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Abstract: Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes,
but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is
dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy,
progression, and metastasis. Herein, we summarize the regulation of the most common calcium
channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on
their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes
are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative
targets for anticancer therapy.
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1. Introduction

Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical
processes, especially in energy metabolism and electron transfer. Most organisms synthesize NAD+ via
two major pathways: (1) synthesis from tryptophan (Trp) (the de novo pathway); (2) synthesis from
various extracellular and intracellular precursors including nicotinic acid (NA), NA riboside (NAR),
nicotinamide (NAM), and NAM riboside (NR) (the salvage pathway) [1]. In particular, in the de novo
pathway, synthesis of NAD+ begins from the conversion of dietary precursor Trp to quinolinic acid
(QA), which is converted to nicotinamide adenine mononucleotide (NAMN). NAMN is also synthesized
in the salvage pathway via NAR by nicotinamide riboside kinases 1 and 2 (NRK1/2) or indirectly
via NA by nicotinate phosphoribosyltransferase (NAPRT). NAMN is adenylated to nicotinic acid
adenine dinucleotide (NAAD+) via nicotinamide mononucleotide adenyltransferases 1–3 (NMNATs)
before NAD+ synthesis via NAD synthetase (NADS). Moreover, NAD+ can also be generated from
nicotinamide mononucleotide (NMN) via NMNATs, and NMN is synthesized in a salvage pathway via
NR by NRK1/2 or NAM by nicotinamide phosphoribosyltransferase (NAMPT). In the metabolome of
NAD+, it is reduced by tricarboxylic acid (TCA) cycle enzymes to NADH, and can be regenerated from
NADH. Besides, NAD+ can be converted to NADP+ by NAD+ kinase (NADK). The corresponding
phosphorylated redox pair NADP/NADPH is a crucial TCA cycle intermediate that provides reducing
equivalents for endogenous antioxidant defense systems to maintain redox homeostasis. Then NAD+

can be consumed by poly (ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs), or be degraded
by membrane-bound glycohydrolases CD38/CD157 or sterile α and TIR motif-containing 1 (SARM1)
to cyclic ADP-ribose (cADPR) and ADPR [2–6]. In this enzymatic conversion of NAD+ to cADPR,
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the nicotinamide group of NAD+ is cleaved, and the N1 of the adenine is linked back to the terminal
ribose, forming a head to tail circled molecule, which had been documented as a natural metabolite in a
wide range of endogenous systems. On the other hand, NADP+ can also be converted to nicotinic acid
adenine dinucleotide phosphate (NAADP) under the functions of the same set of enzymes, in which the
structural change is the conversion of the amide group of the nicotinamide in NADP+ to a carboxyl group.
Taken together, these pyridine nucleotides (NAAD+, NAD+, NADH, NADP+, NADPH, cADPR, ADPR,
and NAADP) derived from NAD+ constitute a regulatory system of energy metabolism (Figure 1),
which plays an important role in a variety of physiological and pathological processes [7].
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As for energy metabolism, all living organisms need to trap or liberate energy or to synthesize
essential cell constituents and metabolites. These processes are usually realized by oxidation–reduction
reactions, which are accomplished by specialized biomolecules that package and shuttle energy
between different processes. As we know, ATP is the universal energy currency of cells. However,
to generate ATP, energy must be extracted from nutrients by a series of coupled catabolic reactions.
This process requires specialized electron carriers that can deliver energy to the mitochondrial
electron-transport chain. NAD+ and its metabolites would be one of the most important systems that
accomplish the shuttling of electrons between different reactions, by which the redox homeostasis
and bioenergetics of organisms are maintained [7]. As the soluble electron carriers, NAD(H) is
recognized by enzymes that catalyze catabolic reactions of glycolysis and by components of the electron
transport chain, and NADP(H) is recognized by enzymes that are involved primarily in anabolic
(reductive) reactions, such as lipid or cholesterol synthesis or fatty acid chain elongation [8]. Generally,
a high NAD+:NADH ratio is maintained to readily accept electrons generated by catabolic reactions,
whereas the low NADP+:NADPH ratio reflects a state of readiness to donate electrons to biosynthetic
reactions or antioxidant defense [9]. As a result, the availability and the redox state of NAD+ and its
metabolites regulate the activity of the processes involved in the intermediary metabolism, biosynthesis,
and antioxidant defense.

Cancer is a multistep progression, and its critical hallmark is the reprogramming of the energy
metabolism, mainly reflected in the altered mitochondrial bioenergetic and biosynthetic state of the
cancer cells (excessive proliferation, impaired cell death signaling, and deregulated metabolism) [10].
In normal cells, energy transduction eventually leads to the oxidation of nutrients via oxidative
phosphorylation. Glycolysis continuously generates pyruvate (Pyr), which is preferentially transported
into mitochondria and further metabolized via the TCA cycle; and the ratio of NAD+ to NADH is
balanced in favor of NAD+ in normal cells. While in cancer cells, a high rate of glycolysis is observed
with a highly increased glucose uptake. Lactate dehydrogenase isoform A (LDHA) preferentially
converts accumulating Pyr to lactate, thereby regenerating NAD+ from NADH to maintain glycolysis.
Excess lactate is secreted and contributes to an extracellular environment that promotes tumor
progression [11]. Meanwhile, the accumulation of lactate in tumors implies an increase in NADH
relative to NAD+. For example, the intracellular NADH level in the breast cancer cell line (Hs578T)
has been quantified to be approximately 1.8-fold higher than in breast normal cells (Hs578Bst) [12].
As mentioned above, The NAD+:NADH ratio plays an important role in regulating the intracellular
redox state and several enzymes involved in the regulation of the metabolism. It has been reported
that changes in NAD+ concentration and/or the NAD+:NADH ratio can induce DNA repair and
increase cell defense, by regulating diverse signaling pathways and transcriptional events, and thus
plays an important role in cancer progression [13,14]. For instance, NAD+ has been proved to regulate
DNA damage repair, cell cycle progression, and epithelial-to-mesenchymal transition (EMT) via
PARP-mediated ADP-ribosylation and SIRT-mediated deacetylation [15–17]. In addition, NAD+ can
be metabolically converted to cADPR, a specialized signaling molecule that regulates multiple aspects
of cancer biology, including cell survival, apoptosis, and inflammation [18]. Besides the NAD+/NADH
system, another distinctive biochemical characteristic in carcinogenesis is the increased availability of
the anabolic coenzyme NADPH. Cancer cells adapt their metabolism to fulfill their increased demand
for energy, biosynthetic intermediates, and to counter aerobic respiration-induced oxidative stress by
diverting glycolysis to pentose phosphate pathway (PPP). During this process, NADPH is produced
to counteract reactive oxygen species (ROS) and to act as a cofactor for the synthesis of nucleotides,
proteins, and fatty acids [19]. It has also been proved that NADK had a cancer-promoting role that
converted cytosolic and mitochondrial NAD+ to NADP+, which could be further reduced to NADPH
in PPP [20]. Taken together, in cancerous cells, any changes in the concentrations of these metabolites
will break their synthesis and consumption homeostasis, thereby affecting the functions of their
associated proteins and signaling pathways to participate in multiple processes in cancers to modulate
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cell metabolism, survival, progression, and invasion. To elucidate these molecular mechanisms will be
of great significance for the treatment of cancer targeting NAD+ and its metabolites.

The mechanisms of these pyridine nucleotides to act as essential cofactors in redox reactions, or
substrates in ribosyl transfer reactions, have been recently reviewed in detail [21]. Moreover, in addition
to these regulatory functions, recent work has shown that NAD+ and its metabolites also regulate the
activity of ion channels, including the Slo K+ channels, voltage-gated potassium channels and sodium
channels, ATP-regulated K+ channels, and some specific types of calcium channels [8]. Considering
the important role of Ca2+ homeostasis in malignant transformation, tumor progression, and response
to treatment [22], we review in this article the evidence implicating NAD+ and its metabolites as
regulators of calcium channels, and the function of these ion channels in cancer, aiming to shed light
on the mechanisms of NAD+ metabolites related to calcium signaling in tumorigenesis, metastasis,
and therapy. At the same time, this review is also to thank Professor Barry V. L. Potter for his great
contribution in this research field over the years.

2. Transient Receptor Potential Melastatin 2 (TRPM2) Channel

The TRPM2 channel is a Ca2+-permeable cation channel [23] that functions as a polymodal channel
responding to warm temperature, pH, trace metal ions, as well as ROS [24–28]. It is abundant in
the brain, spleen, liver, lung, heart, myeloid cells, and so on. Accumulating evidence indicates that
the TRPM2 channel is a complex molecular machine crosslinked with several signaling pathways,
uniquely linking the adenine nucleotide metabolic network to the intracellular redox status. So it is
critical to clarify the TRPM2 gating mechanisms of endogenous ligands from the NAD+ metabolites.
Each subunit of the TRPM2 tetramer contains an intracellular N-terminal MHR domain, the typical six
transmembrane domains, and a large intracellular C terminus. A series of studies has demonstrated
that the NUDT9 homology (NUDT9-H) domain in the C terminus was essential for binding of
NAD+ metabolites and thereby for activating the channel [29–32]. Recent cryo-electron microscopy
(cryo-EM) studies have reported structures of the full-length human TRPM2 (hsTRPM2) channel as
well as the non-mammalian Nematostella vectensis and Danio rerio TRPM2 channels, including the
ADPR-bound state with two ADPR densities in the cleft of the MHR1/2 domain and the NUDT9-H
domain, respectively [33–37]. Although these structural studies suggest noticeable differences or even
contradictions in ADPR binding and channel gating mechanisms, activation of this channel by NAD+

metabolites with a pyridine nucleoside structure is well recognized.
Early studies reported that NAD+ itself induced a large inward current through the TRPM2 channel

in endogenous-expressed immunocytes and exogenous-transfected HEK293 cells [28,38]. However,
later studies showed that there was not any effect when NAD+ was infused into TRPM2-transfected
cells [39], and argued that the stimulation of the TRPM2 channel by NAD+ might be attributable
to contamination of a trace level of ADPR in the commercially available NAD+ preparations [30].
Moreover, our recent study also indicated that NAD+ failed to bind to the NUDT9-H domain of the
hsTRPM2 channel by using the SPR approach [40]. Although the regulation of the TRPM2 channel by
NAD+ remains controversial, NAD+ is still able to regulate the hsTRPM2 channel by its endogenous
metabolite ADPR, since stimulation of the TRPM2 channel was likely to occur after activation of CD38
to generate ADPR from the cleavage of NAD+ [41].

Among these NAD+ metabolites, ADPR is considered to be the most potent endogenous agonist of
the TRPM2 channel, with EC50 values of 10–90 µM [23]. Since the NUDT9-H domain in the C terminal
is homologous to the NUDT9 ADP-ribose pyrophosphatase (~50% similarity), the activation of the
hsTRPM2 channel by ADPR was originally proposed to be mediated by an enzymatic process in which
ADPR bound to NUDT9-H and was converted to AMP and ribose-5′-phophate [32,42]. However,
this view had been refuted by later work [43,44], with a demonstration that the hsTRPM2 channel
does not act as a chanzyme for the lack of an ADPR-hydrolase activity. Nevertheless, the binding of
ADPR to the NUDT9-H domain is believed to be essential for hsTRPM2 channel opening, and could be
impaired upon mutations in this pocket [45,46]. Our previous study identified the key residues for
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ADPR binding to the NUDT9-H domain by combining homology modeling, MD simulations with
functional assays [47], some of which had been verified in the cryo-EM structures of the hsTRPM2
channel lately [34,37].

cADPR and NAADP are two other controversial TRPM2 channel activators. cADPR was well
recognized to mediate Ca2+ signaling pathways by binding to FKBP12.6 and modulating the function
of the ryanodine receptors (RyRs), which will be discussed later in this review. However, when
RyRs were specifically blocked, cADPR was still able to induce the intracellular Ca2+ increase in
rabbit skeletal muscles, indicating RyRs-independent mechanisms that contribute to cADPR-induced
Ca2+ responses [48]. This cADPR-induced calcium flux, in addition to RyRs, was later identified by
the contribution of the TRPM2 channel [29–31]. These studies also confirmed the activation of the
TRPM2 channel by NAADP. However, later studies had challenged those views and suggested that
those earlier results might be compromised by ADPR contamination in the commercial cADPR [49]
and ADPR-2′-phosphate (ADPRP, a TRPM2 agonist) contamination in the commercial NAADP [50].
Nevertheless, through a combination of surface plasmon resonance (SPR), whole-cell and single-channel
patch-clamp recordings with purified cADPR, one of our recent studies had clearly demonstrated that
cADPR is a bona fide activator of the TRPM2 channel [40]. To further confirm whether these NAD+

metabolites directly activate the TRPM2 channel, it is required to provide the evidence of the high
resolution structure information in future.

As we all know, oxidative stress results from an imbalance between the amount of ROS produced
and antioxidant levels. Low levels of ROS can modulate cell survival and metabolic pathways
to enhance cell proliferation, while high levels of ROS damage tissues through protein oxidation,
lipid peroxidation, DNA oxidation and mutagenesis that further activates cell death pathways [51].
Elevated levels of ROS have been found in the majority of cancers and promote tumorigenesis
through activation of transcription factors, signaling pathways and DNA damages [52]. Under such
circumstances, cancer cells show increased oxidative stress. The ADPR level and NADH/NAD+

ratios are also altered [53], which thus activates the TRPM2 channel. For example, in pancreatic
cancer cells, SIRT6 was observed to catalyze the NAD+-dependent deacetylation of target histones,
thereby generating 2′-O-acetyl-ADPR (OAADPR) that can be subsequently hydrolyzed to ADPR,
which in turn activates the TRPM2 channel, triggering Ca2+ influx, and further to induce the expression
of IL-8 and TNF, and enhance cell migration [54].

In most of the nonmalignant cells, it is supported that a sustained increase in intracellular
Ca2+ or Zn2+ may occur leading to cell death simultaneously with the TRPM2 activation by
oxidative stress [55–57]. However, the data in cancer models mostly supports the conclusion that
TRPM2 expression and function have an important role in preserving cancer cell viability and
survival. Consistent with this view, the TRPM2 channel has been found to be highly expressed in
numerous cancers including bladder, breast, head and neck, lung, pancreatic, prostate, melanoma,
and neuroblastoma [51], among which most studies were focused on the neuroblastoma [58–64]
(Figure 2). The higher levels of ROS in cancer cells impel the enhancement of their anti-oxidant capacity
to detoxify ROS and preserve cells viability. The transcription factor nuclear factor (erythroid-derived
2)-related factor-2 (Nrf2) takes responsibility for expression of a series of genes to regulate enzymes or
cofactors involved in the anti-oxidant response [65]. Nrf2 has been observed to be highly expressed
in many malignant cells, and regulated by Ketch-like ECH-associated protein 1 (Keap1) via a
Ca2+-dependent process [66,67]. Meanwhile, it has been found that with the inhibition of the
TRPM2 channel, Ca2+ influx was reduced, which caused the reduction of Nrf2. Its downstream
enzymes involved in GSH, NADPH, and NADH production were significantly decreased, which led
to weakened antioxidant responses, increasing the susceptibility to chemotherapeutic agents and
decreasing cell survival and tumor growth [68].
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In addition to Nrf2, the transcription factors HIF-1/2α and cyclic AMP-responsive element
binding protein (CREB) are also regulated by TRPM2. HIF-1/2α was significantly reduced with the
TRPM2 inhibition by expression of the negative short splice variant TRPM2-S in neuroblastoma cell
lines. ROS thus increased as well as the accumulation of dysfunctional mitochondria with a reduced
bioenergetic capacity by the down-regulation of autophagy/mitophagy via a decreasing mitochondrial
membrane potential, and impairing Ca2+ uptake [59]. A study has further confirmed that re-expression
of wild type TRPM2 in such a condition could rescue cell viability, mitochondrial function, and reduce
ROS, demonstrating the critical role of TRPM2-mediated Ca2+ entry in the modulation of tumor growth,
mitochondrial function, and cellular bioenergetics in neuroblastoma [60]. Interestingly, this mechanism
was also found to be related to TRPM2-mediated CREB expression. CREB is a key transcription factor
that regulates the genes involved in oncogenesis and cell survival. Ca2+ influx via TRPM2 results in the
activation of phosphorylation of Pyk2, which regulates the cell survival and tumor growth of various
cancers through the CREB pathway, leading to increased expression of phosphorylated and total CREB.
When TRPM2 was inhibited, pPyk2, Pyk2, pCREB, and CREB were reduced and mitochondrial function
as well as mitochondrial Ca2+ uptake were impaired, together with more mitochondrial and cellular
ROS, reducing cells survival and tumor growth [62]. Taken together, all studies in neuroblastoma show
the critical role of TRPM2 that modulates both ROS production and the antioxidant response through
the Ca2+ entry via the channel activation. When the TRPM2 channel is inhibited, ROS are significantly
increased by both mitochondrial dysfunction and reduced antioxidants, then reaching to a cytotoxic
threshold of cell death.

In other types of cancers, a high expression of TRPM2 was also observed to increase the cancer
cells survival and proliferation. The mechanisms might include minimizing DNA damage in breast
adenocarcinoma cells [69,70]; increasing the migration/invasion of pancreatic ductal adenocarcinoma
cells [71], gastric cancer cells [72], and tongue carcinoma SCC cells [73]; or inhibiting nuclear
ADP-ribosylation in prostate cancer cells [74]. It has also been reported that the inhibition of
TRPM2 could accelerate the cancer cells death by increasing the intracellular ROS in non-small cell
lung (NSCLC) cells [75]; the impairment of autophagy through the JNK-signaling in gastric cancer
cells [76]; or reducing the G2/M ratio in the proliferation cycle of leukemia cells [77] and NSCLC
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cells [75]. In addition, we also noticed that recent studies have reported a novel long non-coding RNA
TRPM2-AS with a high expression correlated with a larger tumor size, advanced TNM stage, and poor
patient outcomes in a variety of cancers [78–87]. Since its mechanisms in tumors are complicated and
less related to the regulation of the signaling pathway by the ion channel, we did not review it here.
Further work will be necessary to understand its impact on TRPM2 expression and function, as well as
its role in tumorigenesis.

However, a few studies had found that TRPM2 high expression in certain types of cancer cells
correlated with improved patient outcomes. For example, TRPM2 overexpression promoted apoptosis
of T24 bladder cancer cells [88]; survival time was significantly longer in patients with higher TRPM2
levels than in those with lower TRPM2 levels [89]. These data suggest that the differential effects of the
TRPM2 channel in cancers depend on the types of carcinomas. We believe that the oxidative stress
balance regulated by the TRPM2 channel via NAD+ metabolites is the decisive factor of this channel
to be a friend/foe. In any case, the NAD+ and its metabolite-activated TRPM2 channel is an exciting
potential therapeutic target for a variety of cancers where the mechanisms in tumorigenesis, metastasis,
and therapy need to be further uncovered.

3. Two-Pore Channels (TPCs)

Two-Pore Channels (TPCs, TPCN as the gene is named) are cation permeable channels located
on endolysosomal membranes and act as important mediators of intracellular Ca2+ signaling. They
are subdivided based on their structural similarity into three groups: TPC1, TPC2, and TPC3.
These channels contain two putative pore-forming repeats, and each of these repeats contains six
transmembrane segments and an intervening pore-loop, an architecture common to numerous
voltage-gated ion channels. The transmembrane regions of TPCs are homologous to that of Nav or TRP
channels [90]. However, unlike these related channels, TPCs are not expressed on plasma membranes.
Only TPC1 and TPC2 are found in human and mouse cells. TPC1 is found in a range of endolysosomal
organelles, and TPC2 is the predominant form expressed in late endosomes and lysosomes [91]. It has
been observed that cells expressing the TPC2 channel showed a marked calcium release on intracellular
application with NAADP, while genetic knockdown of this channel abolished NAADP-induced calcium
release, indicating that TPC2 is an endogenous target of NAADP [92]. This study also proved that
membranes enriched with TPC2 exhibited a high affinity for NAADP binding. Besides, it had proposed
that NAADP was the most potent calcium regulator of NAD+ metabolites, since it stimulates calcium
release at concentrations as low as 5 to 10 nM. However, intracellular dialysis of 1 mM NAADP
failed to elicit a Ca2+ release, indicating homologous self-inactivation of the Ca2+ release process by
NAADP, which prompted that a high-affinity binding site on the TPC2 may confer a channel opening,
while a low-affinity site may confer inactivation/desensitization [93]. In addition to TPC2, NAADP
also evokes endolysosomal cation release via TPC1 [94], and it has shown that arginine residues in
the first S4–S5 linker were required to trigger Ca2+ signaling upon NAADP binding to TPC1 [95].
However, a recent study provided information that human TPC is, in fact, not directly activated by
NAADP [96]. Although the 3D structures of mouse TPC1 and human TPC2 were recently determined
by cryo-EM [97,98], the bound state of NAADP on these channels remains unknown, and further
investigation is still required. There are also a series of studies developing a photoaffinity probe for
the NAADP receptor, 5-N3-NAADP, which showed that NAADP did not bind to TPCs directly, but
through NAADP-binding proteins [99]. It is worth mentioning that in addition to TPCs, NAADP also
regulates RyRs and the TRP subtype mucolipin 1 (TRPML1) (this will be discussed later in this review)
and the TRPM2 channel (see above). Therefore, it has been suggested that the responses of multiple
NAADP targets are integrated such that the release of calcium by NAADP via TPCs is amplified by
those neighboring receptors to generate well-orchestrated calcium oscillations [99,100].

The TPCs have been reported to be involved in various pathophysiological processes, including
cell growth and development, metabolism, and cancer progression [101]. For instance, TPC2 was
observed to be overexpressed in oral squamous cell carcinoma cell lines, raising intriguing questions
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regarding the role of TPC2 as a driver of oncogenesis [102]. In addition, TPCN2 was found to
be significantly associated with survival in bladder cancer [103], and has also been reported to be
one of the six gene signatures correlated with prostate cancer to predict postoperative biochemical
recurrence [104]. Many studies on the association between TPCs and cancers have revealed the role of
NAADP/TPC/Ca2+ signaling (Figure 3).Molecules 2020, 25, x FOR PEER REVIEW 8 of 20 
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Angiogenesis is a process that is crucial for cancer progression and a key step in the transition of a
tumor’s state from benign to malignant. Vascular endothelial growth factors (VEGF) are the major
regulators of angiogenesis and regulate endothelial cells with cell proliferation, migration, and sprouting
in the early stages of angiogenesis [105]. A novel pathway for VEGF signaling transduction had
been reported, such that VEGF receptor activation led to NAADP and TPC2-dependent Ca2+ release
from acidic Ca2+ stores, which in turn controlled angiogenic response. Pharmacologically using the
NAADP antagonist Ned-19 or genetically using TPCN2−/− mice, it was found to dramatically reduce
angiogenic responses to VEGF in vitro and in vivo [106]. The same mechanism was later confirmed
by a study using the natural product Naringenin to inhibit the VEGF-induced angiogenesis [107].
An implication of these studies is the possibility to target TPC2 to develop anti-angiogenics as a strategy
for cancer treatment.

Uncontrolled cell proliferation is another basic feature of cancers. A recent study has discovered
that NAADP-induced Ca2+ release was blocked by genetic silencing of TPC1, and a pharmacological
and genetic blockade of TPC1 dramatically reduced fetal bovine serum (FBS) and induced Ca2+ release
and proliferation of metastatic colorectal cancer (mCRC) cells established from liver metastasis of
human patients, thereby hinting at TPC1 being a novel therapeutic target in mCRC patients [108].
Metastatic invasion is the major cause of cancer-related deaths. A study has unveiled that TPCs
played a crucial role in the formation of metastasis, as silencing TPC1 and TPC2 reduced the adhesion
and migration of invasive tumor cells in vitro, and pharmacological TPC inhibition and siRNA
silencing of TPC2 reduced the formation of lung metastasis in vivo [109]. However, in this study,
the activation of TPCs by NAADP was not directly proved, suggesting only an involvement of
trafficking of β1-integrin, a protein that is prominently involved in tumor migration. Take into account
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the important role of Ca2+ homeostasis in β1-integrin trafficking and the molecular mechanisms of
NAADP-induced TPC activation, the TPC-mediated Ca2+ signaling in the metastasis process should
be independently resolved.

Besides, there are some studies on the functions of TPCs in other physiological processes
related to tumorigenesis. For example, NAADP-evoked Ca2+ signals through TPC1 and TPC2
sustained glutamate-induced autophagy in SHSY5Y neuroblastoma cells [110]. Silencing of TPC2
attenuated epidermal growth factor-induced vimentin expression in MDA-MB-468 breast cancer
cells [111]. TPC2 overexpression in 4T1 mouse breast cancer cell lines and human HeLa cervical
cancer cell lines inhibited the fusion of autophagosomes and lysosomes, causing the accumulation
of autophagosomes [112]. Besides, TPC2 overexpression led to the evocation of the defects of
pigmentation that is closely related to the development of melanoma, and its interactivity with Rab
GTPases underpinned NAADP-evoked Ca2+ signals [113]. Taking all of the abovementioned together,
TPCs are druggable targets that can interfere with tumorigenesis, angiogenesis, and metastasis.

4. Ryanodine Receptors (RyRs)

The RyRs represent another class of calcium channel with the regulation by NAD+ and its
metabolites. RyRs are located on the sarcoplasmic and endoplasmic reticulum (SR/ER) forming a
series of intracellular Ca2+ channels. There are three major structurally similar RyRs mammalian
isoforms: RyR1, RyR2, and RyR3. RyR1 and RyR2 are the major RyR isoforms in skeletal and cardiac
muscle, respectively, and RyR3 is expressed in various tissues along with the other two isoforms [114].
Dating back to 1994 and 1995, studies have found that NAD+ could increase the open probability
of RyR1 and RyR2 [115,116]. It was then reported that RyR1 contained several dehydrogenase and
NAD+/NADH oxidoreductase domains, and some residues that participate in NADP+ binding in
isocitrate dehydrogenase were conserved in RyR1, suggesting that the channel may be capable of
binding to NAD+ metabolites [8,117]. Later, single channel recordings from RyRs incorporated
into lipid bilayers revealed that NADH (2 mM) inhibited the activity of RyR channels by 84% in
permeabilized rat ventricular myocytes [118]. These results all suggest that NAD+/NADH is the direct
modulator of RyRs.

Later on, more studies have focused on the activation of RyRs by cADPR. It was first proposed that
cADPR could activate RyRs in 1991 [3]. The abovementioned studies in 1994 and 1995 also suggested
similar conclusions [115,116]. All three RyR isoforms have been shown to mediate cADPR-induced Ca2+

release [119,120]. One of our own pieces of research, using a caged cADPR analogue, also confirmed its
activation on RyR2 and RyR3 in Jurkat T cells [121]. However, evidence regarding whether cADPR acts
directly on the receptors is lacking. RyR was isolated from the cellular environment and incorporated
into artificial membranes under voltage-clamp conditions, which could avoid confounding cellular
factors and decide the direct interaction of cADPR on the RyR channel. Numerous studies have
found that cADPR had no effect on the gating of all the three types of RyRs [122]. These results
suggest that cADPR may not act directly on RyRs, but via some accessory proteins to activate
RyRs. Two cADPR-binding proteins—140- and 100-kDa proteins—have been identified in sea urchin
egg homogenates by 8-N3-cADPR, an analog of cADPR, as a photoaffinity probe [123]. Moreover,
calmodulin-dependent protein kinase II (CaMKII), calmodulin, and FK506-binding protein, FKBP12.6
have been shown to be required for cADPR action [124–126]. A recent study by synthesizing a novel
photoaffinity labeling cADPR agonist identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
as one of the bridging proteins between cADPR and RyRs [127].

Besides cADPR, involvement of RyRs for NAADP-activated Ca2+ mobilization has also been
evidenced. For instance, NAADP induced Ca2+ release from rat heart microsomes, and RyR2 activated
by NAADP from dog heart incorporated into bilayer lipid membranes were observed [128]. In addition,
nanomolar concentrations of NAADP triggered Ca2+ release from skeletal muscle SR, which was due to
a direct action on RyR1, since NAADP increased the open probability of the purified RyR1 channel by
using a single-channel recording [129]. Another series of studies showed that co-injection of the RyRs
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antagonists ruthenium red with NAADP abolished the Ca2+ signal from NAADP, and Jurkat T cells
with largely reduced expression of RyRs did not respond to microinjections of NAADP, suggesting that
the Ca2+ release channel sensitive to NAADP in T-lymphocytes is the RyRs [130,131]. However, none of
these results had demonstrated the direct activation of RyRs by NAADP. A more recent study using
combinatorial knockouts and antibodies against RyRs and TPCs compared their relative contribution to
NAADP-induced Ca2+ release from permeabilized pancreatic acinar cells. It was observed that, with a
sequence of RyR1 > TPC2 > RyR3 > TPC1 >> RyR2, and the primary, but very small, NAADP-elicited
Ca2+, release via TPCs triggered the detectable Ca2+-induced Ca2+ release (CICR) via RyRs occurring
from the granules and the ER [132].

Although further investigations are required to prove the molecular mechanisms of direct/indirect
activation of RyRs by NAD+ and its metabolites mentioned above, their regulations on RyRs that
involved in the physiological and pathological processes such as cancer development are well
established. For example, in Namalwa B lymphoma cells, ryanodine stimulation of Ca2+ release
decreased both CD38 protein abundance and cyclase activity, indicating a negative feedback mechanism
between the RyRs channel and CD38, which could directly affect the signaling pathways of NAD+

metabolites catalyzed by CD38 [133]. Oxygen and glucose deprivation (OGD) due to insufficient
blood circulation can decrease cancer cell survival and proliferation of solid tumors with the activation
of adenosine 5′-monophosphate-activated protein kinase (AMPK). One study found that NAD(P)H:
quinone oxidoreductase 1 (NQOD1) played a key role in the AMPK-induced cancer cell death in
OGD through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway [134]. Besides, there are also
some reports that showed a high diversity of the RyRs expression in tumors. For example, in a
research including 57 ductal, human breast cancer specimens, moderate-to-high expression of RyRs
by immunostaining was found in 82% of the specimens, and there was a direct correlation between
RyRs levels and tumor grades [135]. RyR2 was over-expressed in melanoma tissues [136], and RyR3
over-expression was detected in breast cancer [137]. However, in comparison with normal thyroid
tissues, tissues derived from thyroid carcinoma exhibited decreased expression of RyR2, which was
tightly associated with lymphatic metastasis, extracapsular extension, and the TNM stage [138].
Many studies have also reported the differential regulations of RyRs in the proliferation or migration
of different types of cancer cells [139–142], but various functions of RyRs in respectively characterized
malignant diseases are still needed to be clarified, especially the roles of NAD+ and its metabolites in
the Ca2+ signaling pathway regulated by RyRs.

5. Transient Receptor Potential Channel Subtype Mucolipin 1 (TRPML1)

The transient receptor potential channel subtype mucolipin 1 (TRPML1) is an integral part
of the acidic vesicles in the endolysosomal system. Similar to all TRP channels, each TRPML1 is
composed of 4 subunits which possess 6 transmembrane spanning domains with cytosolic N and C
terminals. It is widely distributed within the later vesicles of the endocytic pathway [143,144]. Research
that fused the TRPML1 into lipid planar bilayers observed that NAADP activated Ca2+ release at
concentrations of 1–1000 nM, and TRPML1 gene silencing reduced the extent of this NAADP-sensitive
Ca2+ release. In addition, the blockade of TRPML1 by anti-TRPML1 antibodies almost abolished
NAADP-induced activation of lysosomal Ca2+ channels, which provided the direct evidence to show
that a NAADP-sensitive Ca2+ release is characteristic of the TRPML1 channel [145,146]. Research
from the same group further claimed that NAADP-induced activation of the TRPML1 channel could
not be observed in lysosomes from TRPML1−/− cells, but was restored by re-expressed TRPML1 into
these cells. This work has also proved that NAADP regulated TRPML1 activation via promoting the
interaction of endosomes and lysosomes, and thereby regulated lipid transport to lysosomes [147].
However, some studies put forward a contrary view that TRPML1 was not the target for NAADP,
because neither overexpression of TRPML1 nor the dominant negative TRPML1 mutant D471K affected
the NAADP-mediated Ca2+ signals [148]. However, there was a comment on the above research that
proposed that a direct recording of lysosomal TRPML1 currents or measurements of Ca2+ release
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from lysosomes are needed for solid evidence to specify the TRPML1 channel as a NAADP-sensitive
lysosome sensor [149].

Up to now, no evidence has been presented on the involvement of TRPML1 activated by NAADP
in malignant transformation. There are only limited studies on the function of TRPML1 in cancer
cell proliferation. For example, the increase of TRPML1 expression attenuated MAPK and mTORC1
signaling to sustain macropinocytosis, and avoid proteotoxic stress among melanoma cells [150].
TRPML1 maintains oncogenic mutations in the RAS family by mediating cholesterol de-esterification
and transport, and reducing the proliferation of cancer cells that express oncogenic mutations by
TRPML1 inhibition [151,152]. TRPML1 was specifically upregulated in triple-negative breast cancer
(TNCB), which regulates TNBC development through controlling mTORC1 activity and the release of
lysosomal ATP, while genetic downregulation or pharmacological inhibition of TRPML1 suppressed
the growth of TNBC [153]. The functions of TRPML1 channels in tumorigenesis, especially the roles of
NAD+ metabolites, still require further elucidation.

6. Conclusions and Expectation

In classical biochemistry, NAD+ and its metabolites are most frequently viewed as soluble electron
carriers. Recent research suggests that these metabolites can also regulate cell signaling by acting as
the modulator of ion channels, just like the calcium channels reviewed above (Figure 4). It should
be noted that these ion channels often have multiple activators/regulators, for instance, RyRs can be
activated by a variety of NAD+ metabolites, even the non-NAD+ metabolites ryanodine and caffeine.
On the other hand, one NAD+ metabolite can also regulate various calcium channels, the NAADP
for example, which may regulate all the four ion channels mentioned above. Moreover, since NAD+

metabolites are a mutual conversion and the concentrations of NAD+ metabolites change dynamically
in vivo, it is important for us to comprehensively investigate how the contributions from different
activators/regulators of these ion channels mediate intracellular Ca2+ signaling in the complicated
tumor pathogenesis in future.
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Professor Potter B.V.L. has made brilliant contributions to the identification of these NAD+

metabolites as these ion channels activators/regulators, which have been cited above. More importantly,
based on the fact that these ion channels have been regarded as new cancer therapeutic targets, Professor
Potter has designed and synthesized a series of ligands/inhibitors of these calcium channels [72,154–168],
which certainly play critical roles in the development of anti-cancer drugs targeting these ion channels.
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In addition, some potassium and sodium channels can also be activated by NAD+ and its metabolites,
and there are also some calcium channels whose activity can be indirectly affected by NAD+ and its
metabolites. For example, the P2 × 7 channel is activated by ADP-ribosyltransferase 2.2-dependent
ADP ribosylation in the presence of extracellular NAD+ [169]. Moreover, the CD38-cADPR-RyRs
signaling pathway modulates store-operated calcium entry through transient receptor potential ion
channels (TRPCs) [170], which was also evidenced by co-immunoprecipitation of RyRs and TRPC3 [171],
and gating of the TRPC under activation of RyRs [172]. All of these NAD+ metabolite-regulated ion
channel-mediated signaling pathways have been increasingly demonstrated to play important roles in
tumorigenesis, metastasis, and therapy. This field is still maturing, and is surely going to open doors
to more exciting studies in the future.
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