that lncRNA‐HEIH
regulates the cell cycle and recruits PRC2 by inter-
acting with EZH2 and affecting its transcriptional
regulation function, thereby inhibiting the expression
of downstream target genes. These findings indicate
that lncRNA‐HEIH plays an important regulatory role
in hepatocarcinogenesis.

3.1.5 | LncRNA associated with liver cancer
prognosis

3.1.5.1 | MVIH
Yuan et al. [69] reported that the level of MVIH (NCBI
N0. AK094613) in HCC tissues was significantly higher
than that in peri‐carcinoma tissues andMVIH is involved

in the angiogenesis of tumors. The authors performed a
microarray analysis of tumor tissues and paired para‐
cancerous tissues of 40 patients with HCC related to
hepatitis B. Clinical research data of 215 HCC patients
revealed that high expression of MVIH was closely
related to microvascular invasion, intrahepatic metasta-
sis, and poor prognosis. MVIH was found to inhibit the
secretion of PGK1 and promote tumor angiogenesis.

3.1.5.2 | HOTTIP/HOXA13
The LncRNA HOXA transcript at the distal tip (HOTTIP) is
located in adjacent with HOXA13 [70]. HOTTIP, similar to
lncRNA Xist and HOTAIR, plays a key role in gene
expression regulation by influencing chromatin modification
[71]. HOTTIP and HOXA13 are upregulated in HCC and are
involved in hepatocarcinogenesis [72]. Upregulation of
HOTTIP was also observed in nontumor liver diseases (such
as cirrhosis and HCV‐infected cirrhosis), which suggests that
HOTTIP imbalance may be the early step of HOXA13
leading to hepatocarcinogenesis [72]. Therefore, HOTTIP
may be an early predictive marker of HCC. Upregulation of
HOTTIP/HOXA13 expression was found to be related to
metastasis and poor prognosis of HCC.

3.2 | LncRNAs that inhibit the
progression of HCC

In contrast to the lncRNAs described above, many
lncRNAs function as tumor suppressors in HCC through
their activities in promoting apoptosis and inhibiting
metastasis and proliferation of tumor cells. For example,
both lncRNA CASC2 [73] and RUNX1‐IT1 [74] promote
the apoptosis of HCC cells. Below we discuss several
important lncRNAs that can inhibit HCC.

3.2.1 | Maternally expression gene 3 (MEG3)

MEG3 is expressed in various normal tissues and was
found to exhibit a tumor suppression function. The
MEG3 lncRNA gene is a single‐copy imprinted gene that
contains 10 exons. As a result of various splicing
patterns, 12 isoforms are expressed, which display three
secondary domains [75, 76].

MEG3 is widely studied, and its expression has been
reported in various tumors. MEG3 was found to interact
with cAMP and p53 [77, 78]. The effect of MEG3 on p53
activation depends on the secondary structure of MEG3
[78]. MEG3 expression is controlled by epigenetic
modifications, and abnormal methylation of CpGs in
MEG3 was observed in a variety of cancer types [79–82].
Compared with normal liver cells, HCC cells show
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downregulation of MEG by 210‐fold. Increasing MEG3
RNA inhibited the growth of HCC cells and induced cell
apoptosis [82]. Furthermore, the authors found that miR‐
29 promotes MEG3 expression. Compared with wild‐type
control mice, miR‐29a/b1 knock‐out mice showed a
downregulation of MEG3 in liver tissues [82].

MEG3 plays an important role in diseases such as
ischemia‐reperfusion injury and inflammation. Its mech-
anism of action is relatively complex, and it regulates cell
function by its action as a ceRNA [83]. MEG3 also
directly binds to RNA binding proteins, affecting the
function of tumor cells. The role of MEG3 in hepato‐
carcinogenesis and development is still under study.

3.2.2 | LncRNA‐LET

LncRNA LET expression has been reported in gastric
cancer, bladder cancer, breast cancer, and HCC. It
mainly exerts a tumor inhibitory function through its
activity as a ceRNA [84–87].

Yang et al. [88] found that lncRNA‐LET (NCBI
number AK055007) was downregulated in HBV‐related
HCC. Further study showed that lncRNA‐LET exhibited
reduced expression in HCC, colorectal, and squamous
cell lung cancers. Furthermore, downregulated lncRNA‐
LET promoted HCC metastasis. Thus, lncRNA‐LET was
considered to have tumor suppressor activity. Hypoxia‐
induced histone deacetylase 3 inhibits lncRNA‐LET by
reducing histone acetylation of the lncRNA‐LET pro-
moter [88]. lncRNA‐LET downregulation stabilizes
nuclear factor 90, which leads to hypoxia‐induced
invasion of cancer cells.

3.2.3 | Dreh

Huang et al. [89] examined the alterations of lncRNA
expression induced by HBx and found that Dreh inhibited
the growth and metastasis of HCC. The authors found
that HBx transgenic mice have a specific profile of liver
lncRNAs compared with wild‐type mice and identified
lncRNA‐Dreh as a lncRNA downregulated by HBx.
Functional experiments showed that Dreh inhibits HCC
cell proliferation and metastasis. Dreh may also interact
with intermediate filament protein and inhibit its
expression, and it prevents HCC cell migration by
changing the structure and morphology of cell cytoske-
letons. In HCC patients with high expression of Dreh, the
recurrence rate was low and the prognosis was good.
While research on Dreh function mainly focuses on liver
cancer and glucose transport, some studies have investi-
gated the related signaling pathways.

3.2.4 | T‐UCR338

Transcribed ultra‐conserved regions (T‐UCRs), a class of
lncRNAs, are transcribed from ultra‐conserved regions
[12]. UCRs are DNA noncoding genomic segments of at
least 200 bp in length that are completely conserved
across humans, mice, and rats. A total of 481 UCRs have
been identified, some of which overlap with coding
exons; more than half of them are noncoding genes [90].
Approximately 68% of UCRs are transcribed, constituting
a new category of ncRNAs, the T‐UCRs [91]. T‐UCR
expressions are altered in human tumorigenesis, such as
leukemia, neuroblastoma, colorectal cancer, and HCC
[91–93]. T‐UCRs are aberrantly expressed in malignant
hepatocytes. T‐UCR 338 is a T‐UCR with a length of 590
nt. Knockdown of TUC338 led to inhibition of
anchorage‐dependent and anchorage‐independent
growth of HCC cells. This suggested that T‐UCR plays
a significant role in regulating the growth of HCC cells
[93]. Other studies have shown that reducing other T‐
UCRs, such as T‐UCR300a, could block the invasion of
HCC cells [94]. These findings may lead to the
development of new therapeutic strategies for HCC.

3.2.5 | uc002mbe.2

The lncRNA uc002mbe.2 is downregulated in liver cancer,
and its downregulation inhibits the apoptosis of tumor
cells. Furthermore, uc002mbe.2 mediates trichostatin‐
induced apoptosis of liver cancer cells [95, 96]. Chen
et al. [97] found that the interaction between uc002mbe.2
and hnRNPA2B1 can mediate AKT deactivation and p21
induction is related, thereby participating in the cytostatic
effect of trichostatin in HCC cells. The global expression of
lncRNAs and coding genes was analyzed with the Human
LncRNA Array V2.0 after 24 h treatment of liver cancer
cells with Trichostatin A. Among the differentially
expressed lncRNAs, uc002mbe.2 change the most. Knock-
down of uc002mbe.2 reduced the apoptosis induced by TSA
and promoted the proliferation of HCC cells. Moreover,
uc002mbe.2 was significantly deregulated in HCC cell lines
and tissues compared with normal human hepatocytes and
adjacent noncancerous tissues. The function of uc002mbe.2
in other tumors has not been reported yet.

4 | FUTURE PROSPECTS

The functions of lncRNA are complex and diverse. In
cancer, lncRNAs can function as oncogenic factors that
promote tumor occurrence and development or tumor
suppressors that inhibit cancer growth. Some lncRNAs
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promote tumor distant metastasis and are associated
with poor prognosis while some lncRNAs are associated
with improved prognosis. LncRNAs may serve as tumor
molecular markers or therapeutic targets, providing new
strategies for the diagnosis and treatment of tumors.
More research on the relationship between lncRNAs and
tumor development is required.

LncRNAs form very large and complex post-
transcriptional and pre‐protein translation regulatory
networks. The number of lncRNAs is large, and the
number of lncRNAs in human cells can reach up to tens
of thousands. However, the lncRNAs that have been
currently studied only account for a few of the total
lncRNAs, and research on the function of lncRNA in
tumors, including in HCC, remains in the initial stage.
With further investigations on the molecular mechanism
of HCC, new lncRNAs related to HCC will be continu-
ously discovered, and the regulation mechanisms will be
further revealed. These findings will help provide
insights to aid in early diagnosis of HCC, establish
molecular targeted therapies, and improve the survival of
HCC patients.
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