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Abstract Skeletal integrity is maintained by the co-ordinated activity of osteoblasts, the bone-

forming cells, and osteoclasts, the bone-resorbing cells. In this study, we show that mice

overexpressing galectin-8, a secreted mammalian lectin of the galectins family, exhibit accelerated

osteoclasts activity and bone turnover, which culminates in reduced bone mass, similar to cases of

postmenopausal osteoporosis and cancerous osteolysis. This phenotype can be attributed to a direct

action of galectin-8 on primary cultures of osteoblasts that secrete the osteoclastogenic factor

RANKL upon binding of galectin-8. This results in enhanced differentiation into osteoclasts of the

bone marrow cells co-cultured with galectin-8-treated osteoblasts. Secretion of RANKL by galectin-8-

treated osteoblasts can be attributed to binding of galectin-8 to receptor complexes that positively

(uPAR and MRC2) and negatively (LRP1) regulate galectin-8 function. Our findings identify galectins

as new players in osteoclastogenesis and bone remodeling, and highlight a potential regulation of

bone mass by animal lectins.

DOI: 10.7554/eLife.05914.001

Introduction
Bone is a dynamic tissue that constantly undergoes remodeling by osteoclast-mediated bone

resorption and osteoblast-mediated bone formation (Eriksen, 2010; Nakahama, 2010; Raggatt and

Partridge, 2010). In a rapidly growing and mature mammals, bone remodeling is positive or

balanced, respectively, allowing for bone mass accrual and later for its maintenance. Negatively

balanced bone remodeling is a hallmark of pathologies such as osteoporosis and cancerous osteolysis

(Kozlow and Guise, 2005; Novack and Teitelbaum, 2008; Sturge et al., 2011).

Skeletal tissues are composed largely of extracellular matrix (ECM). Fibrillar ECM proteins,

predominately type I collagen in bone and type II collagen in cartilage, provide structural integrity and

account for mechanical strength. The ECM of bone also contains matricellular proteins that primarily

serve as biological modulators. Matricellular proteins interact with cell-surface receptors, such as

integrins, the structural matrix, and soluble extracellular factors including growth factors and

proteases (Bornstein and Sage, 2002). Through these multiple interactions, matricellular proteins

modulate cell function and regulate the availability and activity of proteins sequestered in the matrix.

Therefore, matricellular proteins contribute to skeletal development, homeostasis, and fracture

healing (Alford and Hankenson, 2006).

Galectins are a family of glycan-binding proteins secreted by a variety of cell types (Boscher

et al., 2011; Di Lella et al., 2011). As such, they can act as biological cross-linkers for ECM proteins
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and cell-surface receptors (Elola et al., 2007). Indeed, certain galectins were reported to function as

matricellular proteins (Troncoso et al., 2014). The minimal structures recognized by these lectins

are β-galactosides displayed on the cell surface as part of more complex glycoconjugates (Di Lella

et al., 2011). The prototype galectins (galectin-1, -2, -5, -7, -10, -11, -13, -14, and -15) exist as

monomers or homodimers of one carbohydrate recognition domain (CRD). The tandem-repeat-type

galectins (galectin-4, -6, -8, -9, and -12) harbor two distinct CRDs joined by a peptide linker. The

chimera-type galectin-3 consists of a CRD connected to a polypeptide that can pentamerize upon

binding to glycan ligands (Rabinovich and Vidal, 2011; Thiemann and Baum, 2011; Ledeen et al.,

2012).

Being secreted proteins, as well as proteins having intracellular roles, galectins affect a wide range

of biological functions including regulation of cell adhesion, migration, cell growth, apoptosis, and

autophagy (Rabinovich and Vidal, 2011; Thiemann and Baum, 2011; Thurston et al., 2012). Still,

regulation of bone physiology by galectins has been addressed only to a limited extent. Galectin-9 has

been shown to induce osteoblast differentiation initiated by coupling of CD44 to bone morphogenetic

protein (BMP) receptors (Tanikawa et al., 2010), whereas GC-1 and GC-8, the chicken orthologs of

galectin-1 and galectin-8, respectively, were shown to mediate the formation and patterning of pre-

cartilage mesenchymal condensations in the developing limb of chicken (Bhat et al., 2011).

To study the possible role of galectins as regulators of bone physiology, we focused upon galectin-

8 (gal-8), initially cloned in our laboratory, which is a tandem-repeat-type galectin having two sugar-

binding domains joined by a linker peptide (Hadari et al., 1995; Levy et al., 2006). Upon secretion,

galectin-8 is equipotent to fibronectin in promoting cell adhesion by ligation and clustering of

a selective subset of cell-surface integrins and ECM proteins (Hadari et al., 2000; Levy et al., 2001;

Eshkar Sebban et al., 2007). Complex formation between galectin-8 and integrins triggers integrin-

mediated signaling cascades (Levy et al., 2001, 2003) that affect cell growth, receptor trafficking,

and metastatic potential (Boura-Halfon et al., 2003; Zick et al., 2004; Arbel-Goren et al., 2005;

Reticker-Flynn et al., 2012).

In this study, we show that galectin-8 regulates bone mass by inducing the secretion of the

osteoclastogenic factor, receptor activator of NF-κB ligand (RANKL) (Hanada et al., 2010), from

eLife digest The forces applied to the body during daily activities cause bones to be constantly

remodeled, which is essential for keeping them healthy. In most adult organisms, new bone is

created at the same rate at which old bone is destroyed. This means that overall bone mass remains

the same. But, in diseases such as osteoporosis or bone cancer, bone is destroyed more rapidly than

at which new bone is made. This leads to brittle bones that are more likely to fracture. Understanding

how to increase the rate of bone renewal might therefore help scientists develop new treatments for

bone diseases.

Bone is created by cells called osteoblasts and destroyed by other cells called osteoclasts. Both of

these types of cells develop from stem cells in the bone marrow. The activity of these cells is

controlled by a number of factors, including the matrix of proteins that holds bone together. A group

of proteins called galectins are known to act as a bridge between some of the matrix proteins and

molecules on the surface of the cells.

Vinik et al. took osteoblasts from a mouse skull, grew them in the laboratory, and then exposed

them to a galectin protein called galectin-8. This made the osteoblasts release a protein called

RANKL, which is known to boost osteoclast activity. When osteoblasts that had been exposed to

galectin-8 were grown alongside bone marrow stem cells, more of the stem cells developed into the

bone-destroying osteoclasts.

Mice that were genetically engineered to produce more galectin-8 than normal mice develop

brittle bones, despite also creating new bone at a higher rate than do normal mice. This is because

osteoclast activity increases at a greater rate, resulting in an overall loss of bone in these animals.

This is similar to what occurs in some individuals with osteoporosis. These experiments therefore

suggest that galectin-8 plays an important role in bone remodeling and that it may be a potential

target for drugs that treat diseases that weaken bones.
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isolated osteoblasts in a cell autonomous manner. As a result, co-culture of galectin-8-treated

osteoblasts with bone marrow cells increases their differentiation into active osteoclasts. These effects

involve the binding of galectin-8 to the osteoblasts’ urokinase plasminogen-activated receptor

(uPAR); mannose receptor C, type 2 (MRC2); and the low-density lipoprotein receptor-related protein

1 (LRP1), and seem to be of physiological relevance because galectin-8 transgenic animals exhibit

increased expression of RANKL, increased osteoclastogenic activity, and enhanced bone turnover that

culminates in reduced bone mass. These data identify galectin-8 as a potential drug target for the

prevention of diseases associated with excessive bone loss.

Results

Effects of galectin-8 on cultured osteoblasts
To study the effects of galectin-8 on osteoblasts in culture, osteoblasts derived from calvaria of

newborn CD1 mice were incubated with 50 nM galectin-8. As shown in Figure 1A, such treatment

increased by sixfold the expression of RANKL in these cells by 4 hr and resulted in a 2.5-fold increase

in secretion of soluble RANKL into the medium (Figure 1B) by 24 hr. Extended incubation with

galectin-8, up to 6 days maintained the high levels of expression of RANKL (Figure 1C). Galectin-8

Figure 1. Effects of galectin-8 on RANKL and OPG expression in osteoblasts. Osteoblasts derived from calvaria of newborn mice were treated with 50 nM

of galectin-8 for 4 hr (A, D); 24 hr (B); or for the indicated times (C). After treatments, RNA was extracted and qRT-PCR was conducted in order to quantify

changes in expression of RANKL (A, C) or osteoprotegerin (OPG) (D). Actin served as a control for normalization purposes. The levels of soluble RANKL in

the medium were quantified by ELISA (B). (E) OPG/RANKL expression ratio was calculated from the results of A and D. (F) Osteoblasts from the calvaria of

newborn mice were grown in 12-well plates (5 × 104 cells per well). After 24 hr, cells were transfected with siRNA for galectin-8. Non-targeting siRNA

(siNONT) served as the control. 96 hr thereafter, cells were harvested, RNA was extracted, and qRT-PCR was conducted to quantify changes in mRNA

levels of galectin-8 and RANKL. The content of actin mRNA served as a control for normalization purposes. (G) Bone marrow cells were extracted and

analyzed by flow cytometry for the surface expression of galectin-8. Cells were treated with TDG or sucrose (10 mM in PBS) or just PBS before fixation.

Results shown are of a representative histogram of cell number vs florescence intensity of the secondary antibody (left) and quantitation of the averages

florescence intensity of the secondary antibody in two experiments carried out in duplicates (right). Results are mean values ± SEM of five (F) or six

independent experiments (A, D, E) or of two independent experiments carried out in duplicates (C, G) or triplicates (B) *p < 0.05, **p < 0.01.
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also had a moderate (30%) inhibitory effect on the expression of osteoprotegerin (OPG), a neutralizing

decoy receptor of RANKL (Eriksen, 2010) (Figure 1D). As a result, there was an overall 10-fold decrease

in the ratio of OPG/RANKL transcription in galectin-8-treated osteoblasts (Figure 1E). We could

therefore conclude that galectin-8 increases the RANKL/OPG ratio in osteoblasts in a cell autonomous

manner. We have previously shown that galectin-8 is secreted and localizes to the extracellular surface

of cells (Hadari et al., 2000). To determine whether galectin-8, secreted from osteoblasts, exerts similar

effects, the expression of this lectin in osteoblasts was silenced using siRNA. As a result, a reduction of

87% in the expression levels of galectin-8 was accompanied by a significant reduction of 33% in the

expression levels of RANKL (Figure 1F). We could therefore conclude that galectin-8 derived from

osteoblasts can mediate RANKL expression, along with other stimuli that induce RANKL.

To determine whether bone marrow cells can also secrete galectin-8, they were subjected to

analysis by flow cytometry. This analysis revealed that indeed primary murine bone marrow cells

express and secrete galectin-8 (Figure 1G). This surface-bound galectin-8 could be partially displaced

by thiodigalactoside (TDG), which blocks lectin–carbohydrate interactions, but not by sucrose,

suggesting that surface binding of secreted galectin-8 is mediated, at least in part, through

protein–carbohydrate interactions.

Effects of galectin-8 on RANKL expression in osteoblasts vs osteocytes
Recent studies have implicated matrix-embedded osteocytes, rather than osteoblasts, in the control

of osteoclast formation (Nakashima et al., 2011; Xiong et al., 2011). To determine which cell type

serves as a target for galectin-8, calvariae from newborn mice were separated using sequential

digestion (Nakashima et al., 2011) into osteoblast-rich fraction, expressing the osteoblastogenic

marker KERA (keratocan) (Nakashima et al., 2011) (Figure 2A), and an osteocyte-enriched fraction,

which is almost devoid of KERA-expressing cells (Paic et al., 2009), but expresses DMP1, an osteocyte

marker (Bonewald, 2011). As expected, expression of DMP1 was enriched threefold in the kera(−)

fraction, although a significant number of DMP1(+) cells were also present in the kera(+) fraction

(Figure 2B). Basal RANKL expression was much higher in the Kera(+) osteoblasts-enriched fraction

than in the osteocyte-enriched fraction (Figure 2C). Furthermore, the level of RANKL expression in

galectin-8-treated cells was fivefold higher than in basal both in Kera(+) and in Kera(−) cells (Figure 2C).

Given that the Kera(−) fraction was almost completely devoid of osteoblasts, these results support the

conclusion that galectin-8 affects RANKL expression both in cultured osteoblasts and osteocytes,

derived from calvaria of newborn mice.

Figure 2. Effects of galectin-8 on osteoblast fractions isolated from calvaria of newborn mice. Osteoblasts were

extracted from calvaria of newborn mice by five sequential incubations with collagenase-dispase solution.

Osteoblasts derived from the different incubations were seeded for 24 hr. KERA (A) and DMP1 (B) expression, using

qRT-PCR, were examined in fractions −2 and −5 that showed the highest and the lowest amount of KERA

(designated kera+ and kera−), respectively. (C) Galectin-8 (50 nM) was added to osteoblasts from these cultures for

24 hr; RANKL expression was determined by qRT-PCR. Actin served as a control for normalization purposes. Results

are mean values ± SEM of n = 8 (A), n = 6 (B), n = 7 (C). *p < 0.05, **p < 0.01.
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Effects of galectin-8 on osteoclasts differentiation
The increased expression of the osteoclastogenic factor RANKL in osteoblasts treated with galectin-8

prompted us to study the effects of this lectin on osteoclasts differentiation in culture. For this

purpose, bone marrow cells were co-cultured with osteoblasts derived from calvaria of newborn mice.

We could demonstrate (Figure 3A) that galectin-8, added to this co-culture, was equipotent to the

osteoclastogenic factor PGE2 (Suda et al., 2004) in the induction of a ∼15-fold increase in osteoclast

differentiation, as evident by the appearance of multinucleated TRAP+ cells. The effects of PGE2 and

galectin-8 were additive to a certain extent, suggesting that they might act by somewhat different

mechanisms. Very few differentiated osteoclasts appeared in untreated co-cultures. Furthermore,

galectin-8 had no direct differentiation effect on osteoclasts, as addition of this lectin to naive bone

marrow cells in the absence of osteoblasts did not result in osteoclasts differentiation (Figure 3A). To

verify that RANKL indeed mediates the effects of galectin-8 on osteoclasts differentiation, its

expression was silenced using siRNAs. As shown in Figure 3B, RANKL-siRNAs reduced its

transcription in osteoblasts by 50%, and this was accompanied by a similar 50% reduction in the

ability of galectin-8 to induce osteoclastogenesis in co-culture experiments (Figure 3C). These results

support the conclusion that galectin-8 functions as an osteoclastogenic agent through its action as an

inducer of RANKL expression in osteoblasts.

Signaling pathways triggered by galectin-8 in osteoblasts
The signaling pathways that mediate the effects of galectin-8 on osteoblasts were explored next.

We could demonstrate that treatment of osteoblasts, derived from calvaria of newborn mice, with

soluble galectin-8 (50 nM, 4 hr), induced the phosphorylation of ERK and Akt, while inhibitors of

these signaling pathways—PD98095 and wortmannin, respectively—inhibited these phosphoryla-

tions (Figure 4A). PD98095 inhibited the ability of galectin-8 to promote transcription of RANKL in

osteoblasts, whereas inclusion of wortmannin had no such an effect (Figure 4B), suggesting that the

effects of galectin-8 on RANKL gene transcription are mediated by the ERK signaling pathway.

Figure 3. Effects of galectin-8 on osteoclast differentiation. (A) Osteoblasts (OBL) derived from the calvaria of

newborn mice were seeded in 24-well plates (4 × 104 cells/well). After reaching 60–70% confluence, murine bone

marrow cells (BM) extracted from the femur and tibia of 6-week-old mice were added to the culture (2 × 106 cells/well),

together with galectin-8 (50 nM), PGE2 (1 μM), or both. Galectin-8 and PGE2 were further added on every other day for

10 days. TRAP assay was performed, and active osteoclasts (multinucleated TRAP+ cells) were counted. Results are

mean values ± SEM of three independent experiments carried out in duplicates. (B) Osteoblasts were seeded in

12-well plates (5 × 104 cells per well). After 24 hr, cells were transfected with siRNA to RANKL. Non-targeting siRNA

served as a control. 72 hr thereafter cells were harvested, RNA was extracted, and qRT-PCR was performed in order to

quantify changes in mRNA levels of RANKL. The content of actin mRNA served as a control for normalization

purposes. (C) Osteoblasts were seeded as in A. After reaching 60–70% confluence, cells were transfected with the

indicated siRNAs for 72 hr. Thereafter, murine bone marrow cells extracted from the femur and tibia bones of 6-week-

old mice were added to the culture (2 × 106 cells/well). Galectin-8 (50 nM) was added on the first, fourth, and sixth

days after addition of bone marrow. Active osteoclasts were counted as in A. Results are mean values ± SEM of three

(A, B) and two (C) independent experiments each carried out in duplicates (*p < 0.05, **p < 0.01).
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PD98095 also effectively inhibited the appearance of multinucleated TRAP+-differentiated

osteoclasts, when bone marrow cells were co-cultured with osteoblasts in the presence of

galectin-8 (Figure 4C), indicating that the ERK signaling pathway is involved in this process as well.

Wortmannin was capable of eliciting a partial inhibitory effect on osteoclast differentiation

(Figure 4C), suggesting that the PI3K/Akt pathway could act at a step downstream or independent

of RANKL transcription.

Receptors for galectin-8 in osteoblasts
To identify osteoblast receptors that could mediate the effects of galectin-8, proteins extracted

from calvaria of newborn rats were affinity purified over columns of immobilized GST-galectin-8

and were analyzed by mass spectrometry. Two proteins that specifically bound to the columns

were of interest: LRP1 (low-density lipoprotein receptor-related protein 1) (Grey et al., 2004) and

MRC2 (mannose receptor C, type 2) (Engelholm et al., 2009). Both LRP1 and MRC2 could be

detected by staining of proteins that selectively bound to immobilized GST-galectin-8

(Figure 5A). Because LRP1 and MRC2 form complexes with the urokinase plasminogen activator

receptor (uPAR) (Behrendt, 2004; Gonias et al., 2011), it was of interest to determine whether

uPAR is also part of the proteins complex that binds galectin-8. Indeed, we could show by

Western blotting that similar to LRP1 and MRC2, uPAR also selectively binds to immobilized

galectin-8 (Figure 5B).

To evaluate the possible physiological relevance of these galectin-8-binding partners, their

siRNAs were introduced into osteoblasts from calvaria of newborn mice. Transcription of MRC2,

LRP1, and uPAR in osteoblasts was reduced >60–80% by their corresponding siRNAs

(Figure 6A–C). Silencing of MRC2 inhibited (65%) the effects of galectin-8 on RANKL transcription

in osteoblasts (Figure 6D) and inhibited by 40% the ability of these osteoblasts to promote

osteoclastogenesis when co-cultured with bone marrow cells (Figure 6E). Similarly, siRNAs to uPAR

effectively reduced (50%) the ability of galectin-8 to stimulate expression of RANKL (Figure 6F),

suggesting that uPAR, like MRC2, mediates at least in part, the stimulatory effects of galectin-8 on

RANKL transcription and osteoclastogenesis. By contrast, silencing of LRP1 significantly increased

∼2.5-fold the effects of galectin-8 on RANKL transcription (Figure 6G), suggesting that LRP1 could

function as an inhibitory decoy receptor for galectin-8, impeding its ability to promote expression of

RANKL.

Figure 4. Signaling pathways activated by galectin-8. (A) Osteoblasts derived from calvaria of newborn mice were treated with 25 μM PD98095 or 1 μM
wortmannin for 1 hr before adding galectin-8 (50 nM). After 4 hr, total proteins were extracted and analyzed by Western blotting using antibodies specific

for the phosphorylated forms of ERK and Akt. Shown is a representative of three experiments. (B) Osteoblasts were treated with PD98095 (25 μM) or

wortmannin (1 μM) for 1 hr before being treated with 50 nM galectin-8. After 24 hr, cells were removed from plates, RNA was extracted, and qRT-PCR was

performed in order to quantify changes in RANKL transcription. Actin served as a control for normalization purposes. Results shown are mean values ±
SEM of three independent experiments, each done in duplicates. (C) Osteoblasts were seeded in 24-well plates (4 × 104 cells/well). After reaching 60–70%

confluence, murine bone marrow cells extracted from the femur and tibia of 6-week-old mice were added to the culture (2 × 106 cells/well). Galectin-8

(50 nM), PD98095 (25 μM), and wortmannin (1 μM) were added every other day for 10 days. Multinucleated TRAP+ cells were scored as differentiated

osteoclasts. Results shown in (C) are mean values ± SEM of two independent experiments each carried out in duplicate. (*p < 0.05, **p < 0.01).

DOI: 10.7554/eLife.05914.006
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Characteristics of transgenic mice overexpressing galectin-8 (gal-8 Tg)
To further assess the physiological significance of the above findings, transgenic mice that

overexpress galectin-8 were generated as described under ‘Materials and methods’. These mice

express Myc-tagged galectin-8 controlled by the chicken beta-actin promoter that did not include

a leader sequence. The insert was localized to chromosome 2, in a region free of genes or other

known genomic features. Homozygous mice were used in this study. Mice were born at normal size

and expressed no apparent deformity. They were fertile and propagated at a normal Mendelian

distribution. Age- and sex-matched mice served as the control group.

Immunohistochemical staining of bone sections and quantitative reverse transcriptase polymerase

chain reaction quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis revealed

that galectin-8 expression was increased ∼sixfold in osteoblasts derived from calvariae of newborn mice,

whereas a ∼10-fold increase was observed in osteoblasts derived from long bones of 16-week-old

transgenic mice (Tg) mice, when compared with the control wild-type (WT) mice (Figure 7A). Decoration

with anti-galectin-8 antibodies of decalcified sections of tibia from 12-week-old WT mice and gal-8 Tg

mice confirmed these results. A marked increase in anti-galectin-8 antibody binding was observed in

sections of tibia derived from gal-8 Tg mice when compared with WT controls (Figure 7B).

Effects of overexpression of galectin-8 on bone morphology
To determine whether the osteoclastogenic activity of galectin-8 affects bone morphology, indices of

tibial bone mass and architecture of WT and Tg mice were determined by micro-computed

tomography (μCT) scans both in vivo and in vitro. In vitro μCT of the proximal region of the tibia of 16-

week-old mice revealed bone osteopenia in the gal-8 Tg mice (Figure 8). This was characterized by

a 57% decrease in Tb.N and 62% decrease in BV/TV ratio (Table 1). As a consequence, Tb.Sp was

significantly higher (2.8-fold) in the Tg animals (Table 1). No change in Tb.Th was observed (not

shown). A significant reduction (32%) in bone mineral density (BMD) of the Tg mice was observed as

well (Table 1). Qualitatively, similar changes were also detected by in vivo μCT scans (Table 1). Same

changes were also evident upon scanning of the distal region of the tibia (not shown).

Low bone mass in gal-8 Tg mice is accompanied by enhanced bone
remodeling
To gain further insight into the mechanisms of reduced bone mass in the gal-8 Tg mice, bone

formation parameters were determined by dynamic histomorphometry, using calcein double labeling.

Figure 5. Binding of proteins extracted from osteoblasts to GST-galectin-8. (A, B) Calvariae were isolated from

newborn rats (A) or mice (B); homogenized, and proteins were extracted and incubated for 16 hr at 4˚C with GST- or

GST-gal-8-loaded beads. Next, the beads were washed in PBS+1% Triton X-100. Elution was performed with 0.5M

lactose, and the eluted proteins were resolved by SDS-PAGE and were stained with GelCode (A). Relevant bands

(marked with a rectangle) were excised, trypsinized, and subjected to analysis by mass spectrometry. Alternatively, the

eluted proteins were resolved by SDS-PAGE and were transferred to nitrocellulose membrane for Western blotting

with the indicated antibodies (B). Blots shown are representatives of four independent experiments with similar results.
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Mineral appositional rate (MAR), a representation of the activity of the average osteoblast, increased

by 25% in the Tg animals (1.12 ± 0.05 μm/day vs 1.41 ± 0.07 μm/day, p < 0.005, Figure 9, left).

Conversely, bone formation rate (BFR) also increased almost twofold in the gal-8 Tg mice compared

with that of the control group (0.30 ± 0.03 μm3/mm2/day vs 0.55 ± 0.06 μm3/mm2/day, p < 0.005,

Figure 9, right). These results indicate that gal-8 Tg mice experience enhanced bone remodeling that

involves enhanced rate of bone formation in spite of overall bone loss in these animals.

Effects of galectin-8 on RANKL expression and osteoclastogenesis
in vivo
To determine whether the increase in BFR in gal-8 Tg mice could be offset by increased

osteoclastogenesis in vivo, RNA was extracted from the femur and tibia of 14- to 16-week-old gal-8

Tg mice and WT control animals. As shown in Figure 10A, bones of Tg mice expressed 3.3-fold higher

amounts of RANKL than those of control WT mice. This was accompanied by a fourfold increase in the

Figure 6. Effects of silencing of MRC2, LRP1, and uPAR on the mode of action of galectin-8. (A–D, F, G) Osteoblasts from calvaria of newborn mice were

grown in 12-well plates (5 × 104 cells per well). After 24 hr, cells were transfected with the indicated siRNAs. Non-targeting siRNA served as control. 48–72

hr thereafter, galectin-8 (50 nM) was added for another 24 hr. Cells were then harvested, RNA was extracted, and qRT-PCR was conducted to quantify

changes in mRNA levels of MRC2 (A), LRP1 (B), uPAR (C), and RANKL (D, F, G). The content of actin mRNA served as a control for normalization purposes.

Results shown are mean values ± SEM of (n = 5 [A–C, F, G]; n = 3 [D]) **p < 0.01 vs control. (E) Osteoblasts were seeded in 24-well plates (4 × 104 cells/

well). After reaching 60–70% confluence, cells were transfected with the indicated siRNAs. After 72 hr, murine bone marrow cells extracted from the femur

and tibia of 6-week-old mice were added to the culture (2 × 106 cells/well). Galectin-8 (50 nM) was added on the first, fourth, and sixth days after addition

of the bone marrow. TRAP assay was performed, and multinucleated TRAP+ cells were counted. Results are mean values ± SEM of triplicate

measurements repeated in two independent experiments **p < 0.01 vs control.

DOI: 10.7554/eLife.05914.008
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ratio of osteoclasts surface/bone perimeter in decalcified sections of tibia from the Tg animals

(Figure 10B,C) and a 40% increase in the abundance of active osteoclasts in culture (TRAP+,

multinucleated cells) (Figure 10D). Elevated expression of the osteoclast markers TRAP and cathepsin

K (3.5-fold and twofold, respectively) was also observed in bone marrow cells derived from the Tg

mice, when compared with their WT controls (Figure 10E). No effects of galectin-8 on the

transcription of MCSF, the second key osteoclastogenic factor (Biskobing et al., 1995), were

observed (not shown). Taken together, these results suggest that the increased rate of bone

formation in gal-8 -8 Tg mice is apparently offset by the even greater increase in osteoclastogenic

activity in the bones of the Tg animals, resulting in a net loss of bone mass.

Discussion
Excessive reduction in bone mass, with osteoporosis as one of its hallmarks, is a major health problem,

especially in the elderly population (Manolagas and Jilka, 1995). Still, the mechanisms underlying the

development of this disease and some of the critical players in this process remain partially obscure

(Bonucci and Ballanti, 2014). In the present work, we provide evidence that an animal lectin of the

galectin family regulates osteoclastogenesis and loss of bone mass. We show that galectin-8 increases

the expression of RANKL, a key osteoclastogenic factor (Hanada et al., 2011; Xiong and O’Brien,

2012), in cultured osteoblasts, and promotes their osteoclastogenic potential when co-cultured with

bone marrow cells. At the same time galectin-8 inhibits the expression of OPG, a neutralizing decoy

receptor of RANKL, thus leading to an overall increase in the RANKL/OPG ratio. Given that RANKL is

both necessary and sufficient for osteoclast differentiation, provided that permissive concentrations of

MCSF are present (Eghbali-Fatourechi et al., 2003), and given that galectin-8 does not affect the

expression of MCSF, our findings strongly suggest that RANKL mediates the potentiating effects of

galectin-8 on bone resorption.

Galectins are secreted by atypical secretory pathway from different cell types (Boscher et al.,

2011; Di Lella et al., 2011). Therefore, a number of cell types could serve as a source for the secreted

galectin-8 that induces RANKL expression by osteoblasts. We have shown that silencing of galectin-8

expression in osteoblasts partially inhibits the expression of RANKL, suggesting that galectin-8,

secreted from these cells, could act in an autocrine fashion to induce RANKL expression. However, we

could also show that galectin-8 is present on the surface of bone marrow cells, turning these cells into

additional potential source for galectin-8 that affects osteoblasts. Further studies will be required to

resolve this complex issue.

At the molecular level, galectin-8 binds at the cell surface of osteoblasts to the low-density

lipoprotein receptor-related protein 1 (LRP1) (Grey et al., 2004) and the mannose receptor C, type 2

Figure 7. Expression of galectin-8 in femur and tibia of gal-8 Tg mice. (A) RNA was extracted from osteoblasts derived either from calvaria of newborn

mice (n = 7) (left) or from the femur and tibia of 14-week-old (n = 5) (right) wild-type (WT) and gal-8 Tg mice. qRT-PCR was conducted using primers for

galectin-8 or actin (control). Result shown are mean ± SEM (**p < 0.01). (B) Tibia was removed from 12-week-old WT (left) and gal-8 Tg mice (right). Bones

were decalcified and fixed in paraffin blocks. Sections were cut and stained with anti-galectin-8 antibody (red) and DAPI (blue).

DOI: 10.7554/eLife.05914.009
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(MRC2) (Engelholm et al., 2009) that negatively and positively regulate galectin-8 function,

respectively. LRP1 and MRC2 are part of a multi-protein complex that includes uPAR (Behrendt

et al., 2000; Smith and Marshall, 2010). Indeed, we could demonstrate that uPAR co-precipitates

with galectin-8 and that partial silencing the expression of uPAR attenuates the ability of galectin-8 to

promote RANKL transcription; findings that conform with the observation that uPAR-deficient mice

have increased bone mass (Furlan et al., 2007). uPAR localizes to integrin-containing adhesion

complexes, and co-immunoprecipitates with integrins and integrin-associated signaling molecules

such as focal adhesion kinase (FAK) and Src family kinases (reviewed in Smith and Marshall, 2010).

In particular, it modulates the affinity of β1, β2, and β3 integrins (Wei et al., 1996) for their

Figure 8. MicroCT scans of tibia proximal regions. In vivo and in vitro μCT scans were performed on 14-week-old WT

and Tg mice, or on tibial bones removed from 16-week-old WT and Tg mice, respectively. Representative pictures

show the proximal region of the tibia (for in vivo CT) or a region of interest within the trabecular bone of the tibia

metaphysis (for in vitro CT). The position of Trabeculae is indicated by arrows.

DOI: 10.7554/eLife.05914.010

Table 1. Analysis and stereological parameters of tibia proximal region in WT and gal-8 Tg mice

In vivo CT In vitro CT

WT (n = 7) Tg (n = 7) WT (n = 5) Tg (n = 5)

BV/TV 0.40 ± 0.02 0.25 ± 0.03** 0.12 ± 0.01 0.04 ± 0.01**

Tb.N (1/mm) 3.19 ± 0.02 1.86 ± 0.25** 3.86 ± 0.51 1.68 ± 0.34**

Tb.Sp (mm) 0.19 ± 0.01 0.48 ± 0.08** 0.24 ± 0.03 0.68 ± 0.18*

BMD (%) 100% ± 15% 52% ± 5%** 100% ± 8% 68% ± 6%**

14-week-old WT and Tg mice (n = 7 each group) were scanned using a small animal in vivo μCT scanner. Tibial bones

were removed from 16-week-oldWT and Tg mice (n = 5 each group) and scanned using an in vitro CT scanner. Analysis

was performed on the proximal region of the tibia. The parameters calculated are Tb.N (trabecular number), Tb.Sp

(trabecular separation), BV/TV (bone volume/tissue volume), and BMD (bone mineral density). Results shown are mean

values ± SEM. BMD is given as relative to the average BMD of WT mice (**p < 0.01 vs WT mice).

DOI: 10.7554/eLife.05914.011
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corresponding matrix ligands (Smith and Mar-

shall, 2010), and does it, in part, through binding

to vitronectin (Smith and Marshall, 2010).

Integrins, including α1, αM, α3β1, and α6β1, as

well as ECM proteins, also serve as binding

partners to galectin-8 that functions as a matri-

cellular protein (Hadari et al., 2000; Nishi et al.,

2003; Cárcamo et al., 2006; Troncoso et al.,

2014). Complex formation between galectin-8

and integrins triggers integrin-mediated signal-

ing cascades such as Tyr phosphorylation of FAK

and paxillin, and a robust and sustained activa-

tion of the ERK and PI3K pathways (Levy et al.,

2001, 2003). Hence, interaction of galectin-8

with a complex of the uPAR/LRP1/MRC2 that

binds integrins could be the mechanism un-

derlying RANKL transcription in osteoblasts trea-

ted with this lectin. This model is further

supported by the fact that integrins promote

RANKL transcription through the activation of

FAK in osteoblasts (Nakayamada et al., 2003).

Phosphorylated FAK activates several transduc-

tion molecules including Src and Grb2, which

activate the ERK and PI3K signaling pathways (Schwartz and Ginsberg, 2002). Indeed, activation of

the ERK pathway in osteoblasts is obligatory for the action of galectin-8 as an inducer of

osteoclastogenesis, implicating this signaling pathway as being the major pathway activated

downstream of galectin-8. In contrast, the PI3K pathway appears not to play a role in the induction

of RANKL in response to galectin-8, while having a partial role in mediating osteoclastogenesis. These

findings place the PI3K pathway as acting downstream or independent of RANKL transcription in

mediating the effects of galectin-8 on osteoclastogenesis.

The mechanism underlying the inhibitory effects of LRP1 on RANKL transcription in response to

galectin-8 is presently unknown. LRP1, which also directly interacts with uPAR (Gonias et al., 2011),

could, for example, facilitate the endocytosis of uPAR, which was the first cell-signaling receptor

identified as a member of the LRP1-regulated plasma membrane proteome (Gaultier et al., 2006).

Because LRP1 down-regulates cell-surface uPAR by facilitating its endocytosis, uPAR-initiated cell

signaling may be inhibited by LRP1. Although galectin-8 can potentially bind to receptors that both

negatively (LRP1) and positively (MRC2 and uPAR) regulate RANKL expression, the net effect is still an

increase in RANKL expression and reduction in bone mass, which could be attributed, for example, to

different expression levels of these receptors in osteoblasts. Alternatively, the duration of the signals

emitted by these receptors could differ.

Osteoblastic cells are considered as the major cell type that expresses RANKL to support

osteoclastogenesis; however, recent findings suggest that osteocytes are the main regulators of bone

homeostasis through RANKL expression (Nakashima et al., 2011; Xiong et al., 2011). Our findings

reveal that galectin-8 affects RANKL expression in osteoblasts-enriched fractions of calvariae as well

as in osteocyte-enriched fraction. These findings support the hypothesis that galectin-8 acts both on

osteoblasts and osteocytes, at least in culture, and still, we cannot rule out the possibility that it

induces RANKL expression in vivo selectively in osteocytes.

The increased expression of RANKL in gal-8 transgenic animals enhances their osteoclasts differentiation

and results in a reduction in their BMD and bone volume fraction (BVF), thus supporting the notion galectin-

8 could induce a physiological bone loss. Of interest, dynamic histomorphometry revealed active bone

remodeling, associated with increased rate of bone formation in gal-8 Tg mice. The increase in bone

turnover could be attributed to the enhanced osteoclastogenic activity induced by galectin-8 that

subsequently promotes osteoblasts differentiation and increased BFR (Feng andMcDonald, 2011; Bonucci

and Ballanti, 2014). Still, the net effect is bone loss due to the overall greater activity of the osteoclasts. In

this respect, our model of Tg mice resembles in certain aspects the changes in bone turnover that take

place during postmenopausal osteoporosis (Raisz, 2005; Feng and McDonald, 2011). It is well established

Figure 9. Histomorphometric analysis of femurs from

WT and gal-8 Tg mice. 16-week-old WT (n = 5) and Tg

(n = 9) mice were injected with calcein. MAR (mineral

apposition rate, left) and BFR (bone formation rate,

right) were measured and calculated based on sections

of the femur bone taken from these mice. Results shown

are mean values ± SEM (**p < 0.01 vs WT mice).

DOI: 10.7554/eLife.05914.012
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that both bone resorption and BFRs are increased during postmenopausal osteoporosis (Raisz, 2005; Feng

andMcDonald, 2011); however, the extent of increased bone resorption exceeds that of augmented bone

formation, which causes an imbalance in favor of bone loss (Arlot et al., 1990; Ebeling et al., 1996;

Tanizawa et al., 1999; Raisz, 2005; Eriksen, 2010).

A number of rodent models for postmenopausal osteoporosis exist (e.g., Erlebacher and Derynck,

1996; Bucay et al., 1998; Mizuno et al., 2002; Rinotas et al., 2014). One is a model of Tg mice that

overexpress human RANKL (Rinotas et al., 2014). These mice develop bone loss and increased bone

turnover rate, which is similar to the phenotype of gal-8 Tg mice, supporting the notion that galectin-8

mainly acts through increased expression of RANKL in vivo.

In summary, our findings implicate an animal lectin as a novel regulator of osteoclastogenesis and

bone remodeling. The unique aspect of these observations stems from the fact that galectin-8, like

other secreted animal lectins, binds cell-surface glycoconjugates that enable it to engage in binding to

a number of receptors that express the proper repertoire of sugars on their surface. This offers a novel

mean for spatially controlled regulation of bone remodeling through high-density information coding

that involves lectin–sugar interactions. Our findings place animal lectins, with galectin-8 as their

representative, as novel osteoclastogenic agents and regulators of bone remodeling. The phenotype

of gal-8 Tg mice, showing enhanced bone turnover and reduced bone mass, supports the conclusion

that galectin-8 induces RANKL expression in an in vivo setting. The results reveal a potential link

between galectins, LRP1, MRC2, and uPAR in mediating this process of osteoclastogenesis.

Therefore, insights from this study might inform efforts to develop novel drug targets for the

treatment of diseases associated with bone loss.

Figure 10. Characterization of osteoblasts and osteoclasts derived from WT and gal-8 Tg mice. (A) RNA was

extracted from the femur and tibia of 14–16-week-old WT and Tg mice. qRT-PCR was conducted in order to quantify

changes in expression of RANKL. Actin served as a control for normalization purposes. Results are mean values ± SEM

of five mice per group. (B) Femurs were removed from 16-week-old WT and gal-8 Tg mice. Bones were fixed, and

TRAP staining was performed. Quantification of the ratios of osteoclast number to bone surface was calculated from

sections of WT (n = 5) and Tg (n = 9) mice. Results are mean values ± SEM (**p < 0.01). Representative sections are

shown in (C) Arrows indicate the position of osteoclasts. (D, E) Bone marrow cells were extracted from the femur and

tibia bone of 14-week-old WT and Tg mice and were seeded in 24-well plates (2 × 106 cells/well) for 24 hr. The number

of multinucleated TRAP+ cells was determined (D), and qRT-PCR of the indicated genes was performed (E). Results

are mean values ± SEM of n = 6 and n = 4 mice/group in (D) and (E), respectively (*p < 0.05, **p < 0.01 vs WT cells).

DOI: 10.7554/eLife.05914.013
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Materials and methods

Materials
Commercially available reagents were purchased from the following resources: trypsin-Ethylendiami-

netetraacetic acid (EDTA), penicillin, and L-glutamine were purchased from Biological Industries (Beit

Haemek, Israel). Fetal bovine serum was obtained from Hyclone Laboratories Inc. (Logan, UT).

Isopropyl-β-D-thiogalactopyranoside (IPTG) and PCR Master Mix (Dreamtaq) were purchased from MBI

Fermentas (Amherst, NY). Dispase II (neutral protease, grade II) was from Roche Diagnostics

(Mannheim, Germany). siRNA SMARTpool libraries were provided by Dharmacon (Lafayette, CO,

USA). GST-coupled resins were purchased from Novagen (Madison, WI). Lipofectamine 2000 was from

GIBCO-BRL (Grand Island, NY). PerfectPure RNA Cell & Tissue for RNA extraction was from 5 PRIME

(Hamburg, Germany). cDNA reverse transcription kit was purchased from Applied Biosystems

(Carlsbad, CA). Real-time Polymerase Chain Reaction (PCR) kit (SYBR green PCR master mix) was

purchased from Invitrogen (Carlsbad, CA). Thiodigalactoside was purchased from Santa Cruz

Biotechnology (Dallas, TX). Leukocyte acid phosphatase staining kit, protease inhibitor cocktail,

lactosyl-sepharose beads, wortmannin, cycloheximide, proteinase K, lysozyme, collagenase type 1A,

prostaglandin E2, Dulbecco’s Modified Eagle Medium (DMEM), sucrose, and diethyl pyrocarbonate

(DEPC) were purchased from Sigma Chemicals Co. (St. Louis, MO). Galectin-8 was a bacterially

expressed recombinant protein, encoded by the cDNA of rat galectin-8 (Hadari et al., 1995).

Monoclonal galectin-8 antibodies (106.1) were generated as described (Levy et al., 2001).

Mice
CB6F1 mice were used throughout this study. All animals were housed under standard light/dark

conditions in the animal care unit of the Weizmann Institute of Science. Mice were given food and

water ad libitum. Experiments were approved by the Animal Care and Use Committee of the

Weizmann Institute of Science.

Generation of transgenic mice
Plasmid-bearing Myc-tagged rat galectin-8 coding sequence under the chicken beta-actin

promoter was constructed on the backbone plasmid pQE-TrySystem. The plasmid was restricted

by NaeI and SphI, and the linear fragment of 3137 bp was microinjected into CB6F1-fertilized

oocytes. Mice were scanned for the presence of the insert by two PCR reactions using two pairs of

primers for amplification of the promoter region (sense: AAAGGAGATATACCGCGGCGA

TATCCC, antisense: CTGCAACCTTGAACTCTCGGACATCAC, 630 bp) and the myc-galectin-8

coding sequence (sense: CGCCAATAGGGACTTTCCATTGAC, antisense: CTAATTACAGCCC

GAAGGAGAAGG, 970 bp).

Osteoblast isolation from murine calvariae
Isolation and culture of osteoblasts from newborn mice calvariae were carried out as described

(Bakker and Klein-Nulend, 2003; Nakashima et al., 2011). Briefly, calvariae were extracted from up

to 1-day-old pups and were subjected to five incubations with 0.1% collagenase and 0.2% dispase in

serum-free medium. The medium from the second to the fifth incubations were collected and

centrifuged to pellet the osteoblasts. Osteoblasts were then grown until sub-confluence and were

frozen till further use. For each experiment, cells were thawed and grown in α-modified DMEM

medium (Sigma) supplemented with 10% fetal calf serum.

Osteoclast differentiation assay
The ability of osteoblasts to induce osteoclast differentiation was assayed in a co-culture system,

adapted from Takahashi et al. (2007). Primary osteoblasts (1 × 104 cells/well) extracted from calvariae

of newborn mice were co-cultured in 24-well plates with bone marrow cells (1 × 106 cells/well) flushed

from the femur and tibia of 6-week-old mice. Medium, containing galectin-8 and/or PGE2, was

replaced every other day. After 10 days, cells were stained for TRAP (tartarate-resistant acid

phosphatase) using a commercial staining kit (Sigma) following the manufacturer instructions.

Multinucleated cells stained purple were counted as active osteoclasts.
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RNA analysis
Cells were grown in 6-well plates. Following treatment, cells were harvested and total RNA was

extracted using the PerfectPure RNA kit (5 PRIME). RNA was quantified and cDNA was generated by

cDNA Reverse Transcription kit (Applied Biosystems) following manufacturer instructions. Quantita-

tive detection of mRNA transcripts was carried out by real-time PCR using ABI-Prism 7300 instrument

(Applied Biosystems) using SYBR Green PCR mix (Invitrogen) and specific primers (400 nM final

concentration) (Table 2). Results were normalized to mRNA levels of β-actin.

RNA extraction from murine long bones
Femur and tibia bones were removed and placed in RNAlater solution (Ambion, Foster City, CA).

After flushing of the bone marrow, and two more flushings with RNAlater solution, bones were cut

into 1- to 2-mm3 pieces and crushed. Total RNA was extracted as detailed above.

Western blot analysis
Cells were harvested in lysis buffer (25 mM Tris/HCl, 25 mM NaCl, 0.5 mM Ethylene Glycol Tetraacetic

Acid (EGTA), 2 mM sodium orthovanadate, 10 mM NaF, 10 mM sodium pyrophosphate, 80 mM

β-glycerophosphate, 1% Triton X-100, 0.05% Sodium Dodecyl Sulphate (SDS) and protease inhibitors

1:1000, pH 7.5) and were centrifuged at 12,000×g for 20 min at 4˚C. Supernatants were collected, and

samples of 50 μg protein were mixed with 5×Laemmli sample buffer and were resolved by SDS-PAGE

under reducing conditions. Proteins were transferred to nitrocellulose membrane for Western blotting

with the indicated antibodies.

Quantification of soluble RANKL
Media from cells were used for quantification of soluble RANKL using a murine sRANKL ELISA

Development Kit (PeproTech) according to the manufacturer instructions. sRANKL levels were

normalized to total cellular protein concentration, quantified by Bradford assay.

Flow cytometry analysis
Murine bone marrow cells were extracted and washed with 10 mM TDG or sucrose for 15 min at 4˚C.

Flow cytometry was performed as previously described (Isaac et al., 2013). Briefly, after 20 min of

fixation with 2% p-formaldehyde (PFA), cells were incubated on ice with 0.5% BSA for 30 min, followed

by incubation with galectin-8 antibodies for 1 hr and Alexa 594-labeled secondary antibodies (Life

Technologies) for 30 min. Cells were washed with cold phosphate-buffered saline (PBS) between

incubations. Flow cytometry analysis was performed by LSR II Flow Cytometer System (BD Biosciences).

Histological staining of bones
The tibia and femur were removed from 14- to 16-week-old mice and cut open at their distal end. Fixation

was performed in 2.5% PFA for 48 hr, followed by decalcification in 10% EDTA for 3 days. Sections were

stained with anti-galectin-8 antibodies or with TRAP staining kit (Sigma) following manufacturer

instructions. Measurements were performed on blindly selected regions taken from each slide.

Table 2. qRT-PCR primer sequences (5′–3′)

Gene Forward primer Reverse primer

RANKL ATCGGGAAGCGTACCTACAG GTGCTCCCTCCTTTCATCAG

TRAP CAGCAGCCAAGGAGGACTAC ACATAGCCCACACCGTTCTC

CTSK CAGCTTCCCCAAGATGTGAT AGCACCAACGAGAGGAGAAA

MRC2 GCCATACGGCTTTGCCCTAC GGCCCTGGATTCGGAAACAC

uPAR TGTGCTGGGAAACCGGAGTT GAGGTGGGTCGGGAAGGAGT

LRP1 TCAGACGAGCCTCCAGACTCT ACAGATGAAGGCAGGGTTGGT

Gal-8 (mouse) TGAACACCAATGCCCGAAGC GCGTGGGTTCAAGTGCAGAG

Gal-8 (rat) TGTATGCCCACAGGATCAAC ATCCGAGCTGAATCTGAACC

DOI: 10.7554/eLife.05914.014
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Bone mass and structure analysis by μCT
For in vitro CT analysis, the tibia was removed from 16-week-old mice and scanned using an in vitro μCT
scanner (MicroXCT-400, Xradia, California, USA). For each bone, 300 projection images were taken

over 180˚, with an exposure time of 3 s per projection and geometry set for a voxel size of 5.67 μm
(source-to-sample distance 90 mm, sample-to-detector distance 17 mm, linear magnification 4×).
All morphometric parameters were determined by using a direct 3D approach. Volume reconstruction

was performed with a dedicated software (Xradia California, USA) based on the filtered back-projection

algorithm. Parameters determined in the metaphyseal trabecular bone included bone volume density

(BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) and were estimated using a region

of interest (ROI) size of 150 × 150 × 50 voxels, which was placed in the center of the trabecular region of

the tibia, approximately 300 μm below the lowest point of the growth plate.

For in vivo CT analysis, mice were anesthetized by injection of 2% ketamine and xylasine in PBS.

Mice were scanned using small animal in vivo μCT scanner (TomoScope 30S duo, VAMP, Germany)

following instrument-operating instructions. Scans were performed using the 65-65-360-90 protocol

(using two micro-focus x-ray tubes of 65 Kv with an integration time of 90 ms), with a resolution of

80 μm. Image reconstruction was carried out by the Impact View software (VAMP, Germany). Files were

saved in digital imaging and communications in medicine (DICOM) format. Conversion of DICOM files

to analysis files was carried out using imageJ software (National Institutes of Health). BVF, BMD, and

stereological bone parameters were calculated using the eXplore MicroView software (GE Healthcare,

UK). Calculations were performed in a cylinder-shaped ROI, with a size of 10 × 10 × 10 voxels, which

was placed inside the trabecular region of the proximal tibia, in similar positions in all mice. For BVF

analysis, the automated threshold function of MicroView was used for bone segmentation.

Histomorphometric analysis
To label bone-forming surfaces, mice were injected subcutaneously with calcein (Sigma Chemical Co, St.

Louis, MO) at 15 mg/kg, 4 and 1 day before sacrifice. After sacrifice, femurs were removed and kept in

70% ethanol until μCT and histomorphometric analyses. After μCT image acquisition, femora were

embedded undecalcified in polymethylmethacrylate (Technovit 9100; Heraeus Kulzer, Wehrheim,

Germany) (Parfitt et al., 1987). Longitudinal 5-μm sections were employed for dynamic histomorpho-

metric measurements based on calcein labeling, using a fluorescent microscope. The analysis was

carried out in a blinded manner on digital photomicrographs using IMAGE-PRO EXPRESS 4.0 image

analysis software (Media Cybernetics, Silver Spring, MD). The following parameters were determined in

a reference area extending 0.75–2.25 mm proximal of the distal growth plate in a mid-longitudinal plane

according to the convention of standardized nomenclature (Parfitt et al., 1987): total bone surface (BS),

the percentage of single- and double-labeled bone surfaces (sLS and dLS), and interlabel width were

measured. Mineralizing surface [MS/BS = (dLS + 1/2sLS)/BS], mineral apposition rate [MAR = interlabel

width/labeling time interval], and BFR [= MAR (MS/BS)] were calculated according to convention. To

determine osteoclast number, consecutive sections were deplasticized, and TRAP (tartrate-resistant acid

phosphatase) staining was used (Sigma, St. Louis, MO, USA). Stained osteoclasts were counted, and

their numbers were determined per millimeter of trabecular bone surface (Oc.N/BS) in the same

reference area as previously described by us (Dresner-Pollak et al., 2008).

siRNA transfections
Osteoblasts were transfected with siRNA SMARTpool (Dharmacon) by using Lipofectamine 2000

transfection reagent (GIBCO-BRL, Grand Island, NY) according to manufacturer’s instructions. Briefly,

50 pmol of the siRNA was diluted in 50 μl of serum-free medium. 1 μl of Lipofectamine 2000 was also

diluted in the same volume of serum-free medium. Both solutions were mixed together and incubated

at room temperature for 15 min. The mix was added at 1:10 ratio to the osteoblasts’ culture medium.

Incubation with the siRNA was carried out for 48 hr.

Identification of galectin-8-binding partners in osteoblasts by mass
spectrometry
Calvariae were extracted from newborn rats and homogenized, and proteins were extracted as

described above. Glutathione S-transferase (GST) and GST-galectin-8 (100 μg) were immobilized on

200 μl glutathione–agarose beads at 4˚C. After 2 hr, the beads were washed three times with PBS.

Calvaria proteins were incubated for 16 hr with GST- or GST-gal-8-loaded beads. The beads were
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loaded on a column and washed with 100 ml of PBS in Triton X-100 (0.1%) and protease inhibitors.

Proteins were eluted with 0.5M lactose supplemented with 0.1% Triton and protease inhibitors

cocktail. Eluted proteins were resolved by SDS-PAGE and were stained with Gel Code. Protein bands

that were selectively eluted from GST-gal-8-loaded beads in two independent experiments were

excised and trypsinized. Resulting peptides were subjected to mass spectrometry analysis and nano-

LC-ESI-MS/MS as we previously described (Isaac et al., 2013). For the analysis of tryptic peptides,

survey scans were recorded in the Fault-tolerance (FT) -mode followed by data-dependent collision-

induced dissociation of the seven most-intense ions in the linear ion trap. The data were searched with

MASCOT (Matrix Science, London, UK) against a Swissprot or National Center for Biotechnology

Information (NCBI) databases and confirmed by manual inspection of the fragmentation series.

Relative quantitation was conducted with the Scaffold PTM software (Proteome Software Inc., USA)

and the A-score algorithm (Zhai et al., 2008).

Statistics
Data are presented as mean ± SEM unless otherwise specified. Group means were compared using

the non-paired t-test. Differences of p < 0.05 were considered significant.
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A, Soza A. 2006. Galectin-8 binds specific beta1 integrins and induces polarized spreading highlighted by
asymmetric lamellipodia in Jurkat T cells. Experimental Cell Research 312:374–386. doi: 10.1016/j.yexcr.2005.10.025.

Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. 2011. When galectins
recognize glycans: from biochemistry to physiology and back again. Biochemistry 50:7842–7857. doi: 10.1021/
bi201121m.

Dresner-Pollak R, Gabet Y, Steimatzky A, Hamdani G, Bab I, Ackerman Z, Weinreb M. 2008. Human parathyroid
hormone 1-34 prevents bone loss in experimental biliary cirrhosis in rats. Gastroenterology 134:259–267. doi: 10.
1053/j.gastro.2007.10.025.

Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, Wark JD. 1996. Bone turnover markers
and bone density across the menopausal transition. The Journal of Clinical Endocrinology and Metabolism 81:
3366–3371. doi: 10.1210/jcem.81.9.8784098.

Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. 2003. Role of RANK ligand in mediating
increased bone resorption in early postmenopausal women. The Journal of Clinical Investigation 111:1221–1230.
doi: 10.1172/JCI17215.

Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. 2007. Galectins: matricellular glycan-
binding proteins linking cell adhesion, migration, and survival. Cellular and Molecular Life Sciences 64:
1679–1700. doi: 10.1007/s00018-007-7044-8.

Engelholm LH, Ingvarsen S, Jürgensen HJ, Hillig T, Madsen DH, Nielsen BS, Behrendt N. 2009. The collagen
receptor uPARAP/Endo180. Frontiers in Bioscience 14:2103–2114. doi: 10.2741/3365.

Eriksen EF. 2010. Cellular mechanisms of bone remodeling. Reviews in Endocrine & Metabolic Disorders 11:
219–227. doi: 10.1007/s11154-010-9153-1.

Erlebacher A, Derynck R. 1996. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like
phenotype. The Journal of Cell Biology 132:195–210. doi: 10.1083/jcb.132.1.195.

Eshkar Sebban L, Ronen D, Levartovsky D, Elkayam O, Caspi D, Aamar S, Amital H, Rubinow A, Golan I, Naor D,
Zick Y, Golan I. 2007. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of
autoimmune inflammation. The Journal of Immunology 179:1225–1235. doi: 10.4049/jimmunol.179.2.1225.

Feng X, McDonald JM. 2011. Disorders of bone remodeling. Annual Review of Pathology 6:121–145. doi: 10.1146/
annurev-pathol-011110-130203.

Furlan F, Galbiati C, Jorgensen NR, Jensen JE, Mrak E, Rubinacci A, Talotta F, Verde P, Blasi F. 2007. Urokinase
plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function.
Journal of Bone and Mineral Research 22:1387–1396. doi: 10.1359/jbmr.070516.

Vinik et al. eLife 2015;4:e05914. DOI: 10.7554/eLife.05914 17 of 19

Research article Cell biology | Human biology and medicine

http://dx.doi.org/10.1016/j.bone.2005.11.017
http://dx.doi.org/10.1074/jbc.M502060200
http://dx.doi.org/10.1007/BF01880415
http://dx.doi.org/10.1385/1-59259-366-6:19
http://dx.doi.org/10.1515/BC.2004.031
http://dx.doi.org/10.1074/jbc.275.3.1993
http://dx.doi.org/10.1074/jbc.275.3.1993
http://dx.doi.org/10.1186/1471-213X-11-6
http://dx.doi.org/10.1186/1471-213X-11-6
http://dx.doi.org/10.1002/jbmr.5650100706
http://dx.doi.org/10.1002/jbmr.320
http://dx.doi.org/10.1177/0192623313512428
http://dx.doi.org/10.1016/S0955-0674(02)00361-7
http://dx.doi.org/10.1016/j.ceb.2011.05.001
http://dx.doi.org/10.1074/jbc.M212385200
http://dx.doi.org/10.1101/gad.12.9.1260
http://dx.doi.org/10.1016/j.yexcr.2005.10.025
http://dx.doi.org/10.1021/bi201121m
http://dx.doi.org/10.1021/bi201121m
http://dx.doi.org/10.1053/j.gastro.2007.10.025
http://dx.doi.org/10.1053/j.gastro.2007.10.025
http://dx.doi.org/10.1210/jcem.81.9.8784098
http://dx.doi.org/10.1172/JCI17215
http://dx.doi.org/10.1007/s00018-007-7044-8
http://dx.doi.org/10.2741/3365
http://dx.doi.org/10.1007/s11154-010-9153-1
http://dx.doi.org/10.1083/jcb.132.1.195
http://dx.doi.org/10.4049/jimmunol.179.2.1225
http://dx.doi.org/10.1146/annurev-pathol-011110-130203
http://dx.doi.org/10.1146/annurev-pathol-011110-130203
http://dx.doi.org/10.1359/jbmr.070516
http://dx.doi.org/10.7554/eLife.05914


Gaultier A, Salicioni AM, Arandjelovic S, Gonias SL. 2006. Regulation of the composition of the extracellular matrix
by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression. The
Journal of Biological Chemistry 281:7332–7340. doi: 10.1074/jbc.M511857200.

Gonias SL, Gaultier A, Arandjelovic S, Gonias SL. 2011. Regulation of the urokinase receptor (uPAR) by LDL
receptor-related protein-1 (LRP1). Current Pharmaceutical Design 17:1962–1969. doi: 10.2174/
138161211796718224.

Grey A, Banovic T, Zhu Q, Watson M, Callon K, Palmano K, Ross J, Naot D, Reid IR, Cornish J. 2004. The low-
density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells.
Molecular Endocrinology 18:2268–2278. doi: 10.1210/me.2003-0456.

Hadari YR, Goren R, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, Zick Y. 2000. Galectin-8 binding to
integrins inhibits cell adhesion and induces apoptosis. Journal of Cell Science 113:2385–2397.

Hadari YR, Paz K, Dekel R, Mestrovic T, Accili D, Zick Y. 1995. Galectin-8. A new rat lectin, related to galectin-4.
The Journal of Biological Chemistry 270:3447–3453. doi: 10.1074/jbc.270.7.3447.

Hanada R, Hanada T, Penninger JM. 2010. Physiology and pathophysiology of the RANKL/RANK system.
Biological Chemistry 391:1365–1370. doi: 10.1515/BC.2010.149.

Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM. 2011. RANKL/RANK-beyond bones. Journal of Molecular
Medicine 89:647–656. doi: 10.1007/s00109-011-0749-z.

Isaac R, Boura-Halfon S, Gurevitch D, Shainskaya A, Levkovitz Y, Zick Y. 2013. Selective serotonin reuptake
inhibitors (SSRIs) inhibit insulin secretion and action in pancreatic beta cells. The Journal of Biological Chemistry
288:5682–5693. doi: 10.1074/jbc.M112.408641.

Kozlow W, Guise TA. 2005. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for
therapy. Journal of Mammary Gland Biology and Neoplasia 10:169–180. doi: 10.1007/s10911-005-5399-8.
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