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Abstract

Purpose: Focal cortical dysplasia (FCD) is a common cause of epilepsy; the only

treatment is surgery. Therefore, detecting FCD using noninvasive imaging technol-

ogy can help doctors determine whether surgical intervention is required. Since

FCD lesions are small and not obvious, diagnosing FCD through visual evaluations

of magnetic resonance imaging (MRI) scans is difficult. The purpose of this study is

to detect and segment histologically confirmed FCD lesions in images of normal

fluid-attenuated inversion recovery (FLAIR)-negative lesions using convolutional

neural network (CNN) technology.

Methods: The technique involves training a six-layer CNN named Net-Pos, which

consists of two convolutional layers (CLs); two pooling layers (PLs); and two fully

connected (FC) layers, including 60 943 learning parameters. We employed activa-

tion maximization (AM) to optimize a series of pattern image blocks (PIBs) that were

most similar to a lesion image block by using the trained Net-Pos. We developed an

AM and convolutional localization (AMCL) algorithm that employs the mean PIBs

combined with convolution to locate and segment FCD lesions in FLAIR-negative

patients. Five evaluation indices, namely, recall, specificity, accuracy, precision, and

the Dice coefficient, were applied to evaluate the localization and segmentation per-

formance of the algorithm.

Results: The PIBs most similar to an FCD lesion image block were identified by the

trained Net-Pos as image blocks with brighter central areas and darker surrounding

image blocks. The technique was evaluated using 18 FLAIR-negative lesion images

from 12 patients. The subject-wise recall of the AMCL algorithm was 83.33% (15/

18). The Dice coefficient for the segmentation performance was 52.68.

Conclusion: We developed a novel algorithm referred to as the AMCL algorithm

with mean PIBs to effectively and automatically detect and segment FLAIR-negative

FCD lesions. This work is the first study to apply a CNN-based model to detect and

segment FCD lesions in images of FLAIR-negative lesions.
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1 | INTRODUCTION

Focal cortical dysplasia (FCD) is a malformation of cortical develop-

ment and one of the most common causes of intractable epilepsy, as

defined by Taylor and his colleagues in 1971.1 Currently, the main

treatment for drug-resistant epilepsy is surgery, and magnetic reso-

nance imaging (MRI) is usually an ideal tool for detecting FCD.

Mainly, MRI features of FCD include focal cortical thickening, fuzzi-

ness between gray matter (GM) and white matter (WM), cortical/sub-

cortical WM hyperintensity on T2-weighted imaging (T2WI)/fluid-

attenuated inversion recovery (FLAIR), widened gyri, and abnormal

sulci.2 Currently, three main conventional methods for detecting

epileptic foci exist: the voxel-based morphometry (VBM) algo-

rithm;3,4 surface-based morphometry (SBM) algorithm;5–7 and post-

processing method,8–10 which is based on pixel feature extraction.

Although these techniques perform extremely well, the VBM tech-

nique employs a few neurological features and is sensitive to arti-

facts, and the SBM technology has high computational complexity

because of the three-dimensional (3D) surface reconstruction.

In 1998, LeNet-5, which is based on the convolutional neural

network (CNN) proposed by Lecun et al.,11 was successfully applied

in handwritten character recognition. In 2012, AlexNet12 won an

image classification competition by using the large database Ima-

geNet. After AlexNet, a variety of new CNN models, such as the

Visual Geometry Group (VGG) of the University of Oxford, Google’s

GoogLeNet,13 Microsoft’s Residual Networks (ResNet),14 and the

Dense Convolutional Network (DenseNet),15 were proposed. Prelimi-

nary progress in understanding CNNs has been achieved. Class acti-

vation mapping (CAM)16 and gradient-weighted CAM (Grad-CAM)17

can restore the location function of the convolutional layer (CL) and

identify the locations of unsupervised feature regions. The deconvo-

lution network (Deconvnet)18 and guided backpropagation (GBP) can

visualize the feature extraction of each CL. The activation maximum

(AM)19 can understand how neural networks recognize features by

generating a pattern image.

CNNs are highly accurate in object detection and segmentation,

such as pedestrian detection,20 action detection,21 object detec-

tion,22 and saliency detection.23 Current research focuses on natural

images, and research in medicine includes tumor detection24 and

tumor segmentation.25 All of these examples show that CNNs are

excellent algorithms in image recognition and segmentation. In epi-

lepsy, CNNs have been employed to detect abnormal electroen-

cephalogram (EEG) signals in epilepsy.26–28 We identified two

studies on FCD focus recognition and location using CNNs; these

studies obtained effective results. The first study employed a CNN

model to automatically segment FCD lesions in FLAIR images.29 The

second study applied a deep CNN to classify FCD and non-FCD

patches in a T1 image.30

The current research is based mainly on either T1 images or T1

images combined with T2 or FLAIR images, and feature extraction is

based on artificial extraction. The common findings of FCD are corti-

cal or subcortical hyperintensities, which are especially observed in

FLAIR images. Manually extracting features to distinguish FCD pixels

from normal pixels is difficult. In this study, we propose a novel

automated FCD detection and segmentation technique, which is

referred to as activation maximization and convolutional localization

(AMCL). This technique, which is based on an advanced CNN, is the

first technique to automatically analyze the features of FCD lesions

and locate them in FLAIR-negative epilepsy patients. This technique

is noninvasive, effective, highly accurate, and inexpensive and can

not only alleviate the problem of uncertain factors, such as doctors’

subjective experience and judgment of misdiagnosis, but also assist

doctors in implementing effective preoperative evaluation and com-

pletely removing the lesion area during the operation to completely

cure epilepsy.

2 | MATERIALS AND METHODS

2.A | Materials

Subjects: we selected 34 FLAIR images from 19 patients [average

age � standard deviation (SD) = 24 � 10; seven males, 12 females]

between 2012 and 2016. All of the data were provided by the Sixth

Medical Center of PLA General Hospital (Haidian District, Beijing,

China). All analyses were ethical, and this study was approved by the

Sixth Medical Center of PLA General Hospital Institutional Ethics

Committee.

The lesion tissues of all drug-refractory epilepsy patients were

resected, and the pathological results showed FCD. The surgery was

based on strong clinical and EEG information. The ground truth FCD

regions were semiautomatically retrospectively segmented depending

on the resection by an experienced epileptologist with 16 yr of

experience in performing epilepsy operations. The FLAIR images

included two kinds of images: FLAIR-positive lesion images (P1–P7)
and FLAIR-negative lesion images (P8–P19). Lesions were observed

by the epileptologist in 16 FLAIR-positive lesion images of seven

patients before their operations, and lesions were not observed by

the epileptologist in 18 FLAIR-negative lesion images of 12 patients

before their operations. When multiple images of a patient are

selected, images in different directions are selected instead of

images in continuous layers. The lesions were located in the frontal

lobe (of three patients), occipital lobe (of four patients), parietal lobe

(of four patients), temporal lobe (of 11 patients), and left inferior pre-

cuneus (of one patient). The FCD classification is based on the classi-

fication scheme for cortical development.31 Detailed pathological

information is shown in Table 1.

2.B | Methods

This study developed an AMCL method that consists of five steps:

(a) preprocessing the image, (b) designing and training a CNN, (c)

obtaining a series of pattern image blocks (PIBs) by using the trained

CNN, (d) using the mean PIB with convolution to locate and segment

the lesion area, and (e) quantitatively evaluating the performance of

the method. PyTorch was utilized to implement the proposed

method. All experiments were performed on a Dell computer [Intel
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(R) Xeon(R) CPU E5-1607 v3 @3.10 GHz, 16 GB RAM and NVIDIA].

To perform a comparison with the Grad-CAM localization method, a

simple procedure is implemented at the end of the proposed

method.

2.B.1 | Image preprocessing

Training a CNN requires many training data; we employed a limited

number of cases to construct sufficient training data. The dataset

construction process is shown in Fig. 1. The FCD regions were man-

ually marked by an epileptologist based on the operation location, as

shown in the red area in Fig. 1. First, we extracted the brain region

from the original image to perform the skull-stripping operation,

resized the brain image to a uniform resolution of 256 × 256 pixels

by using bilinear interpolation, and normalized the brain image to a

zero mean with a unit variance. Second, we selected 28 × 28 pixel

square blocks from the brain image as the training data, in which the

positive image blocks were obtained from the lesion area (as shown

in the right part of Fig. 1) and the negative image blocks were

obtained from the normal area (as shown in the left part of Fig. 1).

The details of the training set are described as follows: first, we

selected a 28 × 28 block from the first pixel in the upper left corner

of the lesion area, which was manually labeled in the red area as the

center point of the block, as shown by the blue rectangular block in

Fig. 1; second, we determined whether the block could be consid-

ered to be a lesion image block. If more than four-fifths of the pixels

in the block were labeled as lesion pixels or four-fifths of the total

number of lesion pixels were contained within the block, the block

was considered to be a lesion image block and was output. If these

conditions were not satisfied, the block window continued to be slid

to the right or down to extract the next block for determination until

each pixel in the lesion area was traversed as the center of the

block. The number of all lesion image blocks obtained from the

lesion area was calculated as the number of positive image blocks.

The normal image blocks were symmetrical with the center of

the image, and the selected areas are N1, N2, and N3. To ensure

that the number of positive image blocks is equal to the number of

negative image blocks, we selected one-third of the negative image

blocks from the N1, N2, and N3 regions. First, we selected a

28 × 28 block from the N1 area. If the block has no lesion pixels, a

normal image block is output. Otherwise, we continue to slide the

block window to the right or down to remove the next block for

evaluation. In selecting negative image blocks, we ensure that no

lesion pixel exists in the symmetrical region, and if a lesion pixel

exists, we exclude the block. Second, to increase the diversity of the

image blocks, the original image was rotated every 24° to collect the

image blocks, as in the previous procedure. Finally, we obtained

126 684 negative image blocks and 148 428 positive image blocks

as the input of the network; the total number of image blocks

included 69 224 negative image blocks and 77 868 positive image

blocks from the FLAIR-positive lesion images and 57 460 negative

image blocks and 70 560 positive image blocks from the FLAIR-

TAB L E 1 Patient details.

P Onset age Sex Surgical resection region FCD type MR pulse sequence MRI acquisition parameters (TR/TE/FA/DFOV/Field/ST)

P1 29 M Right occipital lobe II b TSE 5000 ms/396 ms/120°/240 mm/3 T/1.5 mm

P2 7 F Right occipital lobe I b FSE 9002 ms/126 ms/90°/–/1.5 T/2 mm

P3 23 M Left parietal and occipital lobe I b TSE 5000 ms/396 ms/120°/195 mm/1 T/1 mm

P4 6 F Right frontal lobe II a FSE 5000 ms/396 ms/120°/240 mm/3 T/1.5 mm

P5 20 F Right parietal and occipital lobe II a FSE 9602 ms/141.7 ms/90°/240 mm/3 T/5 mm

P6 16 F Right parietal cortex II b FSE 9002 ms/126 ms/90°/–/3 T/1.5 mm

P7 18 M Left inferior precuneus II b FSE 9002 ms/126 ms/90°/–/3 T/1.5 mm

P8 24 M Left temporal lobe II b FSE 9002 ms/133 ms/90°/240 mm/1.5 T/4 mm

P9 34 M Left temporal lobe II a FSE 9602 ms/145.24 ms/90°/240 mm/3 T/5 mm

P10 27 F Right temporal lobe II a FSE 9002 ms/133 ms/90°/240 mm/1.5 T/5 mm

P11 12 F Left temporal lobe III a FSE 9002 ms/133 ms/90°/240 mm/1.5 T/4 mm

P12 27 F Right temporal lobe II a FSE 9002 ms/127.5 ms/90°/220 mm/1.5 T/5 mm

P13 24 M Right frontal lobe I b FSE 9602 ms/146.33 ms/90°/240 mm/3 T/5 mm

P14 24 F Right temporal lobe II b FSE 9602 ms/141.86 ms/90°/240 mm/3 T/5 mm

P15 27 M Left temporal and parietal lobe II b FSE 9602 ms/146.34 ms/90°/240 mm/3 T/5 mm

P16 27 F Right temporal lobe I b TSE 9602 ms/146.94 ms/90°/240 mm/3 T/5 mm

P17 40 F Right temporal lobe III b TSE 5000 ms/396 ms/120°/240 mm/3 T/1.5 mm

P18 32 F Left temporal lobe II a TSE 5000 ms/396 ms/120°/240 mm/3 T/1.5 mm

P19 46 F Left frontal and temporal lobe II b TSE 5000 ms/396 ms/120°/240 mm/3 T/1.5 mm

M (male), F (female), FSE (fast spin echo), TSE (turbo spin echo), TR (repetition time),TE (echo time), FA (flip angle), DFOV (displayed field of view), and

ST (slice thickness).
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negative lesion images. The number of positive and negative image

blocks is approximately 1:1, which satisfies the requirements for

training the network.

2.B.2 | Designing and training of the CNN

A complete CNN includes mainly the model structure definition, loss

function selection, optimizer selection, and visual analysis of the final

model. The CNN generally consists of an input layer, multiple CLs,

multiple downsampling layers [or pooling layers (PLs)], a fully con-

nected (FC) layer, and an output layer. The CL is the core layer of

the CNN. Each filter traverses the input image and generates a two-

dimensional (2D) activation function image that is referred to as the

feature map (FM). The hyperparameters include the number of con-

volutional kernels K, kernel size F, stride S, and padding zero P. The

PL includes the averaging operation (AVG) and maximization opera-

tion (MAX). The hyperparameters include the kernel size F and stride

S. In the last layer of the entire network, the FC layer is completely

connected with the values of all the activation functions of the pre-

vious layer. A structure diagram of the CNN designed in this work is

shown in Fig. 2.

Net-Pos consists of two CLs, two PLs, and two FC layers, includ-

ing 60 943 learning parameters. The input image of the network is

D1�W1�H1¼1�28�28. The selected parameters of the first

layer (Conv2d) are F¼5, S¼1, P¼2, and K¼6; and the image size

becomes 6 × 28 × 28. The parameters selected for the second layer

(MaxPool2d) are F¼2 and S¼2, and the image size becomes

6 × 14 × 14. The parameters selected for the third layer (Conv2d)

are F¼5, S¼1, P¼0, and K¼16; and the image size becomes

16 × 10 × 10. The fourth layer (MaxPool2d) is the same as the sec-

ond layer, and the image becomes 16 × 5 × 5. The 16 × 5 × 5

image is unfolded into a column vector of 1 × 400 as the input of

the FC layer. The fifth layer contains 120 neurons, and the sixth

layer contains 84 neurons. A probability is output. Each CL is con-

nected with an ReLU activation function, which helps the network

acquire nonlinear features and avoid gradient dissipation. The output

of the network represents the probability that an image shows dis-

ease. If the output is >0.5, the image is considered to show disease,

and if the output is <0.5, the image is considered normal. The loss

function is shown in Eq. (1):

LðθÞ¼�ðy � logðhθðXÞÞþð1�yÞ � logð1�hθðXÞÞÞ (1)

where hθðXÞ is the actual output of the network and y∈f0,1g is the

real label.

We establish the sample set ðX1,y1Þ,⋯ðXm,ymÞ� �� �
, which con-

tains m input images X. The overall cost function is defined as

F I G . 1 . Constructing the dataset.

F I G . 2 . Structure diagram of the six-
layer convolutional neural network.
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shown in Eq. (2):

JðθÞ¼ 1
m
∑
m

i¼1
LðθÞ

� �
¼ 1

m
∑
m

i¼1
�ðy � logðhθðXÞÞþð1�yÞ � logð1�hθðXÞÞÞð Þ

� �
(2)

To minimize the overall loss function, JðθÞ, the stochastic gradi-

ent descent with momentum (SGDM) optimizer, is employed in the

proposed technique. The weights update the network parameters, as

shown in Eq. (3):

θnþ1 ¼ θn� lr �ρ � ðθn�θn�1Þ� lr
∂

∂θn
JðW,bÞ (3)

where θ is the parameter vector, n is the iteration number, ρ is the

momentum, and lr is the initial learning rate. In our work, ρ¼0:9,

and lr¼0:01.

After several iterations, the network tends to converge, and the

loss function tends to zero, thereby indicating that the network

training is completed; then, image classification or localization can be

carried out.

In the subsequent image recognition, PIBs are used for template

convolution, so we employed two sets of data to train two networks

to obtain the optimal PIBs. The structures of the two networks are

the same, but the data utilized in the training are different. The first

network, which is named Net-Pos-Neg, was trained by using all of

the data (126 684 negative image blocks and 148 428 positive

image blocks) obtained from the FLAIR-positive and FLAIR-negative

lesion images. The second network, which is named Net-Pos, was

trained by using the data (69 224 negative image blocks and 77 868

positive image blocks) obtained from the FLAIR-positive lesion

images. The whole dataset was divided into training and testing sets

based on the 80–20% training rule, and the training and testing sets

were obtained from unique patients.

2.B.3 | Obtaining the PIBs

The fundamental concept of AM adopts the gradient descent to iter-

atively update the pixels of the input image to maximize the average

activation of a specific neuron of the specific FM and obtain the

PIB. AM includes mainly three steps: (a) inputting a random or noise

image into the trained CNN in evaluation mode; (b) calculating the

gradients of a specific neuron in a specific layer with respect to the

noise image to maximize the neuron; and (c) iteratively updating

each pixel in the noise image to maximize the activation of the neu-

ron and obtain a final image, which is referred to as the pattern

image.

The process of obtaining the PIB is shown in steps one to five in

Fig. 3. The optimization process of the PIB applies Eq. (4):

x∗ ¼ argmaxai,lðθ,xÞ
x

(4)

where x∗ is the final image (or PIB), ai,l denotes the activation value

of the i neuron in layer l, x is the random image of the input, and θ

denotes the parameters of the network.

Step 1: Image block preprocessing. First, the input image was set

to a random image block of size 7 × 7 and then resized to the CNN

input size of 28 × 28. Second, z-score normalization was performed.

Step 2: Forward propagation. The preprocessed image block was

input into the trained CNN for forward propagation, and the output

is the probability that the image block contains disease.

Step 3: Update the noise image block. We calculated the PIBs of

the output neurons. The probability of the output neuron of the

CNN was employed as a loss function of backpropagation. The gra-

dient of the loss function to the noise image block was calculated.

The noise image block was updated according to the gradient des-

cent algorithm. The updated equation is shown in Eq. (5):

F I G . 3 . Flowchart of the activation maximization and convolutional localization.

FENG ET AL. | 219



x¼ xþη �∂ðai,lðθ,xÞÞ
∂x

(5)

where ai,lðθ,xÞ¼ y or ai,lðθ,xÞ¼�y; then, steps 2 and 3 are repeated

20 times.

Step 4: Inverse operation. The iterated image block was inversely

operated by normalizing and resizing the z-score, and the 7 × 7

image block was obtained.

Step 5: Upscaling and blurring. The 7 × 7 image block was

upscaled with a scale factor of 1.2, and then, the image block was

smoothed (blurring size = 2); steps 1–4 were repeated eight times to

obtain the final noise-free image, which is also referred to as PIB x∗.

In this study, we calculate the PIB of the output neuron. We set

the output neuron ai,lðθ,xÞ¼�y. The output probability is one when

x∗ is input into the trained CNN, thus indicating that x∗ 100% is the

lesion image block. Conversely, we set ai,lðθ,xÞ¼ y, and the output

probability of x∗ input into the CNN is zero, indicating that x∗ 100%

is a normal image block. When we input the random image block

into the two networks (Net-Pos-Neg and Net-Pos) and set

ai,lðθ,xÞ¼�y and ai,lðθ,xÞ¼ y, two kinds of PIBs are obtained from

the two networks, as shown in Fig. 5.

If the 28 × 28 random image was input directly for iteration, the

high-frequency information would be dominant in the x∗ PIB, and

the boundaries of the PIBs would change substantially. To reduce

the high-frequency information and smooth the image boundaries in

the PIBs, the pixels are optimized from the low resolution of 7 × 7,

and then, the image block is upscaled. Low-frequency, high-resolu-

tion, noise-free PIBs can be obtained by a sufficient number of itera-

tions. To further reduce the high-frequency information, image

smoothing was performed in Step 5.

2.B.4 | Convolutional localization and segmentation

Step 6: Template the convolutional operation. We employed the

mean PIB from four runs of AM to perform a traversal pattern-

matching convolutional operation to locate and segment the lesion

to be recognized in the image. The mean x∗ was slid along image I

with stride one for recognition, and the convolution sum of the

whole image was traversed. The calculation equation is shown in

Eq. (6):

Iconvði, jÞ¼sumðconvðIði�13 : iþ14, j�13 : jþ14Þ,x∗ÞÞ (6)

where Iði�13 : iþ14, j�13 : jþ14Þ extracts the 28 × 28 block from

the original image to be recognized and i and j are the length and

width of the image, respectively.

Step 7: Threshold. Select the lesion area from the convolved

image with an appropriate threshold and set any value of

<0:9 �maxðIconvÞ in the Iconv image to zero. This threshold is the

most appropriate value obtained via the receiver operating charac-

teristic (ROC) curve.

Step 8: Display. The localization result, original image, and

ground truth image, which are hand labeled by the epileptologist,

were merged into one color image to show the lesion. The color area

is labeled manually by an epileptologist in red and green, and the

detected area is manually labeled in red and blue.

The whole process is shown in Fig. 3.

Due to the limited number of patients, we employed the leave-

one-out cross-validation (LOOCV) strategy, in which each patient of

a set of N patients is classified by using a classifier that is trained on

the remaining N − 1 patients to evaluate the proposed method.

Because the Net-Pos training is based on the image blocks extracted

from the FLAIR-positive lesion images, the LOOCV strategy is uti-

lized in the location and segmentation of FLAIR-positive lesion

images. FLAIR-negative lesion images belong to the new dataset for

the Net-Pos network; therefore, the mean PIB is directly applied to

locate and segment FLAIR-negative lesion images.

2.C | Grad-CAM localization

Grad-CAM17 is a visualization method that is typically employed to

identify the key feature area that most greatly affects the classifica-

tion results. This method employs the gradient information and the

last CL of the CNN to understand the importance of each neuron

for a decision of interest. Previous studies have indicated that the

CL in the CNN has the function of locating the target. Once the

FMs of the last layer are unfolded into one column vector of FC lay-

ers for classification, the function of locating the target of the CNN

loses. In this study, we applied the idea of identifying FCD lesions in

the images. We combined the last FMs with the gradient information

of the output and the last layer of the FMs to identify the key fea-

ture of the FCD area. The flowchart of Grad-CAM is shown in Fig. 4.

Step 1: We consider a 28 × 28 block from the original image as

the input of the CNN and propagate the block forward to the last

FM of the CL. The global average pooling (GAP) technique32was

employed to calculate the FM weight of category c, as shown in

Eq. (7). The gradient of yc to FM Ak was calculated, and then, the

gradients were averaged to obtain the weight αck :

αck ¼
1
Z
∑
i
∑
j

∂yc

∂Ak
ij

(7)

where yc is the value of category c before the last activation func-

tion; Ak is the k� th FM of the last layer of the CL; i and j are the

pixel sizes of the length and the width, respectively, of the FM; and

Z¼ i � j.
Step 2: The final mapping image LcGrad�CAM is obtained by the lin-

ear combination of Ak and αck and then by the ReLU activation func-

tion, as shown in Eq. (8). When Output>0:5, we perform

backpropagation and obtain the LcGrad�CAM. image:

LcGrad�CAM ¼ReLU ∑
k
αckA

k

 !
(8)

Combining the FMs with the gradient of the output to the FM

can determine the difference between the lesion area and the nor-

mal area in the original image as much as possible and highlight the
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lesion area. The color region in the LcGrad�CAM image is the probability

of recognizing the region as a lesion.

2.D | Quantitative evaluation

In this study, all images that need to be recognized are images with

lesion areas. Because each patient’s image is selected in different

directions, the detection of each image can be considered subject-

wisely. We utilized the recall to subject-wisely calculate the accu-

racy. To measure the robustness of the proposed method, the FCD

detection performance was measured pixelwisely. The specificity,

accuracy, recall, and precision were defined as follows:

Specificity¼ TN=ðTNþFPÞ �100,
Accuracy¼ðTPþTNÞ=ðTPþFPþTNþFNÞ �100,
Recall¼TP=ðTPþFNÞ �100and Precision¼ TP=ðTPþFPÞ �100. To

evaluate the segmentation of FCD lesions, we adopted the Dice

coefficient Dice¼2 �TP �100=ð2 �TPþFPþFNÞ. TP and TN are the

number of correctly detected FCD pixels and the number of normal

pixels, respectively. FP and FN are the number of falsely detected

FCD pixels and the number of normal pixels, respectively.

3 | RESULTS

3.A | The PIBs

Four instances of the two kinds of PIBs obtained via Net-Pos and

Net-Pos-Neg are shown in Fig. 5.

3.B | Localization results

The detection results of some images are shown in Fig. 6. A patient

with a FLAIR-positive lesion is shown in the first row, and four

patients with FLAIR-negative lesions are shown in the second to

fifth rows.

The localization results of AMCL are shown in the fourth column.

The red area denotes TP, the green area denotes FP, and the blue

area denotes FN. The postoperative image after operation is shown

in the fifth column, and the area in the circle is the area after

operation.

3.C | Quantitative results

A quantitative evaluation of the Grad-CAM and AMCL is shown in

Table 2. The recall was calculated subject-wisely. The specificity,

accuracy, recall, and precision were calculated pixel-wisely. When

the recall was >20, FCD lesions were considered. Although our pur-

pose is to detect and segment the focus of the FLAIR-negative

lesion images, we still present the segmentation results of the

FLAIR-positive lesion images in the table, which is valuable.

The table presents the evaluation of the location results by the

two algorithms. Each cell shows the mean of all of the patient detec-

tion results. P represents the FLAIR-positive lesion images, and N

represents the FLAIR-negative lesion images.

A comparison of the proposed and other current techniques is

shown in Table 3. The location and segmentation results of Grad-

CAM are the results obtained by using the FLAIR-negative lesion

images in this study.

4 | DISCUSSION

4.A | The PIBs

A comparison of Figs. 5(a), 5(b), 5(c), and 5(d) shows that the Net-

Pos network has converged to the optimal network parameters,

while the Net-Pos-Neg network has not. Figures 5(a) and 5(b) show

two kinds of PIBs obtained by four iterations of Net-Pos. The two

kinds of PIBs are very similar with different random images input

each time, thereby showing that the Net-Pos network is stable and

can obtain consistent PIBs through the network. Figures 5(c) and

5(d) show two kinds of PIBs obtained via four iterations of Net-Pos-

Neg. We discovered that the PIBs changed greatly with different

random images input each time. This finding shows that the Net-

Pos-Neg network is unstable, and the image blocks that are similar

to the lesion image blocks were undetected.

The comparison of Figs. 5(a) and 5(b) shows that that we have

found that one kind of image is similar to lesion image blocks, and

the other is similar to normal image blocks. The output probability is

one when the PIBs of Fig. 5(a) are input into the CNN, thus indicat-

ing that these PIBs are the most similar to the lesion image blocks.

F I G . 4 . Flowchart of the Grad-class
activation mapping.
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The output probability is zero when the PIBs of Fig. 5(b) are input

into the CNN, thus indicating that these PIBs are the most similar to

normal image blocks. The PIBs most similar to the lesion image

blocks in Fig. 5(a) are the blocks with a brighter central area and dar-

ker surrounding images. Therefore, if a block area extracted from the

original image has a high similarity to these PIBs, we can consider

this block to be a lesion image block.

For patients with FLAIR-negative lesions, traditional visual analy-

sis cannot detect the lesion areas, and it is not known which fea-

tures are effective for identifying such a lesion. CNNs are capable of

automatically learning the appropriate features from labeled training

data without any human intervention, thereby avoiding the limita-

tions of manual feature extraction. Currently, the main method of

performing image recognition using CNN technology is to adopt the

typical network structure; there is no mathematical proof or specifi-

cation to determine the best network model, and the training of the

network depends mainly on experience. Therefore, the novelty of

the CNN used in this study does not lie in the construction of a new

CNN model; instead, it lies in the ability to use a trained CNN to

find suitable PIBs to identify FLAIR-negative lesions in images by

means of PIB template matching. This method can avoid the ineffec-

tiveness of manual feature extraction and enable better identification

of lesion areas.

4.B | Localization results

The detection results for a patient with a FLAIR-positive lesion are

shown in the first row of Fig. 6. In the fourth column of Fig. 6, the

larger the red area in the image is, the more accurate the results are.

The results of AMCL show that the main areas are red and green

with fewer blue areas, thus indicating that the detection results of

the proposed method are accurate. The detection results of AMCL

and Grad-CAM are consistent, and the FLAIR-positive lesion can also

be detected by Grad-CAM.

The detection results in the second to fourth rows of Fig. 6

show that Grad-CAM is not effective, meaning that it is unable to

detect the lesions, whereas AMCL can identify the FCD lesions. Cur-

rent MR technology provides excellent detection for FCD lesions

that occur in extratemporal locations but is unreliable for detecting

most FCD lesions, which predominantly occur in the temporal

lobe.33 The lesions of three patients occurred in the temporal lobe

region, and the proposed method can still detect the focus area,

thereby indicating the effectiveness of the algorithm. Detecting tem-

poral lobe epilepsy is difficult mainly because the left and the right

temporal lobe were usually very bright on FLAIR images, thus

increasing the difficulty of localization. Although the proposed

method can detect the location of the FCD lesion, some false-

F I G . 5 . Pattern image blocks. Each row
corresponds to a different iteration. (a) and
(b) are obtained from Net-Pos and
represent image blocks similar to lesion
image blocks and normal image blocks,
respectively. (c) and (d) are derived from
Net-Pos-Neg and represent image blocks
similar to lesion image blocks and normal
image blocks, respectively.
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F I G . 6 . The detection results for patient P02, with a fluid-attenuated inversion recovery (FLAIR)-positive lesion, are shown in the first row.
The detection results for three patients (P10, P14, and P19) with FLAIR-negative lesions are shown in the second to fourth rows. For patient
P13, the lesion is detected in the axial images but is undetected in the coronal images, as shown in the last two rows. (a) Original image. (b)
Lesion area labeled as ground truth. (c) Localization results of Grad-class activation mapping. (d) Localization results of activation maximization
and convolutional localization. (e) Postoperative images.
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positive areas existed. Therefore, further studies should consider

how to remove these false-positive areas.

The limiting results of one patient, P13, is a special case. The

lesion was detected in the axial images but was undetected in the

coronal images. The two contrasting images are shown in the last

two rows of Fig. 6. The detection of the P13_1 coronal image failed

completely, and the lesion area could be detected in the P13_2 axial

image. These two images were obtained using the same series of

MR parameters. The MR findings of the patient P13 showed atrophy

of some gyri and abnormal sulci in the right frontal lobe. The main

reasons for image detection failure for the P13_1 coronal image is

the small intensity change between the FCD pixels and the adjacent

normal pixel and the large interclass similarity between the FCD pix-

els and the surrounding normal region. In the P13_1 coronal image,

only tiny highlighted areas exist around the sulcus area, which is

overlooked. Therefore, some defects in the detection of FCD lesion

areas are observed in a single-direction slice of two-dimensional

images.

Currently, the two studies that use CNN technology to detect

FCD lesions also process 2D images.29,30 Theoretically, we could

obtain the three-dimensional (3D) pattern image block that is spa-

tially correlated with the FCD disease by training a 3D CNN. After

expanding to three dimensions, the number of parameters that need

to be trained in the network will increase significantly; thus, numer-

ous 3D training data will be required to make the network converge.

Therefore, with an increase in the number of samples in the future,

we will also consider 3D processing while considering neighborhood

information in spatial processing, which should be more accurate in

theory.

4.C | Quantitative results

Table 2 shows the performance analysis of Grad-CAM and AMCL.

The results of Grad-CAM for the two categories of input images are

slightly inferior to the results of the AMCL algorithm. From a sub-

ject-wise perspective, the recall results of AMCL for FLAIR-positive

lesion images and FLAIR-negative lesion images are 100% (16/16)

and 83.33% (15/18), respectively. We achieved a Dice coefficient of

52.68 with the manual labels for FLAIR-negative lesion images; this

finding suggests strong agreement with the output images.

Table 3 shows the performance comparison with other existing

techniques. The method by Pail et al. 2012 belongs to the VBM

method, which mainly enhances the FCD lesion area; the results of

this method are subject-wise and, therefore, lack voxel-wise results.3

Ahmed et al. utilized the SBM method to analyze T1-negative

images, and the final segmentation effect is not ideal. Advanced

CNN technologies work better than traditional techniques. Dev et al

employed the popular U-Net architecture and trained a fully CNN

(FCN) for FCD lesion identification and segmentation by using only

FLAIR images.29 Because the purpose of this study is to perform

segmentation, better segmentation results were achieved. Wang,

Huiquan et al. employed a deep CNN to classify the cortical FCD

patches into FCD and non-FCD patches with T1 images.30 The two

studies did not mention whether the images were positive or nega-

tive. Compared with the results of the two CNN algorithms, the pro-

posed AMCL in this study is slightly superior mainly because all the

images in this study are negative lesion images, for which location

and segmentation are difficult. In addition to this reason, the lesions

segmented by the doctor may not be particularly accurate; any such

inaccuracies may have reduced the results of the quantitative analy-

sis. Therefore, the manual labeling of lesions needs to be further

optimized. If we compare the detection results of the FLAIR-positive

lesion images, the proposed method is much better than the meth-

ods proposed by previous studies. The ratio of the number of

FLAIR-positive lesion images to the number of FLAIR-negative lesion

images is 16:18, thus indicating that the sample balance and results

are desirable. All of the experimental results show that the proposed

technique, AMCL, is very effective and can provide higher detection

and segmentation accuracy for FLAIR-negative patients.

TAB L E 2 Quantitative evaluation of Grad-class activation mapping (CAM) and activation maximum and convolutional localization (AMCL).

Algorithm P/N
Subject-wise

Pixel-wise

Recall Specificity Accuracy Recall Precision Dice coefficient

Grad-CAM P 93.75 98.90 98.54 58.66 38.17 58.58

N 55.55 98.66 98.09 37.15 22.96 32.3

AMCL P 100 99.57 99.15 59.44 55.44 71.18

N 83.33 99.01 98.43 50.64 39.95 52.68

TAB L E 3 Performance comparison with current techniques.

Related work Method

Subject-
wise

Pixel-wise

Recall Recall Precision
Dice coef-
ficient

Pail et al.3 VBM 70 – – –

Ahmed et al.6 SBM 58 2.47 – 3.68

Bijay Dev

et al.29
CNN 82.5 40.1 80.69 52.47

Wang, Huiquan

et al.30
CNN 90 – – 78

Selvaraju

et al.17
Grad-

CAM

55.55 37.15 22.96 32.3

Proposed AMCL 83.33 50.64 39.95 52.68
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5 | CONCLUSION

In this study, first, we trained a six-layer CNN named Net-Pos. Sec-

ond, AM was performed to identify the PIBs that are most similar to

the lesion image based on the trained Net-Pos. We explained what

kind of image block was most easily considered to be the lesion

image block based on the PIBs. A PIB is a kind of image block with a

brighter central area and darker surrounding images. The proposed

method presented in this study has been applied to 34 FLAIR images

(including 18 FLAIR-negative lesion images) of 19 patients. The

experimental results show that the AMCL algorithm is very effective

in locating and segmenting FCD lesions, thus providing doctors with

suspicious areas of epileptogenic lesions.
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