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Frequent universal testing in a finite population is an effective approach to preventing

large infectious disease outbreaks. Yet when the target group has many constituents,

this strategy can be cost prohibitive. One approach to alleviate the resource burden

is to group multiple individual tests into one unit in order to determine if further tests

at the individual level are necessary. This approach, referred to as a group testing

or pooled testing, has received much attention in finding the minimum cost pooling

strategy. Existing approaches, however, assume either independence or very simple

dependence structures between individuals. This assumption ignores the fact that in

the context of infectious diseases there is an underlying transmission network that

connects individuals. We develop a constrained divisive hierarchical clustering algorithm

that assigns individuals to pools based on the contact patterns between individuals. In

a simulation study based on real networks, we show the benefits of using our proposed

approach compared to random assignments even when the network is imperfectly

measured and there is a high degree of missingness in the data.

Keywords: group testing, infectious disease, network analysis, divisive clustering, epidemiology

1. INTRODUCTION

The silent spreading of an infectious disease occurs when individuals who are asymptomatic or
presymptomatic transmit the disease to those who are not infected. This has been one of the
defining features of the current COVID-19 pandemic, differentiating SARS-CoV-2 from, say, the
2003 SARS-CoV epidemic (Huff, 2020). Many studies have shown COVID-19 asymptomatic rates
of 50% or higher (Oran and Topol, 2020; Sutton et al., 2020; Almadhi et al., 2021), and even
when symptoms do appear, peak viral shedding occurs prior to the presentation of symptoms (He
et al., 2020). Researchers have noted that even isolating 100% of symptomatic cases at the time of
symptom onset is insufficient for infection control (Moghadas et al., 2020), noting that “current
strategies that rely solely on ‘symptom onset’ for infection identification need urgent reassessment”
(Huff and Singh, 2020).

There are two traditional methods of dampening the impact of silent spread. The first is contact
tracing, whereby known cases are asked to enumerate their recent contacts, and these contacts are
subsequently asked to adhere to quarantining procedures. However, there exist many opportunities
for this strategy to fail. Sociological studies have long shown that individuals (the known case, in our
context)may forget several contacts, even some of themost important ones (Killworth and Bernard,
1976, 1977, 1979; Bernard et al., 1979, 1982; Freeman et al., 1987). In addition, it may be hard
to make contact with these individuals, and even should contact be made, these individuals may
choose to ignore some or all quarantining protocols. Indeed, studies have shown that the success
rate of quarantining contacts in known cases is less than 20% (Reynolds et al., 2008; Bharti et al.,
2020).
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The second strategy for controlling silent spread is to
implement regular universal screening, whereby everyone within
some finite population of interest is tested on a regular basis in
order to detect cases prior to symptom onset. This can be a highly
efficacious strategy, but the frequency of testing often must be
high (Larremore et al., 2021). This places a very large resource
burden on those tasked with providing so many tests, as still seen
in the COVID-19 pandemic (Huff, 2020).

Pooled testing is a method that in certain circumstances can
be used to greatly alleviate this resource burden (Abdalhamid
et al., 2020; Pilcher et al., 2020; Wacharapluesadee et al.,
2020). In the COVID-19 pandemic, several countries have
implemented pooled testing, such as China, Germany, Israel, and
Thailand (Mandavilli, 2020). Within the United States, several
organizations have also implemented pooled testing, including
the Nebraska Public Health Laboratory (Stone, 2020), Duke
University (Denny et al., 2020), Stony Brook University (The
State University of New York at Stony Brook, 2020), and UC San
Diego Health (Elkalla, 2020).

Broadly speaking, pooled testing is the act of combining
multiple individual tests in order to determine whether
individual-level testing is necessary. The analysis of pooled tests
was first formalized in work by Dorfman (1943), which has since
been referred to as the two-stage Dorfman procedure. This is a
simple approach where a certain number of samples are pooled
and tested; should the resulting diagnostic test be negative, no
more tests are conducted, whereas if positive, all individuals
comprising the pool are subsequently tested. Other pooled testing
strategies include the Sterrett Procedure (Sterrett, 1957) as well
as hierarchical approaches (Black et al., 2015; Malinovsky et al.,
2020). Work has also been done to generalize these procedures to
the context where there are known heterogeneous probabilities
of being infected (e.g., Hwang, 1975), including some of the
previously mentioned studies. Because of the simplicity and
widespread use of the two-stage Dorfman procedure (Hughes-
Oliver, 2006), we will focus on this pooled testing strategy.

The above approaches all depend on the assumption of
independent samples. This may be reasonable in some contexts,
but when in the context of infectious disease, this assumption
can only be justified if those being tested are sufficiently isolated
from one another. If, e.g., a school, workplace, or public health
department is testing a set of individuals who interact with one
another, this assumption is grossly violated. This independence
assumption is relaxed in a study by Lendle et al. (2012), yet
even here it is assumed that the individuals being tested are
exchangeable within certain clusters, and that individuals in
different clusters are independent. This may be applicable in
some settings (such as the example in Lendle et al. (2012)’s
study where multiple T-cell responses are measured within
each individual, and hence a compound symmetry correlation
structure is reasonable), but is clearly not the case with any
realistic transmission network. In a recent study, Sewell (In
Press) developed a method for utilizing network information
in order to improve pooled testing efficiency. However, the
proposed simulated annealing algorithm is very computationally
burdensome and is simply not feasible for medium to large
networks. The goal of this study is to develop an algorithm that

can improve the efficiency of the two-stage Dorfman procedure
by leveraging information on the underlying transmission
network.

The remainder of the paper is as follows. Sections 2.1, 2.2
describes the objective function and our proposed algorithm.
Section 2.3 describes the data we analyzed and the simulation
study conducted. Section 3 reports the results from this study,
and Section 4 provides a discussion.

2. METHODS

2.1. Objective
It has long been recognized that in the presence of diagnostic
testing error (i.e., the sensitivity and specificity do not both
equal 1), it should not be the goal to only minimize the
expected number of tests. Rather, the expected number of correct
classifications ought to be accounted for as well. Malinovsky
et al. (2016) proposed using the ratio of the expected number
of correctly classified individuals to the expected number of
tests and then derived this quantity for the case of independent
individuals. For the more general setting, our objective function
is given below, but first, we need to introduce some notation.

Let yi equal one if the ith individual is infected and zero
otherwise for i = 1, 2, . . . ,N, where N is the number of
individuals to participate in the pooled testing. Let Zi ∈
{1, 2, . . . , P} denote which of the P pools individual i belongs to,
and let Ip ⊂ {1, . . . ,N} be the set of individuals belonging to

the pth pool, each of which is of size K (= N/P). Let T denote the
total number of tests conducted andC the total number of correct
classifications. Finally, let p denote the population prevalence of
the disease, and let Sp and Se denote the specificity and sensitivity
of the test, respectively.

With regards to the network, letA denote theN×N adjacency
matrix such that Aij equals one if there is an edge between actors
i and j and zero otherwise. Let Ni denote the neighbors of i, i.e.,
{j :Aij = 1}.

The expected number of tests for the N individuals for a given
pooling assignment vector Z can be shown to equal

E(T|Z) = P + nSe − K(Sp + Se − 1)

P
∑

p=1

P(y′Ip1K = 0), (1)

where 1m is the m × 1 vector of ones. The expected number of
correct classifications given Z can be shown to equal

E(C|Z) = nS2e + N(1− p)
(

SeSp + 1− Se − S2e

)

+ K(1− Sp)(Sp + Se − 1)

P
∑

p=1

P(y′Ip1Kp = 0). (2)

The objective function is then defined to be

Q(Z) : =
E(C|Z)

E(T|Z)
(3)

In very few cases will the quantities P(y′Ip1Kp = 0), and

hence Q(Z), be known in a closed form. However, given any
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arbitrary simulator F of a data set y (e.g., that of a network-
based compartmental or agent-based model), we can use Monte
Carlo approximations to obtain arbitrarily exact estimates of
these probabilities.

2.2. Constrained Divisive Pool Assignments
The way in which the specific assignation of individuals to pools
affects the objective function is through the probability of having
pools with no infected individuals. That is, the numerator ofQ(Z)
is maximized and the denominator is minimized by maximizing
∑P

p=1 P(y
′
Ip
1Kp = 0). Telescoping this quantity out in the

following way is, while very simple, somewhat revelatory to our
purposes:

P
∑

p=1

P(y′Ip1Kp = 0)

=

P
∑

p=1

[

P(yip1 = 0)

K
∏

k=2

P(yipk = 0|yip1 = · · · = yip(k−1) = 0)

]

,

(4)

where the subsequence {ipk}
K
k=1

consists of the K members of Ip.
In the context of infectious disease, we feel it is eminently

reasonable to assume the following:

For S1,S2 ⊂ {1, . . . ,N} \ {i} such that |S1| = | S2|,

if |S1 ∩Ni| > |S2 ∩Ni|

then P
(

yi = 0|{yj = 0, j ∈ S1}
)

> P
(

yi = 0|{yj = 0, j ∈ S2}
)

.
(5)

In other words, we are more confident that an individual is
not infected if we know their neighbors are also not infected
than if we know that the same number of non-neighbors are
not infected. As an example of this, consider the following
autologistic actor attribute model (ALAAM) (Robins et al., 2001),
given by:

P(y) =
1

φ(θ)
exp

{

θ1y
′
1N +

θ2

2
y′Ay

}

,

which controls the overall prevalence of the disease through the
parameter θ1 and the transmissibility between neighbors
through θ2, and where φ(θ) is a normalizing constant
involving θ : = (θ1, θ2). Without loss of generality,
consider P

(

y1 = 0|{yj = 0, j ∈ S}
)

for some set
S : = {2, 3, . . . , S}. This quantity can be shown to equal

P
(

y1 = 0|{yj = 0, j ∈ S}
)

=









1+

∑

{yj ,j>S}

exp
{

θ1
∑

j>S yj + θ2

(

∑

j>S yjA1j +
∑

S<j<k yjykAjk

)}

∑

{yj ,j>S}

exp
{

θ1
∑

j>S yj + θ2
∑

S<j<k yjykAjk

} eθ1









−1

.

From this, it can be seen that the higher the proportion of actor
1’s edges belong to set S , and hence the smaller the quantity
∑

j>S yjA1j, the larger the conditional probability that y1 = 0.

Under the mild assumption in Equation (5), it can be seen
through Equation (4) that Q(Z) is maximized when the edges
connect individuals in the same pool. That is, we wish to
minimize the boundary sets of edges bridging individuals in
different pools. To this end, we begin with spectral clustering,
a natural candidate for this type of problem (refer to, e.g.,
Von Luxburg, 2007). However, we cannot simply apply k-means
or some other simple clustering algorithm to the eigenvalues
of the Laplacian matrix because our pool sizes are each fixed a
priori at K. Therefore, we propose using a constrained divisive
clustering method based on DIANA (MacNaughton-Smith et al.,
1964; Kaufman and Rousseeuw, 1990).

Our proposed approach begins by computing the Laplacian
matrix, L : = D − A, where D is the diagonal matrix with the
actors’ degrees along with the diagonal elements (i.e., Dii : =
∑

j Aij) and finding the eigenvectors corresponding to the P

smallest eigenvalues. We then compute the distances between all
N individuals and assign to the first pool the individual i11 who
has the largest mean distance to all others. For k = 2, . . . ,K, we
find the individual i1k who has the largest difference between the
mean distance to those not belonging to the pool and the mean
distance to those k− 1 individuals currently assigned to the pool.
We remove these individuals (i11, . . . , i1K), and then iterate this
for pools 2 through P − 1, where this last iteration splits the final
2K individuals into the last two pools. Details of the algorithm
are given below in Algorithm 1.

In nearly all cases, however, the pool size K will be relatively
small (e.g., K ∈ [1, 100]), and certainly will not grow with N,
i.e., P = O(N). This induces a computational cost O(N3) that is
too high for large networks. In such cases, we, therefore, suggest
replacing the distances obtained from the P eigenvalues in
Algorithm 1with the geodesic distances, which only costsO(N2)
to compute (Newman, 2010). We will refer to this modification
as Algorithm 2.

2.3. Add Health Data Analysis
2.3.1. Network Data

The National Longitudinal Survey of Adolescent Health (Add
Health) collected information from a nationally representative
sample of adolescents in grades 7 through 12 spanning 144
schools (Moody, 1999). Out of this study came friendship
networks among students, which we will take to serve as a
proxy for which students are most likely to transmit to one
another. Data for 84 schools are available through the R package
networkdata (Almquist, 2014), with networks ranging in size
from 25 to 2,587 students. For our analyses, we focused on two
networks, one having 495 actors and 2,675 edges, and the other
having 2,587 actors and 12,969 edges.

Network survey data has often been used in infectious
disease modeling (Hoang et al., 2019). Similar to contact diaries
which have shown reasonably good associations between long
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Algorithm 1: Divisive Pool Assignment Procedure.

Input: An N × N adjacency matrix A
# pools P

Output: Ip, p = 1, . . . , P
K← P/N
U← P smallest eigenvectors of A
for 1≤ i6= j≤ N do
Mij = ‖Ui − Uj‖

end

available← {1, . . . ,N}
for i=1 to N do
mi1 ←

∑

jMij

end

for p = 1 to P-1 do

/* Choose first member of pth pool
and make updates */

Ip← argmax
i∈available

∑

j∈available

Mij

available← available\Ip
for i in available do
mi1 ← mi1 −Miip1 mi2← Miip1

mi3 ← mi1/(|available| − 1)−mi2

end

/* Choose remaining members of pth

pool and make updates */
for k=2 to K do

Ip ← Ip ∪ argmax
i∈available

mi3

available← available\{ipk}

for i in available do
mi1 ← mi1 −Miipk mi2← mi2 +Miipk
mi3← mi1/(|available| − 1)−mi2/k

end

end

end

IP ← available

contacts measured by sensor devices (e.g., Smieszek et al., 2014;
Leecaster et al., 2016), in a study looking at high school data
in France all long duration contacts were represented in a
friendship network survey, and “the overall structure of the
contact network [. . . ] is correctly captured by [. . . ] [self-reported]
friendships” (Mastrandrea et al., 2015). While self-reported
friendship data may not be sufficiently accurate in all contexts,
in the context of school students there is at least reasonable
evidence showing that the long contacts which are most likely to
act to transmit close-contact diseases are well approximated by
self-reported friendships.

To evaluate our method on larger networks, we created a
synthetic network having realistic topology in the following way.
We fit an exponential random graph model (ERGM) based
on the social-circuit dependence assumption on each of the
84 school networks described above. More specifically, each
ERGM was fit using the following terms: # edges, # 2-stars, #
triangles, geometrically weighted edgewise shared partners, and

geometrically weighted dyadwise shared partners. The first three
terms correspond to Markov dependencies, and the latter two
to the social-circuit dependencies (Lusher et al., 2012). We then
performed a fixed effects meta-analysis, where each coefficient
was modeled as a function of the log of the network size. Using
these coefficients, we then generated a network of size 10,000
actors, having 13,800 edges. Along with the two networks of size
495 and 2,675, this then gave us a third network to analyze,
and we will refer to these networks as AH495, AH2587, and
ERGM10000, respectively.

2.3.2. Simulation Framework

To evaluate Q(Z), we used a network-based susceptible-
infectious-susceptible (SIS) model as our simulator F (refer
to, e.g., Allen et al., 2008). In most realistic infectious disease
contexts where pooled testingmay be implemented, there is more
knowledge of the prevalence of the disease than other facets of
disease spread. Therefore, we constrained the SIS model such
that the prevalence is within a small range; in the simulation
results given below, we chose 0.025 ± 0.0075. Thus, in order to
get samples from F with which to estimate Q(Z) we repeatedly
performed the following steps until the desired number of
simulated datasets were obtained:

1. Draw the SIS transmission parameter from a uniform
distribution.

2. Draw new yi, i = 1, . . . ,N from SIS model.
3. If 1

N

∑

i yi ∈ [0.025 − 0.0075, 0.025 + 0.0075] accept y, else
reject.

With Q(Z) estimated via Monte Carlo from these draws from F,
we can choose the optimal pool size K.

We then expanded our study to determine the effect of having
imperfect knowledge of the underlying network, as well as the
effect of varying non-response rates. We replicated two common
network survey tools in simulating data. First, we simulated open
ended responses with imperfect recall rates. This partial recall
strategy assumed each individual would “forget” a given edge
with a probability of 0.25. Second, we simulated a nominate-
n design, where each individual gets to nominate up to n of
their edges. In our simulations, we set n = 5. To address non-
response, we simulated “observed” networks via the partial recall
and nominate-5 strategies with 5, 10, or 20% of the network
members failing to provide responses. For each configuration, we
simulated 250 networks and estimated Q(Z) for each.

3. RESULTS

The values of Q(Z) for K ranging from 2 to 20 are displayed
in Figure 1. The optimal pool sizes for AH495, AH2587, and
ERGM10000 were 10, 9, and 10, respectively. The dashed-dotted
red line represents the average value of Q over 50 randomly
assigned pools for eachK. Results fromAlgorithm 1 based on the
Laplacian are given in the solid blue line, and from Algorithm 2

based on geodesic distances in dashed green; for ERGM10000
it was not feasible to use Algorithm 1. It is clear that there is
a negligible difference in performance between the Algorithm 1

and the more computationally efficient Algorithm 2 algorithms.
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FIGURE 1 | Values of the objective function Q(Z) (vertical axis) vs. the pool size K (horizontal axis) for (A) AH495, (B) AH2587, and (C) ERGM10000. Values of Q are

given using Algorithm 1 based on the Laplacian eigenvectors, Algorithm 2 based on geodesic distances, and using random pool assignments.

FIGURE 2 | Results from introducing missingness into the (A) AH495, (B) AH2587, or (C) ERGM10000 network by simulating two common network survey tools and

varying the level of non-response. The horizontal axis corresponds to Q(Z), and vertical lines show either the average of 50 random pool assignments or results based

on the true underlying network.
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TABLE 1 | Computational time in seconds to run Algorithms 1, 2.

Network Laplacian Geodesic

AH495 2.95 0.04

AH2587 1080.22 1.07

ERGM10000 NA 16.42

Utilizing the network to inform the specific pool assignments
dominated random pool assignments for all pool sizes K, and
for all but very small pool sizes greatly increased the expected
number of correct classifications per test.

Figure 2 provides the results from perturbing the network by
introducing missingness due to survey design and non-response
rates. For reference, the oracle results using either Algorithm 1

or Algorithm 2 are presented as a vertical line, as are the
results from random pool assignments. All results correspond
to the optimal K given above. There is no clear pattern of
superiority when comparing the two survey designs, nominate-
5 and partial recall. While the results deteriorate somewhat as the
non-response rate increases, these decreases are very marginal
compared to random pool assignments that do not leverage the
network information.

When our algorithms were run on a personal computer with
an Intel(R) Core(TM) i7-9850H CPU 2.60GHz processor, we
obtained the computation times provided in Table 1. These
results indicate that our approach can feasibly be applied to even
large organizations.

4. DISCUSSION

Regular universal screening can play an important role in
infection control. The cost of implementing this strategy,

however, can be out of reach for many organizations. Pooling

tests and only testing individuals should their pool test positive
leads to fewer overall tests being conducted, thereby lowering the
resource burden to a more manageable level.

While the extant literature on pooled testing is vast,
algorithms that aim at finding the optimal pool size ignore the
fact that in the context of infectious disease there is an underlying
transmission network that makes the individuals to be pooled
not independent. We have shown that by utilizing the underlying
network, the cost savings provided by pooled testing can be
further increased.

In real applications, the true underlying contact network that
leads to transmission events is of course unknown. We have
shown, however, that using easily implemented survey tools
to collect contact information can provide enough information
about the network to yield results nearly equivalent to when the
true network is known. Furthermore, our methods are robust to
high non-response rates.
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