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As a chemotherapeutic agent, bortezomib (BTZ) is used for the treatment of multiple

myeloma with adverse effect of painful peripheral neuropathy. Our current study was

to determine the inhibitory effects of blocking microRNA-155 (miR-155) signal on

BTZ-induced neuropathic pain and the underlying mechanisms. We employed real

time RT-PCR and western blot analysis to examine the miR-155 and expression of

pro − inflammatory tumor necrosis factor-α receptor (TNFR1) in the dorsal horn of

the spinal cord. Its downstream signals p38-MAPK and JNK and transient receptor

potential ankyrin 1 (TRPA1) were also determined. Mechanical pain and cold sensitivity

were assessed by behavioral test. In result, inhibition of miR-155 significantly attenuated

mechanical allodynia and thermal hyperalgesia in BTZ rats, which was accompanied with

decreasing expression of TNFR1, p38-MAPK, JNK, and TRPA1. In contrast, miRNA-155

mimics amplified TNFR1-TRPA1 pathway and augmented mechanical pain and cold

sensitivity. In addition, mechanical and thermal hypersensitivity induced by miRNA-155

mimics were attenuated after blocking TNFR1, p38-MAPK, JNK, and TRPA1. Overall,

we show the key role of miR-155 in modifying BTZ-induced neuropathic pain through

TNFR1-TRPA1 pathway, suggesting that miR-155 is a potential target in preventing

neuropathic pain development during intervention of BTZ.

Keywords: microRNA-155, bortezomib, chemotherapeutics, multiple myeloma, neuropathy

INTRODUCTION

Bortezomib (BTZ) is an inhibitor of the proteasome complex and is primarily used to treat multiple
myeloma (1, 2). Nonetheless, one of its adverse effects is dose-limiting peripheral neuropathy (3).
Because of a poor understanding of the mechanisms leading to BTZ-induced pain, treatment
options have been limited. Therefore, it is noteworthy to determine molecular mediators of
BTZ-induced neuropathy in order to provide a base for application of drugs and further to make
therapeutic strategies with chemotherapeutic in patients with multiple myeloma.

MicroRNAs (miRNAs) are small noncoding endogenous RNA molecules, repressing
their target mRNA through complementary binding in the message 3′-UTR (4). They
have important effects in processes of multiple physiological responses including cell
death and survival, cellular response to stress, stem cell division, and pluripotency (5).
MiRNAs also contribute to disease processes such as cancer, cardiovascular disease and
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neurodegenerative diseases (6–8). As a result of their small size,
relative ease of delivery, and sequence specificity in recognizing
their targets, miRNAs are reflected as therapeutic targets of
drug development (9). Notably, miRNA-155 (miR-155) plays a
role in various physiological and pathological processes among
various miRNAs (10–13). For instance, MiR-155 is involved in
chronic immune activity through T cells by the downregulation
of lymphocyte-associated antigens (14). In autoimmune diseases,
miR-155 is found in patients’ tissues and synovial fibroblasts (12).
In multiple sclerosis, miR-155 is upregulated in resident myeloid
cells of the nervous systems, blood monocytes and activated
microglia (15).

The inflammatory process is involved in neuropathic pain (16,
17). Proinflammatory cytokines (PICs), including interleukin-
1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α
(TNF-α), are elevated in the nervous system after nerve injury
and/or inflammation, responsible for mechanical and thermal
hypersensitization (18). In particular, TNF-α has a role in
regulating neuropathic pain (16, 17). In pain models, TNF-α in
sensory nerves is upregulated following peripheral nerve injury
(19). TNF-α evokes hyperalgesia and allodynia in naive rats
(20). Chemotherapeutic drugs paclitaxel or vincristine upregulate
TNF-α (20). A blockade of TNF-α with its inhibitor or genetic
impairment attenuates mechanical hyperalgesia and allodynia
(19). BTZ treatment increases TNF-α in dorsal root ganglion
(DRG) and spinal dorsal horn (21, 22) and TNF-α antibody
inhibits allodynia by BTZ (23).

Transient receptor potential ankyrin 1 (TRPA1) has a
functional role in regulating pain and neurogenic inflammation
due to channel activation to various compounds (24–28).
TRPA1 is presented in sensory nerves (27) and is involved
in mechanical and cold hypersensitivity (29, 30). Further
studies indicate that TRPA1 mediates mechanical and cold
hypersensitivity by chemotherapeutics (31, 32). A recent study
showed that a blockade of TNF-α signal attenuates intracellular
p38-MAPK and JNK in the DRG and this alleviates mechanical
hyperalgesia and cold hypersensitivity by BTZ via decreasing
TRPA1 expression (33).

Nonetheless, it remains unrevealed for the role of miRNA-155
in control of TNF-α signal in neuropathy by BTZ. Accordingly,
we examined the role played by miR-155 in modulating
neuropathic pain after BTZ therapy. We hypothesized that
inhibition ofmiR-155 alleviatesmechanical hyperalgesia and cold
hypersensitivity by BTZ. We also hypothesized that inhibition
of miRNA-155 attenuates upregulation of TNF-α receptor
(TNFR1), intracellular p38-MAPK and JNK signal and TRPA1
in the dorsal horn. We further hypothesized that blocking
TNFR1-TRPA1 signal attenuates pain hypersensitivity induced
by miRNA-155 mimics.

MATERIALS AND METHODS

Animals
We performed all animal protocols in accordance with the
guidelines of the International Association for the Study of Pain,
approved by the Research Committee of our institution. Wistar
rats (200–250 g) had free access to food and water and they were

housed in individual cages in a temperature-controlled room on
a 12/12 h light/dark cycle.

Development of Neuropathic Pain and
Intrathecal Administration
On the basis of our previous report (34), “BTZ (0.4 mg/kg
body weight; dissolved in saline; Haoran BioTech Co., Shanghai,
China) was given intraperitoneally (i.p.) once daily for five
consecutive days. Control animals were given with an equivalent
volume of vehicle (saline).”

Three days prior to each experiment, sodium pentobarbital
(60 mg/kg, i.p.) was used to anesthetize the rats to implant
intrathecal catheter for administration of drugs. In brief, one end
of polyethylene-10 tubing was inserted intrathecally through an
incision in the cisternal membrane and advanced 7–9 cm caudal
until the tip of the catheter was positioned at the lumbar spinal
level (L5 to L6). The other end of the intrathecal tubing was
sutured to the musculature and skin at the incision site and
externalized to the back of the rat.

After the end of BTZ administration, the following intrathecal
injection was performed each day for three consecutive days:
miR-155 inhibitor (sequence: 5′AAU UAC GAU UAG CAC
UAU CCC CA-3′; 3 µg, Biomics Biotech, Nantong, China),
miR-155 mimics (sequence: 5′-UUA AUG CUA AUC GUG
AUA GGG GU-3′; 3 µg, Biomics Biotech, Nantong, China)
and their corresponding scramble for negative controls (3 µg,
Biomics Biotech, Nantong, China). MiR-155 inhibitor, miR-
155 mimics and their respective scramble were dissolved in
artificial cerebrospinal fluid (aCSF) before they were used;
and their dosages used in this study were based on the
published work (35). TNF-α synthesis inhibitor pentoxifylline
(PTX, 10 µg), TRPA1 antagonist HC030031 (5 µg), p38-MAPK
inhibitor SB203580 (5 µg), and JNK inhibitor SP600125 (5
µg) were also given by individual intrathecal injection each
day for three consecutive days. Those drugs were obtained
from Sigma Co. (St. Louis, MO, US) and all drugs were
dissolved in aCSF before they were used. In each experiment,
a Hamilton microsyringe (250 µL) was connected to the
intrathecal tubing to make 100 µl of delivery. A schematic
diagram of experimental protocols and the schedule giving drugs
was shown in Figure 1A.

Real-Time PCR
As described in our previous publication (35), “the tissues
of the L5-L6 spinal cord dorsal horn were processed for the
extraction of total RNA (RNeasy Mini Kit; Qiagen). RT-PCR
was performed using the TaqmanW Universal PCR Master Mix
and 18 s rRNA (TaqmanW PDAR) was used as an endogenous
control to correct for variations in the samples. RT-PCR was
performed in duplicate in 96-well plates containing 2 µL of
cDNA. The thermal conditions of the cycles were 50◦C/2min,
60◦C/30min, and 95◦C/5min; and this was followed by 40 cycles
at 94◦C for 20 s and 62◦C for 60 s. The ABI PRISM SDS 7000
thermal cycler was used to obtain the data. Using the 2-11Ct
comparative method, relative quantification of target gene was
implemented and the threshold cycle value was defined by the
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FIGURE 1 | (A) A schematic diagram showing the schedule giving miR-155 inhibitor and mimics, their scrambles and receptor blockers as well as experimental

protocols. BTZ was injected [intraperitoneally (i.p.), daily, 0.4 mg/kg body weight] over 5 days (indicated by blue bar). The starting day is expressed as “day −5.” An

equivalent volume of vehicle was given in control animals. Then, miR-155 inhibitor/mimics, their scrambles, PTX, HC030031, SB203580, and SP600125 were

administered (indicated as red bar) at the end of BTZ injection (day 0), which was also marked as day 0 in the Figures for results examining neuropathic pain.

(B) showing that the levels of miR-155 mRNA were increased in the dorsal horn of the spinal cord after administration of BTZ and remained at a high level. *P < 0.05

vs. its level at days −5 and −4. The number of rats = 8–10 in each group.

point at which there was a statistically significant detectable
increase in fluorescence.”

Western Blot Analysis
As described in our previous publication (34), “the samples
containing total protein of the L5-L6 dorsal horn tissues were
extracted, centrifuged and the supernatants were collected to
assess protein concentrations. Then the supernatant (containing
20 µg of protein) were loaded onto gels and electrically
transferred to the membrane. The membrane was incubated
overnight with primary rabbit antibodies (1:500), namely anti-
TNFR1 (Abcam #ab90463), anti-TRPA1 (Novus Bio, NB100-
91319), anti-p-p38-MAPK (USBio, USB#403230) and anti-
p-JNK1 (Abcam #ab47337). The primary antibodies were
purchased from Abcam Co and/or Antibodies-online Inc. After
being washed, the membranes were incubated with anti-rabbit
secondary antibody (1:1000, Sigma Co). The bands recognized
by immunoreactive proteins were visualized by exposure of the
membrane onto an x-ray film. The Scion Image software was
employed to determine the optical density of immunoreactive
proteins bands.”

Behavioral Test
As described previously in our publications (34, 35), “we
examined mechanical paw withdrawal threshold (PWT) of rat
hindpaw in response to the stimulation of von Frey filaments.
In brief, the filaments were bent for 5–10 s in our protocols.
If a response was seen, we applied the filament of next lower
force. If a response was not seen, we applied the filament of next
greater force. To avoid injury during tests, the cutoff strength
of the von Frey filament was 18 g. The tactile stimulus having
a 50% likelihood of withdrawal was determined by the “up-
down” method (36). We repeated each trial 2 times at ∼2min
intervals. The mean value was used as the force producing a
withdrawal response.”

We used Thermal Place Preference System to execute the
thermal place preference test to assess a cold avoidance behavior
as described in our previous study (34, 35). “We kept the first
plate at neutral temperature (25◦C) and the second plate at
cold temperature (12◦C). The test was executed in darkness and
lasted 3min and we left the rats free to explore both plates. The
time spent on the cold plate was recorded using an infrared
camera connected to a computer. To avoid learning or any place
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FIGURE 2 | (A) Typical bands and averaged data show that BTZ increased the protein levels of TNFR1 (a subtype TNF-α receptor) and TRPA1 as well as intracellular

signal p-p38-MAPK and p-JNK in the dorsal horn of the spinal cord as compared with controls. Furthermore, miR-155 inhibitor attenuated increases of these receptor

and signal pathways in BTZ animals. Note that miR-155 inhibitor scramble did not alter upregulation of TNFR1, TRPA1 p-p38-MAPK/p-JNK induced by BTZ. *P <

0.05 vs. control rats and BTZ rats with inhibitor.
†
P < 0.05, BTZ rats with inhibitor vs. BTZ rats with scramble. n = 8–12 in each group. (B) Typical bands and

averaged data show that TNFR1, TRPA1 and p-p38-MAPK/p-JNK were increased in the dorsal horn of control rats after intrathecal injection of miR-155 mimics;

whereas those expressions were not altered after intrathecal injection of scramble. *P < 0.05 vs. control rats.
†
P < 0.05, control rats with mimics vs. control rats and

control rats with scramble. n = 8–12 in each group.

preference unrelated to cold, we inverted the temperature of the
plates between two consecutive sessions. The animal studies were
performed in a blind manner. Cold sensitivity was expressed as
% time spent on the cold plate over 3min [time on cold plate
(seconds) /180 s× %].”

Statistical Analysis
We used SPSS for Windows version 13.0 to perform all statistical
analyses; and all data were analyzed using a two-way repeated-
measures analysis of variance with Tukey’s post hoc tests. We
presented values as means ± standard error of mean. For all
analyses of this study, differences were considered significant
at P < 0.05.

RESULTS

MiR-155 After BTZ Intervention
First, we determined the changes of miR-155 evoked by BTZ.
An increase of miR-155 was seen 3 days after the beginning of
BTZ intervention (Figure 1B). According to this result, in the rest

of experiments the time point (day 0) was selected for injection
miR-155 inhibitor and mimics, and receptor antagonists.

Effects of MiR-155 TNFR1-TRPA1 Signal
In addition, our data presented in Figure 2A show that TNFR1,
TRPA1 and p-p38-MAPK/p-JNK were increased in BTZ rats
(P < 0.05, BTZ vs. control). Application of miR-155 inhibitor
had attenuating effects on TNFR1-TRPA1 signal expression at
the protein levels (P < 0.05, BTZ with inhibitor vs. BTZ and
BTZ with scramble). In this experiment, protein expression of
TNFR1, TRPA1 and p-p38-MAPK/p-JNK were not observed
to be changed after application of miR-155 inhibitor scramble
(P > 0.05, BTZ vs. BTZ with scramble).

Furthermore, we examined the effect of miR-155 mimics on
TNFR1-TRPA1 signal pathways in control rats. Figure 2B shows
that miR-155 mimics, but not its scramble, amplified TNFR1,
TRPA1 and p-p38-MAPK/p-JNK (P < 0.05, control with mimics
vs. control and control with scramble). Insignificant difference
was seen in TNFR1-TRPA1 between control rats and control rats
with miR-155 mimics scramble (P > 0.05).
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Effects of MiR-155 on Pain Response
Less PWT was seen in BTZ rats compared with control rats
(Figure 3A). PWT was amplified 1 day after miR-155 inhibitor
in BTZ rats and this effect was observed to last for 7 days (P
< 0.05, BTZ vs. BTZ with inhibitor). In comparison with miR-
155 inhibitor, its scramble failed to alter PWT in BTZ rats (P >

0.05, BTZ vs. BTZ with scramble). Figure 3B shows that BTZ
decreased % time spent on the cold plate. MiR-155 inhibitor
increased % time spent on the cold plate in BTZ rats (P <

0.05, BTZ vs. BTZ with inhibitor). Similarly, miR-155 inhibitor
scramble had no effects in BTZ rats (P > 0.05, BTZ vs. BTZ
with scramble).

Next, we determined the effects of miR-155 mimics on PWT
and % time spent on the cold plate in control rats. Figure 4A
demonstrates that miR-155 mimics decreased PWT in control
rats (P < 0.05, control vs. control with mimics), but miR-
155 mimics scramble did not have significant effects on PWT.
Similarly, Figure 4B shows that miR-155 mimics, but not its
scramble, decreased % time spent on the cold plate in control
rats (P < 0.05, control with mimics vs. control and control
with scramble).

Effects of Inhibiting TNFR1-TRPA1
Pathway
We were to determine if the effects of miR-155 were via
TNFR1-TRPA1 signals. Thus, we examined if blocking those
signal pathways can attenuate hypersensitivity of mechanical and
cold stimulation induced by miR-155 mimics in control rats.
Figures 5A,B show that miR-155 mimics decreased PWT and
decreased % time spent on the cold plate in control rats. As PTX
or HC030031 was given by intrathecal injection, decreases in
PWT and % time spent on the cold plate were mostly improved
in rats with miR-155 mimics (P < 0.05, rats with mimics vs. rats
with mimics plus PTX or HC030031).

Likewise, Figures 6A,B demonstrate that inhibiting p38-
MAPK and JNK using respective SB203580 and SP600125 also
attenuated reductions in PWT and % time spent on the cold plate
in animals with miR-155 mimics (P < 0.05, rats with mimics vs.
rats with mimics plus SB203580 or SP600125).

DISCUSSION

With progression of cancer, pain is one of the most common and
distressing symptoms suffered by patients (37). Cancer pain can
be due to a tumor compressing; nerve and other tissue changes
caused by a hormone and immune responses; and/or treatments
and diagnostic procedures (37, 38). Notably, pain caused by
chemotherapy can continue even after the end of treatment
(37, 39, 40). Therefore, cancer pain during chemotherapy is
considered a significant issue in clinics.

BTZ is frequently applied for treatment of multiple myeloma
(1–3), but painful neuropathy and heightened cold sensitivity
are main complications during application of BTZ (3). Of
note, BTZ induces neuropathic pain in rats after initiation
of its chemotherapy (21–23). Indeed, the abnormal sensation
was ablated many days after BTZ (21–23). Using this rat

FIGURE 3 | Effects of miR-155 inhibitor on mechanical and cold sensitivity.

Paw withdrawal threshold (PWT) and cold sensitivity expressed as time spent

on the cold plate (%) were examined in control rats and BTZ rats. (A) PWT

was smaller in BTZ than in control rats at different time courses. Intrathecal

injection of miR-155 inhibitor (3 µg each day over three consecutive days), but

not its scramble, increased PWT in BTZ rats 1 day after its injection.

(B) showing that time spent on the cold plate was less in BTZ rats than in

control rats. MiR-155 inhibitor elevated % time spent on the cold plates in BTZ

rats 1 day after its injection. Mir-155 inhibitor scramble had no effects on %

time spent on the cold plates in BTZ rats. *P < 0.05, BTZ rats vs. control rats.

#P < 0.05, BTZ rats with inhibitor vs. BTZ rats and BTZ rats with scramble.

The number of rats in each group was shown on the figure.

model, a recent study showed that blocking TNF-α and TRPA1
signal in the DRG attenuated mechanical hyperalgesia and
cold hypersensitivity following BTZ, and the effects were via
engagement of intracellular signals p38-MAPK and p-JNK (33).

The sensory nerves (neurons) and dorsal horn of the spinal
cord paly a primary role in conducting signals of pain responses
(16, 17). The prior reports suggest that TNF-α is increased in
DRG and spinal dorsal horn after administration of BTZ (21, 22).
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FIGURE 4 | Effects of miR-155 mimics on mechanical and cold sensitivity.

Paw withdrawal threshold (PWT) and cold sensitivity expressed as time spent

on the cold plate (%) were examined in control rats and BTZ rats. (A)

Intrathecal injection of miR-155 mimics (3 µg each day over three consecutive

days) decreased PWT in control rats 1 day after its injection as compared with

scramble. (B) showing that time spent on the cold plate was less in BTZ rats

than in control rats. In control rats, miR-155 mimics decreased % time spent

on the cold plates one day after its injection, but miR-155 mimics scramble did

not change % time spent on the cold plates. *P < 0.05, BTZ rats vs. control

rats. #P < 0.05, control rats with mimics vs. control rats and control rats with

scramble. The number of rats in each group was shown on the figure.

We also observed that BTZ increased TNFR1-TRPA1 in the
dorsal horn of rats. Interestingly, intrathecal application of miR-
155 inhibitor attenuated TNFR1-TRPA1 and p38-MAPK and
p-JNK in the dorsal horn of BTZ rats. This also attenuated
mechanical hyperalgesia and cold hypersensitivity by BTZ. In
contrast, miR-155 mimics injected into the dorsal horn of control
rats amplified TNFR1-TRPA1 and led to mechanical hyperalgesia
and cold hypersensitivity. In addition, blocking TNFR1-TRPA1

FIGURE 5 | Effects of blocking TNFR1 and TRPA1 on mechanical and cold

sensitivity. TNF-α signal was inhibited by pentoxifylline (PTX; 10 µg each day

over three consecutive days). TRPA1 was blocked by administration of

HC030031 (5 µg each day over three consecutive days). (A) PWT was smaller

in BTZ than that in control rats for all time courses. As compared with controls,

intrathecal injection of miR-155 mimics (3 µg each day over three consecutive

days) significantly decreased PWT, and the effects of miR-155 mimics were

attenuated by injection of PTX and HC030031. (B) showing that % time spent

on the cold plate was less in BTZ rats and in rats with injection of miR-155

mimics. PTX and HC030031 attenuated the effects of miR-155 mimics. *P <

0.05, control rats vs. control rats with mimics; #P < 0.05, rats with mimics vs.

rats with mimics plus PTX or mimics plus HC030031. The number of rats in

each group was shown on the figure.

and p38-MAPK/p-JNK attenuated amplified pain by intrathecal
injection of miR-155 mimics. Furthermore, we showed that miR-
155 inhibitor decreased the protein levels of TRPA1 in BTZ
rats. Likewise, miR-155 mimics increased the protein levels of
TRPA1 in control rats. These results suggest that there is an
interaction between miR-155 signal and activation of TRPA1
pathway. Overall, our data suggest the role of miR-155 in
modifying mechanical hyperalgesia and cold hypersensitivity
during BTZ therapy.
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FIGURE 6 | Effects of blocking p38-MAPK and JNK signal on mechanical and

cold sensitivity. Intrathecal injection of SB203580 (5 µg each day over three

consecutive days) and SP600125 (5 µg each day over three consecutive

days) were performed to inhibit p38-MAPK and JNK signal pathway. (A,B) As

compared with controls, intrathecal injection of miR-155 mimics (3 µg each

day over three consecutive days) significantly decreased PWT and % time

spent on the cold plate. With respective SB203580 and SP600125,

decreased PWT and % time spent on the cold plate by miR-155 mimics were

largely restored. *P < 0.05, control rats vs. control rats with mimics; #P <

0.05, rats with mimics vs. rats with mimics plus SB203580 or mimics plus

SP600125. The number of rats in each group was shown on the figure.

In general, miR-155 is involved with disease processes related
to inflammation. For instance, deficiency of miR-155 inhibits IL-
17 and decreases renal damage in nephropathy (41). The lack of
miR-155 can decrease production of B and T cells in autoimmune
arthritis (42). A high level of miR-155 is observed in patients
with gouty arthritis compared with healthy controls (43). It was
also reported that deficiency in miR-155 alleviates inflammatory
bowel disease through downregulation of the Th1/Th17 (44). We
demonstrated that BTZ amplifies miR-155 in the dorsal horn

and miR-155 inhibitor can attenuate BTZ-induced TNF-α signal
pathway leading to decreases of neuropathic pain. Moreover,
miR-155 mimics amplifies pain response to mechanical and
thermal stimulation.

Anti-inflammatory protein suppressor of cytokine signaling
1 (SOCS1) is a target gene of miR-155 (45). SOCS1 is a
key regulator of inflammatory signals, negatively regulating
the inflammation feedback (46). Deficiency of SOCS1 leads to
amplified responsiveness to inflammatory stimuli in various
cells or in animals (47, 48). In a prior study, the role of
miR-155 and SOCS1 in neuropathic pain was identified (49).
This prior study showed that miR-155 was upregulated in the
dorsal horn after chronic constriction injury. MiR-155 inhibitor
alleviated neuroinflammation and neuropathic pain. Also, miR-
155 inhibitor suppressed NF-κB and p38-MAPK activation via
SOCS1. Consistent with this previous finding, our current results
showed that miR-155 mRNA is elevated in the dorsal horn after
administration of BTZ and this increase remains for several days.
This is accompanied with upregulation of protein expression
of p38-MAPK as well as JNK. MiR-155 inhibitor attenuates
p38-MAPK signal and attenuates BTZ-induced mechanical and
thermal hypersensitivity. Thus, miR-155 is likely a potential
target for the therapeutic intervention of neuropathic pain during
BTZ therapy.

A variety of miRNAs has the role in pain processing
in experimental and clinical pain (50). For instance, miR-
203 is involved in neuropathic pain through Rap1a and
its downstream signal MEK/ERK (51). Inhibition of miR-21
attenuates neuropathic pain in rats (52). Activation of miR-
195 by peripheral nerve injury aggravates neuropathic pain via
autophagy and this also leads to increases of IL-1β, and TNF-α
(53). Thus, further studies are needed to determine the networks
of miRNAs in engagement of neuropathic pain.

In general, cytotoxic drugs used for chemotherapy activate
oxidative stress signals and thereby induce peripheral neuropathy
(35, 54, 55). The previous study has demonstrated that TRPA1
is activated in the process of BTZ-induced pain and oxidative
stress is involved in activation of the signal pathways (55). In this
previous study (55), BTZ evoked mechanical, cold, and selective
chemical hypersensitivity in mice and the effects of BTZ are
reverted by treatment with the TRPA1 antagonist HC-030031
and by the oxidative stress scavenger α-lipoic acid. Thus, it
is speculated that activation of oxidative stress signal is likely
involved in the role of miR-155 in BTZ-induced neuropathic pain
in our current study.

Neuropathic pain can last ∼30 days after the end of BTZ
administration. We need to acknowledge a study limitation of
the current report that we did not examine pain response >7
days after BTZ in this report. We examined the effects of miR-155
inhibitor andmiR-155mimics on neuropathic pain 1–7 days after
BTZ. Our design was based on the reasons: (1) significant pain
was developed after a few days after BTZ; and (2) we performed
intrathecal delivery of inhibitor/mimics for three consecutive
days. The main focus of this study was to determine if miR-
155 inhibitor can attenuate neuropathic pain induced by BTZ. If
we can show the effectiveness of inhibitor 7 days after BTZ, this
would indicate that its effects can last longer with a longer usage
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of inhibitor (i.e., 30 days after BTZ). Nonetheless, we have shown
that miR-155 inhibitor alleviated pain response 7 days after BTZ
in our current report.

In conclusion, the protein expression levels of TNFR1 and
TRPA1 and intracellular p38-MAPK/JNK in the dorsal horn
are upregulated by BTZ. Inhibition of miR-155 decreased those
signal pathway expression and attenuated mechanical allodynia
and thermal hyperalgesia in BTZ rats. In addition, miRNA-155
mimics increased mechanical pain and cold sensitivity without
injection of BTZ. Mechanical and thermal hypersensitivity
induced by miRNA-155 mimics were attenuated after blocking
TNFR1, TRPA, p38-MAPK, and JNK. We provided evidence for
the role of miR-155 in regulating BTZ-induced neuropathic pain
through TNFR1-TRPA1 pathway, having clinical implications
that miR-155 is a potential target in preventing neuropathic pain
during BTZ chemotherapeutics.
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