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INTRODUCTION 
 

Renal cell carcinoma (RCC), is a prevalent renal 

malignant tumor, ranking third in the most prevalent 

urinary malignancy in the world after prostate and 

bladder cancer [1]. Kidney renal clear cell carcinoma 

(KIRC) is RCC’s main pathological subtype [2]. 

KIRC has a high incidence rate and mortality, which 

seriously affects human life and health [3]. Although 

we have made tremendous progress in diagnosis, 

screening, surgery, as well as therapy, KIRC clinical 

results keep less than satisfactory [4]. About 30% of 

patients show postoperative metastasis or local 

recurrence, accompanied by a poor prognosis [5].  

As we known, KIRC is a heterogeneous disease 

without a unique biomarker for individual therapy at  

present. Therefore, it is urgent to investigate the 

mechanism of KIRC and dig out an effective 

molecular marker for faster diagnosis and more 

accurate prognosis.  

 

The existing KIRC biomarkers include bone 
morphogenetic protein 8A [6] and Cripto-1 [7], but 

their reliability and accuracy still need to be 

improved. Meiotic nuclear divisions 1 (MND1) is an 

important protein in meiosis. It boosts homologous 
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ABSTRACT 
 

Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor 
prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse 
cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 
expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent 
prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell 
cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the 
proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed 
a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of 
chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A 
modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially 
sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic 
biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be 
an effective treatment strategy for KIRC patients with high expression of MND1. 
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chromosome pairing DNA double-strand break (DSB) 

repair during meiosis [8]. What's more, MND1 plays a 

role as DNA repair during vegetative cell growth [9, 

10]. A few research findings have testified that 

meiotic factors could serve as effective tumor 

therapeutic as well as biomonitoring targets [11–14]. 

Several studies have found that MND1 may be a new 

target for tumor therapy, but they have not studied the 

role of MND1 in tumors in depth [15, 16]. MND1 can 

help to improve the proliferative ability of carcinoma 

cells [10, 17]. Furthermore, MND1 can promote 

circulatory progression in lung adenocarcinoma cells 

[18]. Its upregulation serves as an independent risk 

element for prognosis in LUAD sufferers. It also 

forms a positive feedback loop with KLF6 and E2F1 

to regulate the cell cycle [19, 20]. Meanwhile, MND1 

also endows cisplatin (DDP) resistance in LUAD [19]. 

However, the role and mechanism of MND1 in KIRC 

have not been reported yet and its relationship with 

prognosis remains unclear. 

 

During this research, our group analyzed the expression 

of MND1 mRNA and protein in KIRC. And we 

explored the MND1 expression related to the prognosis 

of KIRC. Besides, we also delved into the connection 

between MND1 expression and cell cycle, tumor 

infiltrating immune cells, m6A, drug sensitivity in 

KIRC patients. Our results reveal the important function 

of MND1 in renal clear cell carcinoma and provide a 

potential link between MND1 and cell cycle, m6A, drug 

sensitivity, KIRC immune invasion and its underlying 

mechanism. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

KIRC gene expression profiles and corresponding 

clinical data were collected from the TCGA database 

(https://cancergenome.nih.gov) [21]. According to the 

gene expression features, our research contained 539 

KIRC tumor samples and 72 normal samples. The file 

type was HTSeq-FPKM. We got the clinical 

information of 611 patients. 

 

Patients and tumor specimens 

 

KIRC tissues and matched adjacent tissues were 

pulled together from 30 cases undergoing 

nephrectomy in the Second Affiliated Hospital of 

Nanchang University from June 1, 2017 to January 1, 

2021. The patients gave informed consent to our 

collection of specimens. At the same time, the 

research ethics committee of the Second Affiliated 

Hospital of Nanchang University approved the 

experiments. 

Cell lines and cell culture 

 

The human KIRC cell lines Caki-1 Cells (No. 

TCHu135) was purchased from the National Collection 

of Authenticated Cell Cultures in China. All these cell 

lines were cultured in DMEM (Gibco, CA, USA) 

supplemented with FBS (Hyclone) to a final 

concentration of 10%, and cultured in a humidified 

incubator containing 5% CO2 at 37° C. 

 

TIMER database analysis 

 

TIMER (1.0) (https://cistrome.shinyapps.io/timer), a 

consummate website, could be used to dissect the levels 

of immune invasion in various cancers [22]. Here, our 

group recognized the expression of MND1 in multiple 

cancers applying the “Diff Exp module”. Then the 

interrelation of MND1 together with immune infiltration 

in cancer was estimated using the “Gene module”. 

Moreover, we applied “SCNA module” to make a 

comparison between tumor infiltration levels among 

tumors and various somatic copy number changes in 

MND1. We assessed the differences between infiltration 

level for each SCNA category and the normal through a 

two-sided Wilcoxon rank-sum test. Finally, the 

correlations of MND1 with the markers of tumor 

infiltration immune cells in KIRC were verified using the 

“Correlation module”, joined with the Spearman’s rho 

value and predicted statistical implications. 

 

UALCAN database analysis 

 

UALCAN (08/16/2021) is a user-friendly, 

comprehensive web portal which gives insight into 

TCGA gene expression data (http://ualcan.path.uab.edu) 

[23]. Our group used it to analyze MND1 expression in 

normal and KIRC cases on the basis of clinico-

pathological parameters, like cancer stage, age.  

 

Immunohistochemistry 

 

The renal clear cell carcinoma tissue and matched 

corresponding 10% formalin-fixed and paraffin-

embedded tissues were cut into 4um thick sections. 

After deparaffinization, rehydration, and microwave 

heating in sodium citrate buffer (10 mmol/L, pH 6.0) 

for 25 minutes to restore the antigen, the sections were 

sealed with goat serum for 30 minutes. Next, incubated 

the sections overnight with anti-MND1 polyclonal 

antibodies (RRID ab235395, Abcam, 1:50 dilution) at 

4° C. Then, HRP-conjugated secondary antibody 

(Boster) was allowed to stand at room temperature for 2 

hours. Subsequently, immunostaining was performed 
using a two-step method. Three pathologists scored 

staining intensity and the percentage of positive cells 

semi-quantitatively. 

https://cancergenome.nih.gov/
https://cistrome.shinyapps.io/timer
http://ualcan.path.uab.edu/
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LinkedOmics analysis 

 

LinkedOmics (Oct 8, 2018) is a comprehensive data 

analyse platform (http://www.linkedomics.org/login. 

php) that can analyse multidimensional data within and 

across 32 kinds of cancer [24]. We tried to dig out the 

co-expressed genes linked to MND1 in the TCGA 

KIRC cohort through the results of analysis. These were 

shown by volcano plots and heat maps. These were 

founded by the LinkFinder. Pearson correlation 

coefficient was the concrete measurement of the 

association of results. 

 

Functional enrichment of differentially expressed 

genes 

 

GO term and KEGG pathway enrichment analysis were 

conducted by the “clusterProfiler” package in R to 

identify the Gene Ontology (GO) annotations and 

pathways [25]. Pathways with P value < 0.05 was 

regarded as meaningful. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA can be applied for genome-wide expression 

profile analysis and interpretation built on biological 

knowledge [26]. We acted this analysis with Genomic 

Data Commons (https://portal.gdc.cancer.gov/). The 

parameters were established such as: gene set database: 

h. All. V7.4 Symbols. gmt (Hallmarks); number of 

permutations: 1,000. Those with a P value <0.05 and a 

false discovery rate (FDR) <0.25 were considered as 

indeed enriched pathways and genes. 

 

PPI network construction 

 

The PPI network of the STRING (11.5) database 

(https://string-db.org/) [27] was applied to investigate 

the connection among the target genes. The parameter 

of medium confidence was set at 0.9. The top 200 hub 

genes were evaluated by Cytoscape 3.8.0 and its plug-

in, MCODE (Molecular Complex Detection). And the 

selection criteria were as follows: Max depth=100, node 

score cutoff=0.2, K-core=2. 

 

Validation of the hub genes 

 

Hub genes, highly connected with nodes in a module, 

have been proved to play an important role in function. 

The significance of the genes was measured by absolute 

value of the Pearson's correlation in our study. On the 

basis of the result, the top 200 genes with a confidence 

> 0.9 were uploaded to the STRING database to 
construct protein-protein interaction (PPI). Then, we 

used Cytoscape 3.8.0 and its plug-in, MCODE 

(Molecular Complex Detection) [28], to evaluate the top 

200 genes. Furthermore, a standard for hub genes 

(yellow nodes) was set with a degree cut-off = 2, node 

score cut-off = 0.2, k-core = 2, and max. depth= 100, 

which were screened with MCODE. Totally, there were 

48 genes scoring highest and initially defined as hub 

genes. Ultimately, after digging out their backgrounds, 

three genes, closely related to cell cycle, were regarded 

as “real” hub genes among these genes. 

 

GEPIA analysis 

 

GEPIA (2017) is an online database serving for helping 

the analysis of RNA-seq data (http://gepia.cancer-

pku.cn/) [29]. We explored the relationship between 

MND1 and the expression of particular markers 

correlated with cell cycle proteins of tumors. The 

Spearman method was chosen for the correlation 

coefficient analysis. 

 

GSCALite analysis 

 

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) 

is a multifunctional genomics site, and we chose it to do 

pathway activity and drug sensitive analysis with 

Spearman test, based on a data set of TCGA KIRC. 

P<0.05 was considered statistically significant. 

 

EdU assay 

 

A 5-ethynyl-20-deoxyuridine (EdU) assay kit was used 

to show cell proliferation ability. Briefly, cells were 

exposed to the indicated treatments. Roughly we 

plated 5*103 cells/wells into 96-well plates and 

incubated 24h [30]. And we added 100 μl medium 

involving 50 μM EdU into each well. Cells were 

incubated for 2 h at 37° C, after fixation with 4% 

paraformaldehyde. Then staining the nuclei with 

Hoechst, and EdU solution was put into culture. 

Afterwards, results can be visualized by a fluorescence 

microscope [31]. 

 

In vitro migration and invasion assays 

 

After seeding for 48h, stably transfected cells were used 

for in vitro migration and invasion assays. When it 

came to migration, 6 x 104 cells were plated in the upper 

chamber with serum-free medium. As for invasion, 1 x 

105 cells were placed in a Matrigel-coated chamber (BD 

Biosciences). After 24 hours (to examine migration) or 

48 hours (to examine invasion) of seeding, the upper 

surface of the membrane was gently wiped to  

remove unmigrated cells. The cells migrated to the 

underside were fixed and stained with 0.1% crystal 
violet. Count cells in five random microscopic fields 

which use a light microscope with a DP70 CCD system  

(Olympus Corp., Japan). 

http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
https://portal.gdc.cancer.gov/
https://string-db.org/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://bioinfo.life.hust.edu.cn/web/GSCALite/


www.aging-us.com 7419 AGING 

Western blot 

 

Total protein extract was organized as mentioned in 

[32]. RIPA buffer (Beyotime, Shanghai, China) 

involving a protease and inhibitor mixture (Thermo 

Fisher Scientific, NY, USA) was managed for protein 

extraction on ice. After centrifugation, the protein 

concentration was studied by BCA protein assay kit 

(Thermo Fisher Scientific, Waltham, MA, USA). The 

same amount of protein was electrophoresed on SDS-

PAGE and transferred to PVDF membrane. The 

primary antibody was then incubated overnight at 4° C 

and the membrane was washed 3 times with TBST. 

Simultaneously incubate with secondary antibody  

(anti-mnd1 polyclonal antibody (RRIDab235395, 

Abcam, 1:1000 dilution)) at room temperature for 2 

hours. Finally, detect protein expression by 

electrochemiluminescence (ECL) method. 

 

Statistical analysis  

 

The statistical analysis was mainly implemented by R 

software(version 3.6.3) with its packages named 

“survival”, “limma”, “ggplot2” and so on. Wilcoxon 

signed-rank test or Kruskal-Wallis test and logistic 

regression were used for comparing the MND1 

expression levels among patients with different kinds of 

cancer, different kinds of organization, stage, grade, 

depth of tumor invasion, distant metastasis and gender. 

We used Kaplan–Meier method to portray the survival 

curve on the basis of log-rank test. The Cox 

proportional hazards regression model was applied to 

univariate and multivariate analyses. The T test was 

used to analyze the differential expression analysis  

of m6A-related genes between the high and low 

expression groups of MND1. During the entire study, 

the statistical significance threshold was P < 0.05. 

 

RESULTS 
 

MND1 is upregulated in human KIRC tissues and 

cell lines 

 

To explore MND1 expression in various cancers, our 

study analyzed the TCGA-RNA sequence data in 

TIMER. It illustrated that MND1 was upexpressed in 

many types of cancer tissues than normal tissues. It was 

also true in KIRC (Figure 1A). Then, to analyze the 

amount of MND1 expression in normal tissues and 

tumor tissues, the Wilcoxon rank sum test was adopted 

to draw differential expression maps and paired 

differential expression map (Figure 1B, 1C). Both 

results showed that MND1 was obviously 

overexpressed in MND1 samples in the whole 

transcriptome sequencing (RNA-seq) dataset. To verify 

our finding, we used GEO dataset to analyze MND1 

expression in KIRC, whose result showed MND1 

mRNA expression were upregulated in LIHC 

(GSE105288 database) (Figure 1D). Besides, we 

lucubrated MND1 expression in KIRC clinical samples. 

We tested the protein level of MND1 via IHC, whose 

results confirmed that the protein expression level of 

MND1 was higher in 18 pairs of KIRC tissues (Figure 

1E). In short, our results confirm the overexpression of 

MND1 in KIRC tissues. 

 

Relationship between MND1 expression and 

clinicopathological variables in KIRC 

 

To explore the relationship between MND1 expression 

and KIRC sufferers’ clinicopathological features, based 

on TCGA database, we used Wilcoxon rank sum test to 

produce a series of related box-plots and used 

UALCAN to verify the result (Figure 2 and 

Supplementary Figure l). Our finding suggested that 

there was a certain difference between males and 

females in the expression of MND1 (Figure 2A). 

Additionally, the expression of MND1 was closely 

related to tumor grade of KIRC and was positive 

correlated with it (Figure 2B). What's more, with the 

stage of KIRC getting higher, the expression of MND1 

would also upregulate (Figure 2C). Also, the analysis 

result revealed that the expression of MND1 was 

positive correlated with T (Tumor size) (Figure 2D). 

Besides, we analyzed the relationship between MND1 

and M (Metastasis). We found that MND1 had a higher 

expression in tumor tissue where distant metastasis 

occurred (Figure 2E). Finally, we also found that 

MND1 expression increased in tumor tissue with lymph 

node metastasis (Figure 2F). Subsequently, we verified 

with UALCAN and got the same result (Supplementary 

Figure l). Afterward, on the purpose of analyzing the 

relationship between MND1 expression and poor 

clinicopathologic variables, we further adopted logistic 

regression. And the above consequences suggested  

that high MND1 expression was notably related  

to lymph node metastasis (OR=7.19 for N0 vs. N1), 

distant metastasis (OR=2.59 for M0 vs. M1) a high 

histologic grade (OR = 5.11 for G1 vs. G4), and gender 

(OR = 1.51 for Female vs. Male) (Supplementary  

Table 1). The above results confirmed that MND1 

expression is closely correlated with clinicopathological 

characteristics. 

 

MND1 expression is an independent prognostic 

factor which is correlated with poorer prognosis of 

renal clear cell cancer patients 

 

In order to screen out the connections between MND1 
expression and prognosis in TCGA patients with KIRC, 

we used Kaplan Meier survival method for survival 

analysis. The outcome proclaimed that in contrast to the 
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Figure 1. The expression of MND1 in different datasets. (A) The mRNA level of MND1 in 33 kinds of tumor types from TIMER. 
(**p<0.01, ***p<0.001). (B) Expression levels of MND1 were higher than non-tumor tissues in KIRC samples(p=2.451e-28). (C) MND1 
expression of KIRC tissues and corresponding normal tissues downloaded from TCGA RNA-seq datasets(p=5.824e-16). (D) MND1 expression is 
significantly regulated in KIRC in the GSE105288. (E) Typical images of IHC in 30 pairs of KIRC tissues showing the protein expression of MND1 
in KIRC and adjacent nontumor tissues.  
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Figure 2. MND1 expression is association with clinicopathological characteristics in patients with KIRC. Increased MND1 

expression was significantly with (A) Gender, (B) Grade, (C) Stage, (D) Tumor size, (E) Metastasis and (F) Node. 
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low expression of MND1 (p = 0.004), the high MND1 

expression predicted a poorer prognosis (Figure 3A). 

In addition, we constructed the ROC curve to detect 

sensitivity and specificity to predict one-year survival, 

three-year survival, and five-year survival of KIRC 

patients, The AUC of the ROC curve is significant, 

(one-year AUC:0.558, three-year AUC:0.532, five-

year AUC:0.536), which indicates that the expression 

of MND1 can availably predict the survival time of 

patients (Supplementary Figure 2). Then we further 

dig out the connections between MND1 expression 

and clinical characteristics. The univariate Cox 

analysis indicated MND1 is substantially correlated 

with Overall survival (OS). The multivariate cox 

analysis exposed the variables of age, grade, and 

MND1 could regard as an independent predictive 

marker for the prognosis of sufferers with KIRC 

(Table 1). The forest map also reflects this point 

(Figure 3B). In summary, our results indicate that 

MND1 expression can be used as an independent 

prognostic parameter, and cases with elevated MND1 

expression tend to be associated with a worse 

prognosis. 

 

Function enrichment analyses and co-expression 

genes of MND1 in KIRC 

 

To get to know the biological importance of MND1 in 

KIRC in depth, we applied the function module of 

LinkedOmics, aiming at testing the MND1 co-

expression in KIRC. There were 7303 genes showing 

significantly positive correlation with MND1, 

significantly and dark red dots stand for them (Figure 

4A). Meanwhile, 3930 genes which negatively 

correlated with MND1 were represented by dark green 

dots. 50 notable gene sets showing observably positive 

and negative correlation with MND1 were marked and 

listed in heatmaps (Figure 4B, 4C). The top 200 genes 

related most obviously to MND1 were extracted for 

enrichment analysis. We further explored the potential 

functional pathways based on the top 200 genes using 

ClusterProfiler R package. Functional enrichment and 

GO analysis suggested that MND1 was functionally 

related to cell cycle, DNA replication (Figure 4D). In 

addition, KEGG pathway analysis demonstrated an 

enrichment and crosstalk of the top 200 genes in P53 

signaling pathway, cell cycle, oocyte meiosis. Cellular 

senescence, DNA replication, homologous 

recombination, mismatch repair, immune-related gene 

terms, containing human T-cell leukemia virus 1 

infection (Figure 4E). 

 

Furthermore, GSEA was conducted, aiming at searching 
for KEGG pathways, which exposed that cell cycle, 

DNA replication, homologous recombination, mismatch 

repair, oocyte meiosis. Progesterone mediated oocyte 

maturation, Cytosolic DNA sensing pathway. In addition, 

the results confirmed the primary immunodeficiency, 

natural kill cell-mediated cytotoxicity, FcγR mediated 

phagocytosis, and cytokine receptor interaction (Figure 

5). Above results demonstrated that MND1 is 

correlated with the cell cycle and immune-related 

pathways in KIRC. 

 

Correlation of MND1 expression with cell cycle 

 

To dig into the functions of MND1 engaged, we 

analyzed the STRING database carefully. And then, 

we chose the top 200 co-expressed genes to make 

protein-protein interaction (PPI) network on the basis 

of it. Furthermore, we used Cytoscape (MCODE plug-

in) to build the most significant module, marked in 

yellow (Figure 6A, 6B). According to the results 

obtained above, we could know that the module with 

higher scores consisted of CDK1, CDC20, and 

CCNB1. These three genes were regarded as the hub 

genes. At the same time, we discovered that there was 

a high correlation coefficient between MND1 and 

these three genes through GEPIA analysis 

(0.58<Spearman's correlation<0.71). Moreover, with 

the MND1 mRNA expression increasing, the mRNA 

expression of CDK1, CDC20 as well as CCNB1 in 

KIRC exhibited slightly upregulation (Figure 6C). 

Besides, we have done prognosis analysis of these 

genes with Kaplan-Meier Survival Method, which 

indicated that all of these three genes were oncogenes 

that were associated with poor prognosis (Figure 6D). 

Since CDK1, CDC20 and CCNB1 are known to be 

closely correlated to the cell cycle [33–38], with the 

support of the above analysis results, we inferred that 

the effect of MND1 on the prognosis of KIRC may be 

related to the cell cycle. 

 

MND1 knockdown inhibits KIRC cell proliferation 

in vitro 

 

We have confirmed that MND1 was closely related to 

the cell cycle. To delve the relationship between MND1 

and KIRC cell proliferation, invasion, as well as 

migration, we further transfected Caki-1 cells with 

MND1-siRNAs and si-NC. The EdU assays revealed 

that knockdown of MND1 obviously cut down the 

proliferation of KIRC cells (Figure 7A). Transwell 

assays indicated that knockdown of MND1 dramatically 

reduced the invasion and migration ability of KIRC 

cells (Figure 7B). Moreover, we performed three 

Western blot experiments to confirm that MND1 

downregulation significantly inhibited the expression of 

CDK1, CDC20, and CCNB1 (Figure 7C). These results 
indicate that MND1 might affect the proliferation, 

invasion, as well as migration ability of KIRC cells 

through the cell cycle. 
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Figure 3. MND1 expression in tumor tissues is associated with poor survival in KIRC patients. (A) Associations with overall 

survival and the expression of MND1 in TCGA patients. (B) Multivariate Cox analysis of MND1. 
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Table1. Univariate and multivariate COX regression analysis of key genes. 

Variable 
Univariate analysis 

 
Multivariate analysis 

HR 95%CI P-value HR 95%CI P-value 

age 1.033 1.019-1.047 <0.001  1.038 1.023-1.054 <0.001 

gender 0.931 0.675-1.284 0.663  0.941 0.676-1.310 0.719 

grade 2.293 1.854-2.836 <0.001  1.530 1.203-1.945 0.001 

stage 1.889 1.649-2.164 <0.001  1.659 1.061-2.594 0.027 

T 1.941 1.639-2.299 <0.001  0.868 0.575-1.308 0.497 

M 4.284 3.106-5.908 <0.001  1.280 0.653-2.506 0.472 

MND1 1.353 1.184-1.547 <0.001  1.294 1.103-1.519 0.002 

OS, overall survival; HR, hazard ratio; CI, confidence interval; TNM, Tumor Node Metastasis. 

 

Correlation between MND1 expression and major 

infiltrating immune cells in KIRC 

 

Correlational researches have proved that the 

occurrence and development of a variety of cancers and 

their prognosis depend on the immune cell infiltration’s 

quantity and activity [39, 40]. Meanwhile, the results of 

GO, KEGG, and GSEA suggested that MND1 was 

related to immune infiltration. Therefore, to find out the 

correlation between MND1 expression and immune 

infiltration in KIRC, we adopted the tool of TIMER to 

analyze. The results showed a negative correlation 

between the levels of MND1 expression with the tumor 

purity of KIRC samples and significant correlations 

with different types of immune cells, including B cell 

(r=0.136; p=3.47e-03), CD8+T cell (r=0.123; p=1.03e-

02), Macrophage (r=0.098; p=3.78e-02), Neutrophil 

(r=0.141; p=2.43e-03), and Dendritic cell (r=0.166; 

p=3.76e-04) (Figure 8A). Additionally, there was a 

remarkable correlation between MND1 CNV and 

infiltrating levels of B cell, CD8+ T cell, Macrophage, 

and neutrophil (Figure 8B). Thus, our work 

demonstrated MND1 regarding Tumor Purity as well as 

immune infiltration level in KIRC. 

 

Relationship between MND1 and immune cell gene 

markers 

 

In order to delve into MND1’s potential relationship 

with infiltrating immune cells, our group tested the 

correlation between MND1 and multiple genetic 

markers for immune cells in TIMER. After adjusting for 

tumor purity, the MND1 expression level was obviously 

relevant to 16 out of 33 immune cell markers in KIRC 

(Table 2). Because not only B cell, T cell (general), but 

also CD8+ T cell, macrophages were mostly related 

immune cell types with MND1 expression, the 
connection between MND1 and immune marker sets of 

these cells were further investigated through TIMER. 

MND1 was positively related to some specific immune 

cell gene markers. It included B cell, T cell (general), 

CD8+ T cell, TAM, M1, M2 (Figure 9A–9F). 

Furthermore, MND1 was also closely linked to the 

KIRC-related chemokines including CCL19, CCL21, 

CCL26, and CXCL13. It could be known from the 

results that MND1 was positively associated with these 

chemokines (Figure 9G). Therefore, we had reasons to 

speculate that the high expression of MND1 can 

promote the proliferation, invasion and metastasis of 

tumor tissues through increasing the expression of some 

chemokines. However, it still needed further 

experiments to verify. Besides, we did the immune-

related chemokines expression in Caki-1 Cells. As 

shown in Figure 9H, CCL19, CCL21, CCL26, and 

CXCL13 were all downregulated in MND1 shNC cells. 

The result verified our finding above that MND1 could 

affect immune cell infiltration partly by regulating these 

chemokines expression. In conclusion, these results 

proclaimed that MND1 was related to tumor cell 

infiltration in KIRC. 

 

Relationship between MND1 expression and m6A 

modification in KIRC 

 

Modification of m6A plays a significant role in the 

development of KIRC. By analyzing GSE105288 and 

TGGA KIRC data, we examined the correlation 

between MND1 expression and expression of 20 m6a 

related genes in KIRC, and the expression of MND1 

significantly positively correlated with RBM15, 

RBMX, YTHDC2, IGF2BP3 and negatively related  

to METTL14 and YTHDF2 in TCGA KIRC data sets  

(p < 0.01) (Figure 10A). Furthermore, MND1 expression 

significantly negatively correlated with METTL14  

(p < 0.05) and positively correlated with IGF2BP3  

(p < 0.01) in the GSE105288 dataset (Figure 10B). The 

scattering plot showed the association between the 

expression of the genes related to MND1 and m6A 
(Figure 10C). We divided TCGA samples in two group 

according to the expression of MND1. We tried to exam 

the differential expression of genes related to m6A 

between high and low MND1 groups. As shown in 
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Figure 4. Genes differentially expressed in correlation with MND1 and enriched GO annotations, KEGG pathways of 
MND1 correlated genes in KIRC. (A) Pearson test was used to analyze association between MND1 and genes differently expressed 
in KIRC, red indicates positively correlated genes and green indicates negatively correlated genes. (B, C) The genes positively and 
negatively relative to MND1 in KIRC were showed by heat maps. (D) Enriched GO annotations of MND1 correlated genes in KIRC, 
including biological processes (BP), molecular function (MF), and cell component (CC) (P<0.05). (E) Significant KEGG pathways most 
associated with MND1. 
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Figure 5. GSEA used to validate the gene signatures, including negative regulation of  (A) CELL_CYCLE, (B) DNA_REPLICATION,  
(C) P53_SIGNALING_PATHWAY, (D) HOMOLOGOUS_RECOMBINATION, (E) MISMATCH_REPAIR, (F) OOCYTE_MEIOSIS, (G) 
PROGESTERONE_MEDIATED_OOCYTE_MATURATION, (H) CYTOSOLIC_DNA_SENSING_PATHWAY, (I) PRIMARY_IMMUNODEFICIENCY, (J) 
NATURAL_KILLER_CELL MEDIATED_CYTOTOXICITY, (K) FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS, (L) CYTOKINE _CYTOKINE_RECEPTOR_ 
INTERACTION. 
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Figure 6. Protein–protein interaction network of related gene (Top200) and analysis of hub genes in KIRC. (A) Protein–protein 

interaction based on (PPI) network (B), MCODE analysis indicating the hub genes CDK1, CDC20, CCNB1, highlighted in yellow. (C)  
Correlation between MND1 and the mRNA expression of CDK1, CDC20 and CCNB1 in KIRC determined using GEPIA. (D) Prognosis analysis of 
correlational genes. 
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Figure 10, the m6A modification was not the same 

between high and low groups with the MND1 

expression in KIRC (Figure 10D). Compared to the 

group of low expression, the expression of METTL14 

in the high expression group of MND1 were reduced 

and the expression of IGF2BP3 in it were increased (P 

< 0.001). Both correlation and differential expression of 

genes were present by Venn's diagram, including 

METTL14, and IGFBP3 (Figure 10E). Then, we used 

Kaplan-Meier curve to reveal that the high expression 

of IGFBP3 (p < 0.01) and low expression of METTL14 

(p < 0.001) were intensely associated with a poor 

prognosis of KIRC (Figure 10F). These results claim 

that the MND1 may be closely related to the m6A 

modification of KIRC, especially through its regulation 

with METTL14, and IGFBP3, which eventually 

influents the progression and prognosis of KIRC. 

 

Cancer pathway activity and drug sensitivity 

 

MND1 and 36 genes significantly correlated with 

MND1 in KIRC collected by PPI, were used for cancer 

 

 
 

Figure 7. MND1 promotes proliferation and migration of KIRC in vitro. (A) Proliferation capacity for KIRC cells treated with shMND1 
or shNC was detected by EdU and cell clone formation assays. (B) Migration and invasion capacity for KIRC cells treated with shMND1 or 
shNC was detected by Transwell separately. (C) The result of Western blot showed the protein expression of CDK1, CDC20, and CCNB1 was 
interfered with MND1. 
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pathway and drug susceptibility analysis. We used the 

GSCALite tool to evaluate the potential roles of these 

genes in the classic pathways of cancer. As shown in our 

result, these genes, especially MND1, could activate 

Apoptosis, Cell Cycle, DNA Damage Response, EMT, 

Hormone AR and inhibit Hormone ER, PI3K/AKT, 

RAS/MAPK, RTK pathways to play a regulatory  

role in the cancer process (Figure 11A). Moreover, KIRC 

cells with high-expressed MND1 level was resistant to 7 

drugs or small molecules and 58-sensitive drugs 

(Figure 11B). These results showed innovative and 

optional therapeutic strategies for patients with highly 

expressed KIRC with MND1. 

 

DISCUSSION 
 

RCC is a common renal malignant tumor, accounting 

for 2% of adult malignancies [41]. Among them, KIRC 

is the main pathological subtype of adult RCC [42]. 

Compared with patients with other subtypes of RCC, 

 

 
 

Figure 8. The correlation between MND1 and immune infiltration level in KIRC. (A) The correlations between MND1 expression 
and the immune infiltrations of tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell. (B) The comparison 
of tumor-infiltration levels in KIRC with different somatic copy number alterations for MND1. SCNAs (somatic copy number alterations) are 
defined by GISTIC 2.0, including deep deletion (−2), arm-level deletion (−1), diploid/normal (0), arm-level gain (1), and high amplification (2). 
P-value Significant Codes: 0 ≤ *** < .001 ≤ ** < .01 ≤ * < .05 ≤. < .1. 
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Table 2. Relationship between MND1 and gene marker sets of different immune cells using the 
TIMER database. 

Description Gene markers 

KIRC 

None Purity 

Cor p Cor p 

B cell 
CD19 0.188 1.18E-05 0.165 3.80E-04 

CD79A 0.141 1.12E-03 0.121 9.10E-03 

T cell (general) 

CD3D 0.173 6.22E-05 0.151 1.13E-03 

CD3E 0.173 5.86E-05 0.154 9.12E-04 

CD2  0.203 2.41E-06 0.179 1.07E-04 

CD8+ T cell 
CD8A 0.180 2.87E-05 0.177 1.36E-04 

CD8B 0.151 4.86E-04 0.143 2.16E-03 

Monocyte 
CD86 0.140 1.19E-03 0.125 7.00E-03 

CSF1R 0.105 1.49E-02 0.079 8.87E-02 

TAM 

CCL2 -0.120 5.70E-03 -0.142 2.32E-03 

CD68 0.112 9.75E-03 0.113 1.49E-02 

IL10 0.154 3.50E-04 0.124 7.56E-03 

M1 
IRF5 0.032 4.54E-01 0.035 4.52E-01 

PTGS2 0.153 3.77E-04 0.127 6.40E-03 

M2 

CD163 0.131 2.46E-03 0.124 7.58E-03 

VSIG4 0.139 1.31E-03 0.118 1.13E-02 

MS4A4A 0.142 1.04E-03 0.142 2.29E-03 

Neutrophils 

CEACAM8 -0.017 6.88E-01 -0.001 9.79E-01 

ITGAM 0.068 1.19E-01 0.033 4.86E-01 

CCR7 0.158 2.58E-04 0.149 1.37E-03 

Natural killer cell 

KIR2DL1 -0.020 6.46E-01 -0.020 6.76E-01 

KIR2DL3 -0.023 5.90E-01 -0.009 8.40E-01 

KIR2DL4 0.085 5.01E-02 0.078 9.57E-02 

KIR3DL1 -0.063 1.45E-01 -0.030 5.24E-01 

KIR3DL2 -0.039 3.71E-01 -0.035 4.57E-01 

KIR3DL3 0.051 2.35E-01 0.040 3.89E-01 

Dendritic cell 

HLA-DPB1 0.060 1.69E-01 0.040 3.86E-01 

HLA-DQB1 0.009 8.42E-01 0.004 9.35E-01 

HLA-DRA 0.083 5.41E-02 0.069 1.40E-01 

HLA-DPA1 0.091 3.52E-02 0.078 9.47E-02 

CD1C 0.053 2.18E-01 0.037 4.30E-01 

NRP1 0.036 4.09E-01 0.024 6.07E-01 

ITGAX 0.098 2.43E-02 0.076 1.01E-01 
 

patients with KIRC have a higher rate of tumor 

recurrence and metastasis [43]. Although there have 

been a variety of clinical treatment strategies, the 

prognosis of KIRC patients is still not satisfactory due 
to the resistance of KIRC patients to radiotherapy and 

chemotherapy [44, 45]. In addition, a variety of 

biomarkers have been found in KIRC, such as bone 

morphogenetic protein 8A [6] and Cripto-1 [7], but their 

reliability is still controversial. Thus, exploring an 

effective biomarker is significant to enhance the 

treatment and prognosis of KIRC. Here, we determined 
that MND1 was a recent potential prognostic biomarker 

for KIRC and studied the association with MND1 and 

cell cycle, immune infiltration, m6A, drug sensitivity. 
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Figure 9. The association of MND1 with immune cell gene makers in KIRC. Relationship between MND1 and various gene markers 

of (A) B cells, (B) T cell (general), (C) CD8+ cell, (D) TAM, (E) M1 macrophage and (F) M2 macrophage in KIRC. (G) The association between 
MND1 and KIRC-related chemokines; (H) Immune-related chemokines expression in MND1 silenced KIRC cells. *p < 0.05, **p < 0.01,  
***p < 0.001. 
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Figure 10. Correlations of MND1 expression with m6A related genes in KIRC. (A, B) TCGA KIRC data sets and GSE105288 data sets 

analyzed the correlation between the MND1 and the m6A related genes expression in KIRC. (C) Draw a scatter plot to show the correlation 
between the MND1 and the glycolysis related genes expression, include METTL14, YTHDC1, and IGF2BP3. (***p<0.001). (D) The differential 
expression of glycolysis related genes between high and low MND1 expression groups in KIRC tumor samples. (E) Venn diagram showed both 
expression correlation and differential expression of genes, including ENO1, HK2, LDHA, LDHB, PGK1 and SLC2A1. (F) Kaplan-Meier curve of 
IGF2BP3 and METTL14. 
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Figure 11. Drug susceptibility analysis of hub genes. (A) MND1-related Cancer pathway activity. (B) MND1-related drug sensitivity. 
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In our study, firstly, comprehensive bioinformatics were 

performed to reveal the expression and prognosis of 

MND1 in KIRC. The results showed that the mRNA 

and protein levels of MND1 were elevated in KIRC, 

which could lead to a poorer overall survival and 

prognosis of patients. Combined with the results of 

univariate multivariate Cox analysis it could also be 

known that MND1 was significantly correlated to 

overall survival (OS) and could be used as an 

independent prognostic factor.  

 

Then, functional analysis was performed to deeply 

investigate the function and mechanism of MND1 in 

KIRC. Co-expressed gene analysis and GSEA analysis 

showed that MND1 is related to "nuclear division", 

"cell cycle", "DNA replication" and so on. In addition, 

"natural killer cell-mediated cytotoxicity" was related to 

MND1. The main conclusion drawn from our research 

was that MND1 was strongly associated with cell cycle 

and immune infiltration. 

 

The cell cycle is a system which can be strongly 

regulated, enabling cell growth, genetic material 

replication, and cell division [46]. The progression from 

one cell cycle stage to another is driven by a mechanism 

composed of cyclin-dependent kinases (CDKs), cyclin 

proteins, and their catalytic partners [47]. All these 

mechanisms are often dysregulated in many tumors, 

leading to abnormal activation of cyclins [48]. Studies 

have shown that the abnormal activation of CDK1 in 

CDKs in various tumors leads to the development of 

tumor cells by regulating the cell cycle G2/M [49]. In 

addition, CDC20 is an essential cell cycle regulator, it 

can promote the development of tumor by inhibiting 

apoptosis and affect RCC formation [50]. CCNB1 takes 

a major part in regulating and forming a complex with 

CDK1 to promote cell cycle transition from G2 phase to 

mitosis [51]. And it promotes the occurrence and 

development of tumors in lots of cancers, for example, 

gastric cancer [52] and pancreatic cancer [53]. We used 

PPI to identify central genes, and it turned out that the 

central genes were CDK1, CDC20, and CCNB1, each 

of which played an important role in the cell cycle. In 

addition, GEPIA was used to evaluate the expression of 

MND1 and CDK1, CDC20, CCNB1. Moreover, the 

Kaplan–Meier survival method was used to investigate 

their prognosis. These showed that CDK1, CDC20, and 

CCNB1 were closely connected with MND1 

expression. The high expression of CDK1, CDC20, and 

CCNB1 led to a low overall survival rate. This indicated 

that MND1's influence on the prognosis of KIRC may 

be related to the cell cycle. 

 
Dysregulation of the cell cycle is the basis of the 

uncontrolled cell proliferation characteristic of the 

malignant phenotype [54]. Recent studies have shown 

that HOXA13 may promote KIRC proliferation through 

cell cycle arrest [55]. In addition, the disorder of the cell 

cycle is also related to the invasion and migration of 

tumors. Through EdU and transwell assays, we found 

that interfering with the expression of MND1 could 

greatly restrain the proliferation, invasion, and migration 

of KIRC cells. MND1 expression can also downregulate 

the protein level of CDK1, CDC20, and CCNB1. In 

summary, it showed that low expression of MND1 may 

inhibit cell proliferation, invasion, and migration through 

the cell cycle signaling pathway of KIRC cells. 

 

More and more studies have found that immune 

responses could link to the clinical outcome in renal cell 

carcinoma. Tumor infiltrating immune cells (TIIC) form 

an ecosystem in the tumor microenvironment to manage 

the progression of cancer and show potential prognostic 

value [56]. A few RCC patients have high permeability 

of CD20 + B cells and poor prognosis [52]. Infiltration 

of CD4+ T cells contain RCC cell proliferation through 

regulating YBX1 [57]. High levels of active CD8+ T 

cells are related to the long-term prognosis of various 

cancers (including RCC) [58]. Tregs can effectively 

inhibit the proliferation of effector T cells in RCC [59]. 

In addition, M2 TAM can predict the clinical prognosis 

of KIRC patients [60]. Here, we confirmed the function 

of MND1 in KIRC immune infiltration. Additionally, 

we estimated the link between MND1 and immune cell 

infiltration in varying degrees. In recent years, many 

literatures reported that gene expression is closely 

related to tumor immune infiltration [61, 62]. Here 

owing to the expression level of MND1, we 

demonstrated that there are 6 types of tumor-infiltrating 

immune cells in KIRC tissues. Consistently, we found 

that MND1 is significantly associated with the gene 

marker set of B cell, T cell, CD8+ T cell, and 

macrophage immune cells. It is well known that 

chemokines play an important role in the recruitment 

and localization of immune cells in the tumor 

microenvironment [63, 64]. It was found through 

TISIDB that MND1 is positively correlated with 

CCL19, CCL21, CCL26 and CXCL13, and interference 

with MND1 can significantly reduce the expression of 

these chemokines. From the above, it demonstrates that 

MND1 acts a pivotal part in regulating the immune cell 

infiltration in KIRC. 

 

m6A is the most common and abundant RNA 

epigenetic modification in eukaryotic cells, it can affect 

the occurrence and development of cancer by regulating 

cancer-related biological functions [65]. M6A is 

composed of "writers", "readers" and "erasers". 

METTL14 as "writers" and IGF2BP3 as "readers" play 
an important role in m6A modification [66]. Studies 

have found that IGF2BP3 can stabilize CDKN2B-AS1 

through epigenetic activation of NUF2 transcription to 
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drive the progression of KIRC malignant tumors [67]. 

The METTL14/BPTF axis enhances super enhancer and 

distal lung metastasis through glycolytic 

reprogramming in RCC [68]. In this study, we found 

that the expression level of MND1 was negatively 

correlated with METTL14 and YTHDF2, and was 

significantly positively correlated with IGF2BP3. We 

also found that in the MND1 high expression group, the 

expression levels of METTL14, YTHDC1, LRPPRC, 

and YTHDF3 decreased, while the expression levels of 

IGF2BP3 increased significantly. Finally, Kaplan-Meier 

curve analysis showed that KIRC patients with high 

expression of IGF2BP3 had a poor prognosis, and 

KIRC patients with low METL14 expression had a poor 

prognosis. We believe that MND1 is related to m6a, and 

may affect the methylation level of KIRC through 

IGF2BP3 and affect the progress of KIRC. 
 

Finally, drug sensitivity analysis showed that the low 

expression of MND1 was sensitive to 58 drugs, and a 

positive correction was also observed between MND1 

expression and drug sensitivity (Trametinib, RDEA119, 

Selumetinib, Lapatinib, Erlotinib, Afatinib, and 

17−AAG). It indicates that seven sensitive drugs may 

be effective treatment strategies for KIRC patients with 

high MND1 expression. 
 

This study has lots of limitations. Firstly, the data in the 

database is constantly updated and may affect the 

results obtained on the results website. We need to 

collect more clinical data for verification. Secondly, 

there are many ways to generate trust, and we will use 

more methods to verify the results.  
 

To put it concisely, this article suggests that MND1 

probably is a potential biomarker for poor prognosis  

in KIRC. MND1 is not only related to the cell cycle,  

it can regulate the proliferation, invasion and migration 

of KIRC. It may also play an important function  

in the microenvironment of KIRC by containing 

infiltrating immune cells. At the same time, MND1 is 

closely related to m6A, and the high expression of 

MND1 is sensitive to 7 drugs. These recommend that 

MND1 may function as a target for early clinical 

diagnosis and treatment, and at the same time provide  

a reference for further exploration of new cancer 

immunotherapy. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Association between MND1 expression and clinicopathological characteristics in patients with 
KIRC(UALCAN). (A), Boxplot showing expression of MND1 in KIRC based on patients’ gender. (B), Boxplot showing expression of MND1 in 
KIRC based on patients’ age. (C), Boxplot showing expression of MND1 in KIRC based on tumor grade. (D), Boxplot showing expression of 
MND1 in KIRC based on cancer stages. (E), Boxplot showing expression of MND1 in KIRC based on node (***P<0.001, **P<0.01, *P<0.05). 
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Supplementary Figure 2. ROC curve tests the accuracy of MND1 in predicting the survival rate of KIRC patients. ROC curves for 

the 1-, 3-, and 5-year survival according to the expression level of MND1. AUC, area under the curve; ROC, receiver operating characteristic. 
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Supplementary Table 
 

Supplementary Table 1. MND1 expression associated with clinical 
pathological characteristics. 

Clinical characteristics 
Total 

(N) 

Odds ratio in 

MND1 expression 
P value 

Age (≤ 60 vs. > 60) 537 0.80(0.57-1.14) 0.22 

Gender (Female vs. Male) 537 1.51(1.05-2.17) 0.02 

Grade (G1 vs. G4) 92 5.11(1.35-33.35) 0.04 

Stage (I vs. IV) 326 0.62(0.33- 1.12) 0.12 

T stage (T0 vs. T4) 344 0.77(0.44-1.32) 0.35 

N stage (N0 vs. N1) 257 7.19(1.93-46.62) 0.01 

M stage (M0 vs. M1)  525 2.59(1.56-4.42) 0.00 

(logistic regression). 
T, tumor; N, node; M, metastasis; Bold values indicate P-values<0.05. 


