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Abstract: Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy,
yet its regulation is incompletely understood. In vivo switching between a more differentiated,
proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour mi-
croenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with
two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype
switch in 3D collagen, as documented by increased expression of melanocyte differentiation mark-
ers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological
change corresponding to amoeboid–mesenchymal transition. We performed RNA sequencing with
an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene
expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Tran-
scriptomic data generated in the study will extend the present understanding of phenotype plasticity
in melanoma and its contribution to invasion and metastasis.
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1. Introduction

Despite significant progress in therapy, melanoma remains a life-threatening disease
with a high risk of early metastasis. Understanding the biological processes underlying
melanoma metastasis is expected to generate new advances and therapeutic modalities
in melanoma management [1]. Melanoma is a cancer arising from melanocytes, pigment-
producing cells located in the epidermis and a few other tissues. It shows unique biological
features related to its developmental origin, namely specific differentiation plasticity and
migratory behaviour. The central or master regulator of the melanocyte lineage is the
transcription factor MITF [2,3]. MITF regulates expression of pigmentation-related genes,
and coordinates differentiation and proliferation in developing melanocytes. In addition,
it affects many other biological processes, including cell survival, invasion, senescence,
metabolism, autophagy, lysosomal biogenesis, and DNA damage repair [2]. MITF is reg-
ulated at transcription and multiple post-transcriptional levels. Its transcription in the
melanocyte lineage is driven by SOX10, WNT/β-catenin and CREB, and is directly or indi-
rectly suppressed by NF-κB, JNK, hedgehog, TGFβ, activated RhoA, HIF1α, Brn2/POU3F2
and ATF4 [2–6].
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A large-scale comparative study of published microarray data from melanoma cell
lines identified two distinct gene expression profiles and associated phenotypes that were
termed “invasive” and “proliferative” [7]. The different gene expression patterns corre-
spond to low and high MITF activity and the related differentiation status of the cells.
The dedifferentiated, invasive phenotype was originally characterised by a sustained ac-
tivation of TGFβ target genes, a shift from canonical to non-canonical WNT signalling,
and a low expression of MITF-regulated genes. Later, it was found that it also involves
sustained NF-κB, Yap/Taz-TEAD, ER-stress and Rho-ROCK signalling [5,7–11]. Melanoma
dedifferentiation and invasive phenotype can be induced or enhanced by inflammatory
factors (IL1, TNFα), TGFβ, glutamine starvation, conditions of low adhesion (e.g., growth
in melanospheres) and hypoxia [5,12–18]. It is associated with resistance to both BRAF
inhibitors and immunotherapy, as well as with enhanced metastasis and poor progno-
sis [10,17–21]. The underlying signalling pathways, their cross-talks and feed-forward
loops responsible for, or, presumably, contributing to, the preservation of the invasive
phenotype in melanoma cells and examples of transcripts specifically associated with either
phenotype, are summarised in Figure 1 [8,11,22–35].
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Figure 1. Signalling circuitry of the invasive melanoma phenotype. Essential, broadly accepted
regulators are marked by yellow colour. Other regulators, relationships and responses to stimuli were
compiled from the literature related to both invasive–proliferative phenotype plasticity and amoeboid
invasion. Listed examples of genes whose high expression is characteristic of either phenotype were
assembled from the published literature and datasets.

Cancer cells, including melanoma, can individually invade a 3D environment in either
a mesenchymal mode, which depends on integrin-mediated adhesion and extracellular
protease activity, or in an amoeboid mode that is independent of integrins and localised
proteolysis, and is also characterised by largely dissociated microtubules and high RhoA-
ROCK-dependent contractility [36–38]. As RhoA-ROCK signalling is also required for
mesenchymal invasion, it is an attractive target for antimetastatic therapy [39,40]. A375M2
metastatic melanoma cells have been a popular model for studying amoeboid invasion
and its regulation, for they show prominent blebbing amoeboid morphology in, or on top
of, soft collagen matrices, good long-term viability under such conditions, and, impor-
tantly, display substantial plasticity in terms of induced migratory phenotype transitions
between amoeboid and mesenchymal modes, referred to as invasion plasticity. So far,
amoeboid–mesenchymal transition (AMT) in A375M2 has been achieved by chemical
inhibition of ROCK kinases, or gene targeting or knockdowns of miscellaneous regula-
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tors involved in the underlying signalling network [29,30,41–45]. Here, we show, for the
first time, that treatment of A375M2 cells embedded in a 3D collagen matrix with com-
pounds SB202190 and BIRB796 induces a phenotype switch, as documented by decreased
expression of dedifferentiated/invasive phenotype-associated genes and upregulation of
differentiated/proliferative phenotype-associated genes. The differentiation phenotype
switch is accompanied by a morphological shift from a rounded to an elongated shape,
which is indicative of AMT, suggesting that melanoma phenotype plasticity might be
interconnected with invasion plasticity. SB202190 is more potent than BIRB796 in all ob-
served effects, particularly in the induction of differentiation-related markers. While both
compounds have been developed and used as p38 MAPK inhibitors, they can significantly
inhibit several p38-unrelated kinases (see Table 1) [46,47]. Some of these kinases may affect
melanoma cell phenotype, as exemplified by SB202190-specific inhibition of BRAF [48].
Recently, an important property distinguishing SB202190 from BIRB796 was identified: a
SB202190-specific, p38-independent ability to robustly translocate lysosomal membrane-
bound TFEB, a MITF-related protein, to the nucleus of melanoma cells [48]. The same
effect was observed for TFEB and TFE3 (another MITF family member) in non-melanoma
cells [49]. We confirmed that SB202190, but not BIRB796, elicits nuclear translocation
of the MITF-A isoform in melanoma cells (see Figshare file, “Subcellular localisation of
MITF” [50]). While MITF-M, the major isoform in melanoma/melanocytes, is constitutively
localised in the nucleus, the localisation is not regulated by mTORC1, unlike the other MITF
isoforms and TFEB, and does not change after SB202190 or BIRB796 treatment; it forms
heterodimers with the other isoforms and with TFEB, TFEC and TFE3 [51,52]. Massive
nuclear translocation of these proteins due to SB202190 treatment thus might potentiate
transactivation by MITF-M or replace it in the transactivating complexes. Indeed, MITF-A
was found to be a more potent activator of DCT than MITF-M, and TFE3 may replace
MITF-M in the complex with LEF-1 to activate the DCT promoter [53,54].

Table 1. Targets and off-targets of SB202190 and BIRB796. Plus signs mark Kd nM values from ref. 46:
+ <1000, ++ <100, +++ <10, ++++ <1. Crosses mark residual kinase activity in the presence of 1 µM
inhibitor (from ref. 47, x <50%, xx <10%).

Kinase SB202190 BIRB796

p38alpha xx/+++ xx/++++
p38beta xx/++ x/

p38gamma x/+
p38delta x

JNK2 x/+ xx/++
JNK3 x/++
NLK x/++

RIPK2/RIP2 xx/+
GAK xx/++

CK1delta x/++
BRAF +

GSK3beta x
CK1epsilon +

Lck x
ACVR1B +

CIT +
CDC42BPG +

EGFR +
PRKACB +
RPS6KA1 +
RPS6KA6 +

STK36 +
DDR1 ++
TIE1 ++

MAP4K4 +
STK10 +

SLK +
ABL1 +
DDR2 +
TIE2 +
RSK1 x
RSK2 x

BRSK2 x
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2. Materials and Methods
2.1. Cells Culture, Treatments and Morphological Analysis

A375M2 cells were maintained in DMEM (4.5 g/L glucose, pyruvate) supplemented
with 10% foetal bovine serum and 50 µg/mL gentamicin (all from Sigma-Aldrich, St. Louis,
MO, USA) at 37 ◦C in a humidified atmosphere with 5% CO2. The cultures were regularly
tested for mycoplasma contamination. 3D cell culture experiments were performed with
rat tail collagen (SERVA, Heidelberg, Germany) at a concentration of 1 mg/mL and DMEM
supplemented with 1% foetal bovine serum, 15mM HEPES and 50 µg/mL gentamicin. In
all experiments, cells were treated with 10 µM SB202190 (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), 10 µM BIRB796 alias doramapimod (LC Laboratories), or an equivalent
volume of DMSO only (0.1% final concentration). To quantify cell morphology in the 3D
collagen matrix, 100,000 cells were seeded in 250 µL of collagen in a 48-well plate. Hoffman
modulation contrast microscopy images were taken 48 h later from approx. 20 planes
along the z-axis. Cells were classified as elongated or rounded as described previously [55].
Please note that different A375-derived cell lines with almost identical names (A375M2,
A375 M-2, A375M, etc.) were created in similar ways in a few completely independent
studies [56,57]. A375M2 cells used in this study are those from Clark et al., and were kindly
provided by Prof. Richard Hynes.

2.2. RNA Extraction and Sequencing

A total of 330,000 A375M2 cells were cultured in 500 µL of 3D collagen gel for 48 h in
a 24-well plate. RNA was isolated as described in detail previously [55]. Polyadenylated
RNA was enriched with Oligo d(T)25 Magnetic Beads (New England Biolabs, Ipswich,
MA, USA), according to the manufacturer’s instructions. A stranded, Illumina HiSeq-
compatible library was constructed with a ScriptSeq Complete (Human/Mouse/Rat)
library preparation kit (Epicentre), according to the manufacturer’s instructions. The
quality and size distribution of sequencing libraries was verified with P5-P7 PCR, and the
concentrations were determined using a PicoGreen (Thermo Fisher Scientific, Waltham,
MA, USA) fluorescence measurement. An equimolar pool of 12 sample libraries was
sequenced on one whole lane of an Illumina HiSeq 2000/2500 series sequencer in high
output, paired mode (2 × 125 cycles). Raw reads were trimmed from adapter sequences
with Cutadapt [58] (version 1.15), quality checked with FastQC, and mapped to human
genome version GRCh38.100 with the STAR short read aligner [59] version 2.7.4a, with
default settings and output extended with read counts per gene. Complete adapter-
trimmed fastq data are available from the ArrayExpress database at EMBL-EBI under
accession number E-MTAB-9273 [60].

2.3. Reverse Transcription–Quantitative Polymerase Chain Reaction (RT-qPCR)

All the RT-qPCR experiments were performed according to MIQE guidelines [61].
Briefly, total RNA was extracted from cells embedded in 3D collagen matrix as described
above. RNA reverse transcription was performed using M-MuLV Reverse Transcriptase
(NEB) with 1 µM oligo(dT) and (dN)15 primer and 1.5 µg of total RNA. SYBR green-based
qPCR was performed in a LightCycler 480 Instrument (Roche). For primer details, see the
file, PCR.primers.xlsx, available from Figshare [50]. Cq and relative expression values were
calculated in R with ReadqPCR and NormqPCR packages, using TARDBP and THRAP3
as reference gene indices (selected based on geNORM analysis) [62,63]. Significance of
differences was analysed with two-way ANOVA and pairwise paired t-tests, with p-value
adjustment for multiple testing (Benjamini–Hochberg [64]).

2.4. Statistical Analysis

To estimate differential gene expression from RNA sequencing data, a workflow based
on the STAR aligner and DESeq2 R package was used, as described previously [65]. We
used rlog-transformed values for principal component analysis. Gene set enrichment
analysis was performed with Enrichr [66]. We utilised core R functions to compare data
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produced in this work against two public datasets (Verfaillie et al. 2015 and Folberg et al.
2006) [11,67]. We calculated the numbers of shared genes (represented by gene symbols)
for all possible pairs of gene sets, and the related Jaccard indices and hypergeometric
right-tail cumulative p-values, to estimate the statistical significance of the intersections.
As an approximation, we used the total number of all HGNC gene symbols assigned to
protein-coding and non-coding RNA genes (27,371) as the size of the source population
in hypergeometric tests. Venn diagrams representing intersections of the gene sets were
generated using a Multiple List Comparator online tool [68].

3. Results
3.1. SB202190 and BIRB796 Induce a Phenotype Switch in A375M2 Cells Cultured in 3D Collagen

Treatment of A375M2 melanoma cells with 10 µM compounds SB202190 and BIRB796
for 48 h in 3D collagen resulted in an elongated shape in the majority of the cell population
(Figure 2A,C), also see Figshare item, “Bright field microscopy photographs of A375M2
3D cell cultures”). The compounds were well tolerated, with only a mild decline in cell
numbers after SB202190 treatment (Figure 2B). RT-qPCR analysis of transcripts associated
with the dedifferentiated/invasive phenotype (INHBA, PODXL, IL1A, IL1B), and of MITF-
regulated genes (DCT, MLANA) associated with the differentiated/proliferative phenotype,
confirmed a phenotype switch consistent with the characteristic gene expression signature
described in the literature (Figure 2D). SB202190 was more potent than BIRB796 in both
morphological and gene expression level effects.
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wide-field images of cells in 3D collagen treated with DMSO, SB202190 or BIRB796. Scale bar: 75 µm. (B) Numbers of
live cells after 48 h of the indicated treatments counted in equal volumes of 3D gels and normalised to DMSO controls
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(C) Quantification of cell morphology in 3D collagen (three biological replicates, logistic regression with Wald test). (D)
RT-qPCR detection of changes in expression of the indicated genes. Averages of three independent biological replicates;
error bars: standard deviation. p-values: *** p < 0.001, ** p < 0.01, * p < 0.05.
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3.2. Transcriptomic Profiling of the Phenotype Switch-Associated Changes with RNA-seq

To uncover the transcriptomic changes underlying the dual phenotype switch, we
performed RNA sequencing of mRNA samples from SB202190, BIRB796 or DMSO-treated
cells prepared in four independent biological replicates. The cells were kept for 48 h in
3D collagen with the compounds, and then the whole samples, including the collagen,
were homogenised and further processed for RNA sequencing. Polyadenylated RNA was
enriched with oligo-dT magnetic beads, converted into a stranded cDNA library, and
sequenced with an Illumina HiSeq sequencer (Figure 3).
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The sequencing yielded approx. 21–26.5 million paired-end reads per sample. Raw
reads trimmed from adapter sequences were quality checked with FastQC software [69].
FastQC’s plots of Phred scores by position showed typical profiles with decreasing quality
towards the ends of reads (Figure 4A).
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“RNA sequencing raw data and mapping metrics” [50]. Principal component analysis of 
normalised gene expression profiles showed that the treatments were the dominant 
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identified that 2700 out of 16,612 Ensembl genes (16.3%) changed with adjusted p-value < 
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Figure 4. Technical validation of RNA sequencing results. (A) Per base sequence quality of RNA sequencing reads expressed
as Phred score by position, sample 1, first reads. (B) Principal component analysis of gene expression profiles. (C) MA
plot of log2 fold change values against normalised counts for each gene in the analysis. Blue points mark genes with
FDR<0.1. (D) Log2 fold change values of the indicated genes detected by RT-qPCR in three samples independent from
the RNA-seq series. Error bars: standard deviation. Adjusted p-values: *** p < 0.001, ** p < 0.01, * p < 0.05. (E,F) Venn
diagrams representing intersections of gene lists from the indicated datasets. Highlighted in red are the genes whose higher
expression is well known to be characteristic of either the differentiated/proliferative (E) or of the dedifferentiated/invasive
phenotype (F).

The mapping metrics of the STAR aligner showed an average paired read length of
240 nucleotides. On average, the aligner uniquely mapped 93.6% of the fragments to the
human genome; 3.1% of the fragments were multi-mapped and 3.1% of the fragments
were excluded for being too short. For the complete mapping metrics, see Figshare file,
“RNA sequencing raw data and mapping metrics” [50]. Principal component analysis of
normalised gene expression profiles showed that the treatments were the dominant source
of variation (Figure 4B). Differential gene expression analysis with DESeq2 [70] identified
that 2700 out of 16,612 Ensembl genes (16.3%) changed with adjusted p-value < 0.1 and fold
change > 1.5 after treatment with SB202190. BIRB796 treatment changed the expression of
1638 out of 16,612 (9.9%) genes. The distribution of affected transcripts by gene expression
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level is depicted as an MA plot in Figure 4C. Complete results are available from Figshare
(“Differential gene expression analysis”) [50]. Selected differentially expressed genes from
the gene lists, characteristic of either invasive or proliferative phenotypes (see Figure 1),
are listed in Table 2.

Table 2. Changes in expression of melanoma phenotype-related genes detected with RNA-seq.
Average log2 fold change values ± standard error as obtained with DESeq2.

Gene SB202190 BIRB796

TRPM1 4.00 ± 0.67
DCT 3.38 ± 0.09 1.37 ± 0.09

MLANA 2.47 ± 0.18 0.94 ± 0.19
GPM6B 2.07 ± 0.08 1.00 ± 0.08
PMEL 1.58 ± 0.27
TYR 1.39 ± 0.08
MBP 1.17 ± 0.34 1.52 ± 0.34

RAB27A 0.95 ± 0.11
CAPN3 0.88 ± 0.13
GPNMB 0.80 ± 0.07

IL1B −4.48 ± 0.33 −3.06 ± 0.29
IL1A −3.80 ± 0.18 −1.95 ± 0.15

CXCL8 −3.60 ± 0.18 −2.01 ± 0.15
SERPINE1 −3.07 ± 0.58

PODXL −2.83 ± 0.16 −1.36 ± 0.15
AXL −2.70 ± 0.41 −1.11 ± 0.34

INHBA −2.24 ± 0.12 −0.88 ± 0.12
FN1 −1.91 ± 0.09 −1.23 ± 0.09

LOXL2 −1.81 ± 0.10 −0.78 ± 0.10
FST −1.61 ± 0.11 −1.13 ± 0.11

ADAM12 −1.34 ± 0.10 −0.60 ± 0.10
WNT5B −0.82 ± 0.35
WNT5A −0.80 ± 0.11
THBS1 −0.73 ± 0.11

Next, we analysed the differentially expressed genes for over-representation of gene
lists from published datasets using the Enrichr web server (Table 3). We found that the
genes upregulated by SB202190 and BIRB796 are significantly enriched with genes with
high expression in a subset of melanoma cell lines from the NCI-60 cancer cell line panel.
Importantly, all the cell lines in this subset were previously classified as “proliferative”
within a large panel of melanoma cell lines, see the HOPP database [71]. The genes down-
regulated by the compounds showed many more concordant enrichments; Table 3 displays
the top enriched GO Biological Process terms and TRRUST transcriptional regulatory
networks [72]. For complete results, see the Figshare file, “Gene set enrichments”.

Table 3. Gene set enrichment analysis. Over-representation of gene lists from published datasets, in the differentially
expressed genes detected in this study, was analysed using the Enrichr web server. Adjusted p-values.

Database Data SB202190 BIRB796

NCI-60 cancer cell line panel vs.
upregulated genes

UACC257 1.83 × 10−10 1.33 × 10−4

SKMEL5 1.83 × 10−10 7.06 × 10−2

SKMEL28 1.46 × 10−6 2.49 × 10−3

MALME 3M 4.46 × 10−5 1.85 × 10−2

M14 5.64 × 10−3 1.07 × 10−1
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Table 3. Cont.

Database Data SB202190 BIRB796

GO—Biological Process vs.
downregulated genes

extracellular matrix
organization (GO:0030198) 3.44 × 10−20 2.27 × 10−11

regulation of cell proliferation
(GO:0042127) 2.79 × 10−11 2.09 × 10−5

regulation of apoptotic process
(GO:0042981) 4.35 × 10−11 1.38 × 10−9

regulation of cell migration
(GO:0030334) 6.14 × 10−11 4.86 × 10−7

regulation of angiogenesis
(GO:0045765) 8.39 × 10−9 3.34 × 10−5

negative regulation of
programmed cell death
(GO:0043069)

9.99 × 10−9 3.34 × 10−5

cellular response to cytokine
stimulus (GO:0071345) 1.86 × 10−8 2.11 × 10−4

positive regulation of
angiogenesis (GO:0045766) 3.98 × 10−8 6.02 × 10−5

regulation of signal
transduction (GO:0009966) 3.98 × 10−8 6.02 × 10−5

negative regulation of
apoptotic process (GO:0043066) 7.51 × 10−8 2.06 × 10−5

positive regulation of cell
migration (GO:0030335) 7.51 × 10−8 7.08 × 10−5

regulation of MAPK cascade
(GO:0043408) 2.39 × 10−7 6.17 × 10−5

TRRUST vs. downregulated
genes

NFKB1 human 8.76 × 10−9 1.85 × 10−6

RELA human 3.55 × 10−8 1.08 × 10−5

NFKB1 mouse 7.76 × 10−8 1.01 × 10−11

VHL human 5.70 × 10−7 5.01 × 10−4

STAT3 mouse 7.85 × 10−7 1.08 × 10−5

SP1 mouse 8.33 × 10−7 1.07 × 10−11

EGR1 mouse 2.54 × 10−6 3.75 × 10−6

ETS1 human 2.72 × 10−6 4.92 × 10−5

3.3. Validation and Reproducibility of the RNA-seq Results

To validate the biological reproducibility of the results of differential gene expression
analysis, we performed RT-qPCR measurements of three selected transcripts—CEMIP,
S100A16 and STC1—in RNA samples independent from those used for the RNA sequenc-
ing (three biological replicates). The corresponding genes were identified as significantly
differentially expressed in both SB202190 and BIRB796 data, and are also present in pub-
lished gene expression signatures of the invasive phenotype, e.g., S100A16 in Verfaillie
et al. 2015, Tirosh et al. 2016 and Jeffs et al. 2009 [11,73,74]. The results confirmed that the
genes were similarly affected in the independent samples (Figure 4D). We also wondered
to what extent are the data generated in the presented study matching the published gene
expression signatures characterising the phenotype switch. For comparison, we chose
two published gene expression profiles of invasive and proliferative phenotypes with a
total number of affected genes similar to our study—Verfaillie et al. 2015 and Folberg et al.
2006 [11,67]. The comparison revealed that the two published studies overlap, with the data
from SB202190-treated A375M2 cells being similar. Data from BIRB796-treated cells overlap
by approx. half of the numbers, but still significantly (see Figshare data, “Comparison of
A375M2 data sets against public datasets” [50]). We also analysed all intersections of the
gene lists in detail and found subsets shared by all the lists (11 genes for “proliferative”
and 25 genes for “invasive” sets) containing known markers of the respective phenotypes
(Figure 4E,F).

4. Discussion

The signalling network controlling amoeboid phenotype in melanoma, as has been
previously uncovered in A375M2 cells, is virtually identical to the one responsible for
the dedifferentiated/invasive phenotype (i.e., NF-κB, TGFβ and non-canonical WNT
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signalling) [41,42,75]. The amoeboid phenotype is also known to be suppressed by β-
catenin-stimulated MITF expression [76]. EPHA2, which is highly expressed in dedif-
ferentiated/invasive melanoma cells, stimulates RhoA activity and promotes amoeboid
migration [77]. It thus seems that amoeboid invasion is a manifestation of the dediffer-
entiated/invasive phenotype observable under suitable 3D conditions (in terms of cell
viability and matrix composition). Our data bring essential additional support for such a
hypothesis and encourage further large-scale 3D culture-based or intravital analyses re-
quired for definitive confirmation. We suggest that the presented data are of high relevance
to melanoma biology and cancer metastasis research fields, as they bridge invasion and
phenotype plasticity in melanoma cells.
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