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Despite the increasing importance and status of immune checkpoint blockade (ICB), little
is known about the underlying molecular mechanisms determining the target clear cell
renal cell carcinoma (ccRCC) population. In this study, we screened out 6 immune cells
strongly correlated with expression levels of PD-L1 and IFN-g based on the ccRCC
samples extracted from GSE and TCGA data sets. By performing unsupervised clustering
and lasso regression analysis, we grouped the ccRCC into 4 clusters and selected the two
most distinct sub-clusters for further investigation—cluster A1 and B1. Next, we
compared the two clusters in terms of mRNA, somatic mutations, copy number
variations, DNA methylation, miRNA, lncRNA and constructed the differentially
expressed genes (DEGs) hub by combing together the previous results at levels of
DNA methylation, miRNA, and lncRNA. PTPRG and CHL1 were identified as key nodes in
the regulation hub of immunophenotypes in ccRCC patients. Finally, we established the
prognosis model by using Lasso-Cox regression and Kaplan–Meier analysis, recognizing
WNT2, C17orf66, and PAEP as independent significant risk factors while IRF4 as an
independent protective factor.

Keywords: multi-omics study, bioinformatics, ccRCC kidney cancer, prognosis model, immunophenotype
INTRODUCTION

Kidney cancer remains the third most frequent urinary carcinomas worldwide, with an estimated
number of 431,288 new cases and 179,368 deaths globally in 2020 (1). Clear cell renal cell carcinoma
(ccRCC), accounting for more than 70% of all RCC cases, is characterized by early deficiency of the
von Hippel–Lindau tumor-suppressor gene (VHL) in a majority (60–80%) of neoplasms (2). It has
been demonstrated that immune checkpoint inhibitors (ICI) such as nivolumab prolong the overall
survival of a subgroup of metastatic ccRCC patients through inhibition of PD-L1-mediated
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signaling (3). Several studies pointed out distinct subgroups of
genomic landscapes and immune phenotypes might be
responsible for heterogeneous responses to PD-1 therapy
among individual cancer patients (4–6). Miao et al. (7)
performed whole-exome sequencing of metastatic ccRCC and
proposed that PBRM1 loss in ccRCC may play an important role
in the formation of differentiated immune expression landscape
and subgroup-spec ific tumor immune infi l t r a t ing
microenvironment influencing responsiveness to immune
checkpoint therapy.

IFN-g is a cytokine that plays a critical role in tumor growth and
the foundation of tumor microenvironment. An increasing number
of studies reveal the correlation of high IFN-g levels with accelerated
lymphocyte infiltration and the clinical benefit of PD1/PD-L1
immune checkpoint inhibition therapy (8, 9). Nevertheless, more
accurate and dependable models predicting responsiveness to ICI
therapy are needed due to the heterogeneities and complex nature
of cancer.

Recently, T cell infiltration score was found to be closely
correlated with prognosis and response to immune therapy in
ccRCC patients (10–12), and three immune molecular
phenotypes with distinct prognostic features were identified
(13). The underlying mechanism driving the establishment of
the immunophenotype subgroups and further combination of
prognostic value with tumor immune infiltration through
systemic bioinformatics, however, has not yet been fully clarified.

In this study, we sought to report a detailed integrative analysis
of multi-omics to determine the subgroups of immunophenotypes
of ccRCC based on the expression levels of PD-1/IFN-g and relative
contents of infiltrating immune cells, and subsequently identify the
key molecules of the DEGs-hub responsible for driving the
formation of high/low cytotoxic tumor micro-environment in
ccRCC patients with better/poorer overall survival. Major
deliverables are expected to take a step forward in elaborating the
underlying mechanisms of variant responsiveness to ICI and
preliminarily stratify patients before treatments to identify
optimal schedules.
MATERIALS AND METHODS

Data Acquisition and Processing
Transcriptome data of ccRCC were downloaded from the Gene
Expression Omnibus (GSE66270 (n = 28), GSE53757 (n = 144),
GSE36895 (n = 76), GSE76351 (n = 24)) and the website UCSC
xena GDC TCGA KIRC (https://xenabrowser.net/datapages/) in
August 2020. The gene expression data from the TCGA were of the
HTSeq-Counts type of 607 cases, namely, 535 tumor samples and
72 normal samples. After removing replicate samples from the same
patients, 527 tumor samples and 72 normal samples were obtained.
Mutation data were downloaded from the UCSC xena TCGA hub
KIRC of the MC3 public version (n = 368) and processed with the
VarScan software, and then the Mutation Annotation Format
(MAF) of somatic variants were analyzed with R package
“maftools” (14) (https://xenabrowser.net/datapages/). CNV data in
GISTIC-focal score by gene (n = 536) were downloaded from the
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UCSC xena GDC TCGA KIRC (https://xenabrowser.net/
datapages/). Illumina Human Methylation450k (n = 480) data
were downloaded from the UCSC xena TCGA hub KIRC.
Considering the miRNA data downloaded directly from the
UCSC xena were in the type of log2(RPM + 1), we used the R
package TCGAbiolinks (15) to download these data (n = 592) in the
Count form as recommended by GDC. Protein data (n = 454) were
downloaded from the UCSC xena RPPA TCGA hub (https://
xenabrowser.net/datapages/). Survival data (n = 979) were
downloaded from the UCSC xena GDC TCGA KIRC (https://
xenabrowser.net/datapages/).

Cibersort Immune Cell Scores and
Spearman Correlation Analysis
The Cibersort (cell-type identification by estimating relative subsets
of RNA transcripts, https://cibersort.stanford.edu/) deconvolution
algorithm was used to calculate the relative contents of 22 kinds of
immune cells (LM22 gene signature) and determine immune scores
(model = relative, permutation = 1,000) for ccRCC samples
downloaded from the GEO and TCGA databases. By applying
the ESTIMATE algorithm to the matrix data normalized with the
limma R package (version 3.5.2), we extracted PD-L1 and IFN-g
gene expression (gene CD247, IFN-g) and subsequently calculated
the Spearman correlation between the contents of immune cells and
the expression levels of PD-L1 and IFN-g genes.

Cluster Analysis
The renal clear cell carcinoma samples were filtered out according
to the annotation information of GEO samples and the sample
name ID of TCGA samples. Lasso was applied to prioritize the most
relevant tumor-infiltrating immune cells related to PD-L1 and
IFN-g expression using the R package “glmnet”. Then, based on
the contents of these selected immune cells, we used Euclidean
distance and Ward (unsquared distances) linkage for unsupervised
clustering and created heat maps with hierarchical trees. The log-
rank test was carried out to compare Kaplan–Meier curves between
immune clusters.

Somatic Mutation Analysis
Candidate genes of the TCGA-KIRC with a MutSig (version 2.0) q-
value <0.05 and a somatic mutation frequency >5% were taken into
consideration to compare their distribution. Mutational burden
(Total number of mutations in exon regions/30 M) and
mutational landscape among all clusters were calculated to record
the frequency of mutation, followed by the Fisher test aimed at
calculating mutational exclusion and co-existence events among
different subtypes (significant = unadjusted p-value <0.05).

Gene Expression Analysis
Using R package EnsDb.Hsapiens.v75 and DESeq2, the
normalized matrix data of gene expression variations (mRNA
data downloaded as HTSeq-Counts type) among distinct clusters
were analyzed with the filtering cut-off set as unadjusted p <0.05,
|log2(foldchange)| >log2(1.5) using Wald test. Mutual
connections among DEGs were indicated with Cytoscape
(https://cytoscape.org/). Kyoto Encyclopedia of Genes (KEGG)
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pathway gene set enrichment analyses were subsequently carried
out using the R package “Clusterprofiler”.

Copy Number Variation Analysis
With IGV_2.4.19 (Integrative Genomics Viewer_2.4.19), copy
number variations among distinct immune clusters were
illustrated in the CNV summary plots.

LncRNA and miRNA Variation Analysis
Differentiated expression analysis was carried out using R
package DESeq2 with the cut-off set as adjusted p <0.05, |log2
(foldchange)| >log2(1.5), and subsequent volcano plots were
generated. For the upregulated genes in the immune subgroups
as defined above, the responding mRNA–miRNA–lncRNA hub
was created using the following websites: mircode (http://www.
mircode.org/), miRTarBase (http://mirdb.org/), and TargetScan
(http://www.targetscan.org/).

Methylation Variation Analysis
Methylation variation analysis was carried out using R package
champ (16) with adjusted p-value < 0.05, |log2(fold change) | > 0.15
as the filtering cut-off.

Lasso-Cox Regression and
Prognostic Model
Only KIRC samples with complete clinical prognostic data were
included in the survival analysis, and univariate logistic regression
analyses were first performed for the differentiated expressed genes
between distinct immune clusters using coxph function. Then, lasso
regression was applied to screen out the most significant candidate
genes to build a multivariate logistic regression prognostic model
and coefficients for each covariate were determined by the
multivariable Cox regression model. The cut-off of risk score was
set as the turning point of the ROC curve and thereby patients were
divided into the high-risk group (greater than cut-off value) and the
low-risk group (smaller than cut-off value). Kaplan–Meier analysis
was carried out with R package “survminer”, a heatmap was
generated with “pheatmap” and other corresponding figures were
generated with “ggplot2”.

Renal Cancer Cell Lines and Transfection
Two human renal cancer cell lines 786O and Caki-1 were gifts from
Doctor Zhao and were cultured in DMEM containing 10% FBS and
penicillin–streptomycin. Transfection of CHL1-pMYs-IP and sh1/
sh2/scramble-pMXs-IP was performed using Lipo3000 (Invitrogen,
Carlsbad, CA, USA) following recommended protocol.

Cell Proliferation Assay
Cell proliferation was examined by Bromodeoxyuridine (BrdU,
Sigma-Aldrich) assay. Approximately 3.5 ∗ 104 of CHL1-
transduced, sh1 and the control empty vector-transduced cells
were respectively plated on 24 well plate triplicate. The
morphology and total numbers of the cells were analyzed on
days 0, 1, 2, and 3 after adding 10 uM BrdU to these cells and
incubating for another 4 h. Then, these cells were washed three
Frontiers in Oncology | www.frontiersin.org 3
times by PBS and 300 ml anti-BrdU (ab1893, Abcam, Cambridge,
UK, dilution of 1:1,000) was supplemented to these cells
overnight at room temperature. Total cell counts were
obtained by using a hemocytometer under a microscope (Zeiss,
Heidenheim, Germany).

Cell Apoptosis Assay
After transfection, early and late cell apoptosis were analyzed by
using flow cytometry assay (Becton Dickinson) after 48 h. Briefly,
cells were washed twice in PBS and re-suspended in 100 ml
binding buffer. Then, these cells were stained with 5 ml
Annexin V-FITC and 10 ml PI (Santa Cruz Biotechnology, CA)
for 10 min in a dark place at room temperature. Flow cytometry
analysis was performed by a FACS can (Beckman Coulter,
Fullerton, CA, USA). The data were analyzed by using FlowJo
software (Treestar, Ashland, OR, USA). More information were
clarified in Supplementary files.

Statistics
All the data were statistically analyzed using the Stata version
12.1(Stata Corp.) and R software (version 3.5.2). p-value <0.05
was considered statistically significant.
RESULTS

The study strategy was indicated in the flowchart (Figure 1).

Correlation of 22 Kinds of Immune
Cell Contents and Expression
of PD-L1, IFN-g Genes
The Cibersort was used to calculate the relative contents of 22
kinds of immune cells in five independent cohorts. The data with
p-values greater than 0.05 was removed. Six immune cells (CD8+

T cells, CD4+ memory resting T cells, CD4+ memory activated T
cells, follicular helper T cells, activated NK cells, M2
macrophages) were selected for succeeding analysis, which
were significantly correlated with the expression of PD-L1 and
IFN-g in the 5 cohorts above (Figure 2A).

Immunophenotypic Characterization
Using unsupervised hierarchical clustering based on the expression
levels of PD-L1 and IFN-g and also the six selected immune cell
subtypes, we divided these samples into two main clusters: cluster A
(higher expression of PD-L1 and IFN-g) and cluster B (lower PD-L1
transcripts) (Figure 2B). Moreover, theM2macrophages and CD4+

memory resting T cells were significantly enriched in cluster B
instead of in cluster A while CD8+ T cells exhibited higher
infiltration rates in cluster A than in cluster B (Figure 3A).
According to these characteristic variations, we further divided
cluster A into subcluster A1 and A2 while cluster B into B1 and
B2 and the differences of PD-L1, IFN-g expression levels and
immune cells infiltration rates were even greater between
subcluster A1 and B1 (Figures 2B and 3A). Considering previous
studies demonstrated M2 macrophages were negatively related to
overall survival and CD8+ T cells played a major role in anti-tumor
March 2022 | Volume 12 | Article 832027
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immunity (17–19), we thus defined subcluster A1 as high cytotoxic
immune phenotype while subcluster B1 as low cytotoxic immune
phenotype. In our data, the contents of CD8+ T cells are negatively
correlated with those of Macrophages M2, while in several previous
Frontiers in Oncology | www.frontiersin.org 4
studies the contents of CD8+ T cells were believed to predict a better
survival benefit in multiple tumor types, Macrophages, however, in
the opposite side (20–23). In line with this, patients in cluster A1
exhibited significantly better overall survival than patients in cluster
FIGURE 1 | The flow chart of the study strategy.
March 2022 | Volume 12 | Article 832027
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B1 (Figure 3B). Besides, we also investigated the protein levels of
epidermal growth factor receptor (EGFR) among the four clusters
since an increasing body of evidence highlighted its unique role in
driving the stratification of landscapes of immune infiltration in
various types of cancers (24–26) and found significantly higher
expression of EGFR in cluster A1 than in cluster B1 or B2
(Figure 3C). Accordingly, we selected clusters A1 and B1 for
further analysis and attempted to underline the mechanisms
driving distinct immune subtypes in ccRCC.

Somatic Mutation Landscape of Different
Immune Phenotypes
The quality and quantity of somatic mutations of all immune
phenotypes were assessed based on the TCGA-KIRC cohorts to
reveal an association between mutations and immune alteration. In
terms of total mutational loads, clusters A1 and B1 reported no
difference while cluster A2 indicated significantly higher mutation
loads than B2 (Figure 4A). Although several unique genes with high
mutation frequency were observed respectively in cluster A1
(HMCN1, LRP1B), B1 (ANK3, KDM5C), A2 (CENPF, XIRP2)
and B2 (DNAH2, MYH4), VHL, PBRM1, SETD2 and BAP1
ranked the top four most frequently mutated genes in all clusters,
unraveling their irreplaceable position in driver mutations
(Figure 4B). We also calculated mutational co-existing and
exclusive events among the four sub-clusters (Figure 4C), since
these events were possibly strong predictors of oncogenesis and
progression of ccRCC (27, 28). Of note, the exclusiveness of PBRM1
Frontiers in Oncology | www.frontiersin.org 5
and BAP1 could be observed in sub-cluster A1 while the co-
existence of VHL and SETD2 occurred in sub-cluster B1 (p <0.05).

Differences in mRNA Expression Related
to Immunophenotypes
Differentiated analysis for the expression of mRNA between sub-
clusters A1 and B1 was conducted after applying the filtering criteria
(fold change ≥ 1.5, p-value <0.05) and identified 1,890 upregulated
genes in A1 and 1155 upregulated genes in B1 (Figure 5A). After
adjustment of the filtering criteria to fold change ≥8, p-value
<0.0001, significantly up-expressed genes in A1 included CD8A,
CD8B, LAG3, IFN-g while SLC4A1 is up-expressed in B1. Notably,
pathways related to cytokine–cytokine receptor interaction, allograft
rejection, graft-versus-host disease were activated in A1 while
pathways related to neuroactive ligand–receptor interaction and
protein digestion and absorption were activated in B1, in
accordance with our previous results defining A1 as high
cytotoxic immune phenotype and B1 as low cytotoxic immune
phenotype (Figures 5B, C).

Differences in Genetic Copy Number in
Immune Subtypes
To further investigate the differences in copy number, we
conducted GISTIC-2.0 analysis for A1 and B1 and found 15
significantly amplified regions and 6 significantly deleted regions
in A1 while 9 and 4 in B1 correspondingly (Figure 6).
Significantly altered regions were divided into 4 levels as
A

B

FIGURE 2 | (A) Correlation between 22 immune cells contents and expression levels of PD-L1 and IFN-g. The abscissa indicates 22 kinds immune cells while the
ordinate represents 5 independent datasets of KIRC. Red means positively related; blue means negatively related; size of circles and shades of colors mean
magnitude of correlation. (B) PD-L1 expression levels of 4 immune sub-clusters. **p < 0.001.
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A

B C

FIGURE 3 | (A) Heat map depicting unsupervised clustering of cohorts from the GEO and TCGA-KIRC based on the contents of 6 kinds immune cells. (B) Overall
survival of 4 immune clusters. (C) A boxplot showing expression levels of EGFR among 4 immune clusters.
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A

B

C

FIGURE 4 | (A) Barplot of mutation load among various immune clusters. (B) Waterfall plot of mutational profiles among various immune clusters. (C) Overview of
mutational coexistence and mutual exclusion time.
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follows: stage 1, p <0.01; stage 2, p <0.001; stage 3, p <0.0001; and
stage 4, p <0.00001. Taking the intersection of genes included in
these regions and differentially expressed genes previously
obtained, we could see that significantly deleted genes of A1
and B1 exist in neighboring instead of identical regions on
chromosome 3 (Supplementary Table 1). Besides, copy
number distinctions between A1 and B1 were also identified in
chromosome 5 and we hereby recognized several vital genes
among them: CD74 , NKX2-5 , EGR1 , and FOXI1
(Supplementary Table 1).

Differences in DNA Methylation, miRNA
and lncRNA in Immune Subtypes
Based on the filtering standard of (|log FC|>0.15, adjust p <0.05),
523 differentially upregulated hypermethylated probes in A1 and
1,456 differentially upregulated hypermethylated probes in B1
Frontiers in Oncology | www.frontiersin.org 8
were identified. Among them, 156 probes with higher beta values
were found to be associated with 94 differentially upregulated
genes in cluster A1 while 93 probes with higher beta values were
related with 72 differentially upregulated genes in cluster
B1 (Figure 7).

We next searched the miRNA–mRNA relationship group
based on the three databases—mircode miRTarBase and
Targetscan under the premise that the corresponding mRNA
at least appears in 2 out of the three databases. For the 33
upregulated genes in A1, 739 miRNA–mRNA relationship
groups were discovered while for the 47 upregulated genes in
B1, 2,443 miRNA–mRNA relationship groups were
discovered (Figure 8).

As reported above, we found 1,288 upregulated lncRNA in A1
and 754 upregulated lncRNA in B1. Likewise, we searched the
miRNA–lncRNA relationship groups based on the mircode,
A

B C

FIGURE 5 | (A) Volcano plots DGEs. (B) Barplot of upregulated genes in cluster A1 by using the KEGG pathway enrichment analysis of DEGs. (C) Barplot of
upregulated genes in cluster B1 by the using KEGG pathway enrichment analysis of DEGs.
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miRTarBase, TargetScan database, then identifying 7 miRNA–
lncRNA relationship groups for the upregulated lncRNA in A1
and 11 miRNA–lncRNA relationship groups for the upregulated
lncRNA in B1 (Figure 9).
Frontiers in Oncology | www.frontiersin.org 9
Construction of the mRNA–miRNA–lncRNA
Regulation Hub
Taking the mRNA–miRNA–lncRNA relationship groups
together, two significant miRNA, miR-155 and miR-215, were
FIGURE 6 | IGV profiles for copy number variations between clusters A1 and B1.
FIGURE 7 | Heat map showing intersection of differential DNA methylation and DEGs between clusters A1 and B1.
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identified as key nodes in the center of the regulation hub
associated with multiple differentially distributed mRNA and
lncRNA in A1 and B1 (Figure 10).

Construction of Differentially Expressed
Genes (DEGs) Hub
Since similar patterns of copy number variations between cluster A1
and B1 were discovered and limited numbers of genes were
obtained by comparing distinct lncRNA–mRNA groups
previously, we did not include the results of these two parts in the
DEGs hub construction. Taking the intersection of differentially
expressed genes from the results obtained above, namely, the genes
with a differentiated expression of mRNA, the genes with
differentiated methylation and the genes with differentiated
miRNA–mRNA relationships groups, we screened out 40 genes
altogether, among which 18 were upregulated in A1 while 22 were
Frontiers in Oncology | www.frontiersin.org 10
upregulated in B1. We next conducted PPI analysis for these 40
genes in the STRING database and drew a network (Figure 11A). It
was shown that the methylation expressions in A1 were both higher
than those in B1 (Figure 11B), the RNA expressions in A1 were
both lower than those in B1 (data not shown) while the CNV were
similar (Figure 11B). Univariate Kaplan–Meier survival curves for
CHL1 and PTPRG both indicated that the OS of ccRCC patients
was significantly shorter in the low-expression group than in the
high-expression group using the Gepia online tool (http://gepia.
cancer-pku.cn/index.html) (Figure 11C).

Validation of Correlation Between DEGs
and Immune Cell Contents
We conducted a correlation analysis for the expression levels of
the PTPRG and CHL1 gene described previously and contents of
22 immune cells, obtaining a correlation pattern similar to that
A

B C

FIGURE 8 | (A) Heat maps of differential miRNA between clusters A1 and B1. (B, C) Venn diagram showing upregulated mRNA in cluster A (diagram B) and cluster
B (diagram C) with miRNA–mRNA interaction pairs in datasets of mircode, miRTarBase, and TargetScan.
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between PD-L1, IFN-g, and 22 immune cells (Figure 12A),
which to a certain degree infers the two genes might regulate
immune microenvironment via pathways associated with PD-L1
and IFN-g. We also verified the correlation between these two
genes and infiltration of CD8+ T cells and Macrophage M2 cells
in the TCGA-KIRC using the online tool TIMER 2.0 (29)
(Figure 12B). Using the Human Protein Atlas database, we
determined that expression levels of PTPRG and CHL1 were
both lower in kidney tumor tissues compared to those in adjacent
normal tissues (Figure 12C)

Exploring Intrinsic Roles of CHL1
in ccRCC
Since no publications have explored the role of CHL1 in renal
cancer in vitro, we conducted experiments in vitro to investigate the
role of CHL1 in tumor growth of 786O cells and Caki-1 cells. The
mRNA levels of CHL1 in ccRCC cells were significantly higher than
Frontiers in Oncology | www.frontiersin.org 11
in normal kidney tissues (Figure 13A) in line with the results
downloaded from the TCGA-KIRC database (Figure 13B). Next,
we constructed overexpression plasmid and shRNA plasmid
(Figure 13A) and transfected them into 786O and Caki-1 cells.
After transfection, overexpression of CHL1 inhibited tumor cell
growth while the knock-down group exhibited accelerated cell
viability and a faster cell growth trend compared to the control
group (Figure 13C). Moreover, flow cytometric analysis indicated
that the proportion of apoptotic cells significantly increased
following CHL1 overexpression (Figure 13D). Altogether, these
results highlighted the pivotal role of PTPRG and CHL1 in tumor
growth and progression of ccRCC.

Establishment of Cox-Lasso Regression
Analysis Model Based on DEGs Hub
We first carried out a univariate Cox regression analysis to
determine the key genes affecting the prognosis of ccRCC
CB

A

FIGURE 9 | (A) Heat maps of differential lncRNA between clusters A1 and B1. (B, C) Venn diagram showing upregulated lncRNA in cluster A (diagram B) and
cluster B (diagram C) with miRNA–lncRNA interaction pairs in datasets of mircode, miRTarBase, and TargetScan.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zeng et al. Immunne Sub-Clusters of ccRCC
patients among the 3,045 differentially expressed genes in A1 and
B1 with the following cut-off: | log2(fold change)| >log2(1.5), p-
value <0.05. Next, further lasso regression analysis and
multivariate logistic regression analysis were performed,
revealing 22 critical candidates with potential prognostic values.
Based on these 22 genes, we established a prognostic model,
conducted Kaplan–Meier analysis (Supplementary Figure 1) and
also applied the risk scores in our previous selected samples
(Supplementary Figure 1) and detected the expression levels of
these 22 genes in samples selected (Supplementary Figure 1).
However, the prognostic differences between the high and low-
risk groups were not significant (p = 0.37 >0.05). Therefore, we
adopted a more stringent filtration standard and excluded
redundant reads (only retain those bigger than 10 and appeared
Frontiers in Oncology | www.frontiersin.org 12
in over 80% of the samples). Analogous to the methods above, we
filtered the potential genes based on the DEGs between cluster A1
and B1 but revised the cutoff: | log2(fold change)| >2, p-value
<0.05. We then divided the 313 patients in the training group into
high- and low-risk groups based on the median risk score. After
the following univariate Cox regression analysis, lasso regression
analysis and multivariate logistic regression analysis, we ultimately
determined 5 critical genes (C17orf66, PAEP, WNT2, IRF4,
RUFY4) were significantly associated with the prognosis of
ccRCC patients in the training group (Figures 14A, B).
Separately, WNT2, C17orf66, and PAEP were independent risk
factors while IRF4 was independent protective factors (p 0.01).
Kaplan–Meier survival curve analysis indicates that the OS was
significantly shorter for the high-risk group ccRCC patients
FIGURE 10 | Cytoskype network diagram of DEGs–miRNA–lncRNA.
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FIGURE 11 | (A) DEG hub genes diagram. (B) Methylation and copy number variations differences of PTPRG and CHL1 between clusters A1 and B1. (C) Survival
curves using univariate Kaplan–Meier estimates based on expression levels of CHL1 and PTPRG in TCGA-KIRC cohorts with the online tool Gepia.
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FIGURE 12 | (A) Correlation between 22 immune cells relative contents and expression levels of PTPRG and CHL1. The abscissa indicates 22 kinds immune cells
while the ordinate represents 5 independent datasets of KIRC. Red means positively related; blue means negatively related; size of circles and shades of colors
mean magnitude of correlation. (B) Correlation between mRNA levels of PTPRG/CHL1 and relative contents of Macrophage M2 cells and CD8+ T cells with online
tool TIMER 2.0. (C) Immunohistochemical results of PTPRG and CHL1 based on the Human Protein Atlas database.
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compared to the low-risk group ccRCC patients (Figure 14C).
The risk score of each patient was calculated with the following
formula: Risk score = (−0.0398 ∗ Exp IRF4) + (0.2617 ∗ Exp
WNT2) + (0.0556 ∗ Exp RUFY4) + (0.5507 ∗ Exp C17orf66) +
(0.1441 ∗ Exp PAEP). The ROC curve of the risk score model
indicates moderate to good performance in predicting one-year
OS (AUC = 0.715), three-year OS (AUC = 0.728), and five-year
OS (AUC = 0.814) (Figure 14D). Figures 14E–G show the
Frontiers in Oncology | www.frontiersin.org 15
surviving status of patients in cluster A1, B1, the risk curve
analyses and the expression profiles of the five genes in the
high- and low- risk group ccRCC patients. We then calculated
the risk scores of the test group patients using the same prognostic
risk score formula and assessed the predictive performance of the
prognostic risk model. The OS was significantly shorter for the
ccRCC patients in the high-risk group compared to the low-risk
group ccRCC patients (Figure 15).
A

C

D

B

FIGURE 13 | (A) mRNA expression profiles of CHL1 in human normal kidney tissues, 786O/sh1/sh2/scramble cells and Caki-1/sh1/sh2/scramble cells. (B) mRNA
expression profiles of CHL1 between normal tissues and tumor samples in the TCGA-KIRC cohorts with the online tool Gepia. Data represent mean ± s.e.m.
Student’s t-test *P <0.05 (two-tailed). (C) Proliferation of 786O/Caki-1 cells after CHL1 overexpression and knockdown. The total cell number was counted on days
0, 1, 2, and 3 after transfection. Data represent mean ± s.e.m. (n = 5 per group). One-way ANOVA with the Bonferroni correction for multiple testing, *P <0.05.
(D) Cell apoptosis was determined by flow cytometry in 786O/Caki-1 cells after transfection for 48 h. (a, d), CHL1 knockdown group; (b, e), vehicle group; (c, f),
CHL1 overexpression group.
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FIGURE 14 | Risk score analysis of the 5-gene signature-based prognostic model in the training group ccRCC patients. (A) Five-gene multivariate prognosis model
for training group ccRCC patients. (B) Time dependent ROC curve analysis exhibits the prognostic performance of the five differentially expressed gene signature-
based prognostic model in predicting 1–5-year survival times of the training group ccRCC patients in the TCGA-KIRC cohort. (C) Kaplan–Meier curve shows the
overall survival of high- and low-risk ccRCC patients in the TCGA-KIRC cohort. (D–F) Survival bar, risk curve, and survival scatter plot analysis show surviving status
of patients of high- and low-risk. (G) Heat maps of expression profiles of 5 genes obtained using multivariate Cox regression. **P < 0.01, ***p < 0.001.
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DISCUSSION

Further investigations about the targeted ccRCC population
potentially benefited from ICI therapy and more in-depth
elucidation of the underlying mechanisms governing the profit
differentiation are desperately needed based on the strikingly
increasing application of ICI therapy among ccRCC patients.
This study initially stratifies tumors into several subgroups with
different immune cell infiltration in 5 ccRCC cohorts. An
analysis of the mutational landscape and expression
differentiation helps construct DEG hub, reveals genetic
differences among immune subgroups with higher or lower
immune infiltration and identifies PTPRG and CHL1 as vital
key nodes of the expression regulating network. Finally, we
established a prognostic model predicting the targeted kidney
cancer patients suitable for ICI therapies.

Based on the relatively satisfying oncological outcomes in the
recent high-quality trials (30–32), the European Association of
Urology (EAU) provided a strong rating and category 1
recommendation for ICI-based therapy in metastatic RCC
(33). According to the latest research by Wu et al. (34), the
adverse events of immune checkpoint inhibitor therapy for
kidney cancer were significantly less reported than those in
urothelial cancer or prostate cancer, proposing the full-
fledged rather than experimental roles of ICB therapies in
RCC. Beuselinck et al. (35) defined four subsets of ccRCC
patients (ccRCC1–ccRCC4) according to their clinical
responses to the TKI sunitinib and named ccRCC4 as a no-
response subtype with high expression of PD-1 and suppressive
immune microenvironment while ccRCC2 as an improved-
response subtype with upregulation of angiogenesis-related
genes. For comparison, most cases in subtype A1 in our study
can be classified as ccRCC4 while the majority of cases in subtype
B1 can be classified as ccRCC2.

Our study mainly differs from recently published ccRCC
studies in that we performed an integrated multi-omics
analysis to underline the mutational landscape and epigenetic
patterns responsible for the immune classifications in ccRCC. On
top of that, we established a regression model to predict the
prognosis of ccRCC patients based on five immune-linked
candidate genes.

Significant copy numbers deletion variation of chromosome
3p was a prominent feature between clusters A1 and B1 in
ccRCC. Tsuyukubo et al. found that 3p24.3 mixed type was
inversely correlated with the presence of metachronous
metastasis and can predict a favorable prognosis in ccRCC
(36). Analogous to our study, the distribution difference in
chromosome 3p instead of individual gene alterations might
explain the variability of the immune cell infiltration and even
immunophenotypes among the ccRCC clusters.

Specifically in our study, we also discovered the differential
distribution in chromosome 5p including some DEGs believed to
regulate immune escaping and immune co-inhibition like CD74
(37, 38) and EGR1 (39) might potentially serve as key nodes in
constructing the differentially shaped immune landscape of
ccRCC. Moreover, our results revealed mir-215, mir-155,
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SOCS1, CD274, and SOX11 could play intriguing roles in the
classification of ccRCC. MiR-215 has been shown to play an
important role in the occurrence, development, and prognosis of
many malignant tumors by regulating cell proliferation,
metastasis, apoptosis and drug resistance (29–31). SOCS1,
CD274, and SOX11 associated with miR-155 and miR-215 in
the regulation hub suggested exerting vital functions in tumor
immunology, whether through the miR-155, miR-215 pathway
or not (32–35).

On top of genetic alterations, epigenetic modifications also
played a vital role in forming the ‘targeting immunity
framework’ to regulate the delicate balance of immune
homeostasis, priming, training, tolerance and even contribute
to immune evasion in cancer (40), especially when manifesting as
methylation (41). Klümper and colleagues reported DNA
methylation of lymphocyte activating 3 strongly correlated
with signatures of distinct immune cell infiltrates and survival
in KIRC (42).

In this study, we conducted multi-omics research integrating
transcriptomic, genetic, and epigenetic analyses to unravel the
key components determining the immunophenotypes and
corresponding response (positive or negative) to ICB therapy.
We subsequently identified some significant hub genes through
the construction of the DEGs–miRNA–lncRNA–mRNA
regulation hub centered at PTPRG and CHL1.

Protein tyrosine phosphatase receptor gamma (PTPRG), a
member of the protein tyrosine phosphatase (PTP) superfamily
of enzymes capable of removing phosphate groups from
phosphorylated tyrosine residues bringing an equilibrium
status in normal populations, were described as a tumor
suppressor in various neoplasms. Previous studies have
revealed its crucial role in tumors of the lung (43), ovarian
(44), nasopharyngeal carcinoma (45), and chronic myelogenous
leukemia (46). Likewise, PTPRG was also identified as a
suppressor gene in RCC (47). Arimura (48) reported PTPRG
was least expressed in immune cells, B cells, in particular,
suggesting it might be engaged in suppressing tumor growth
and metastasis through regulation downstream signals and
actions of immune cells. The close homolog of L1 (CHL1, also
referred to as CALL), is known as a cell adhesion molecule of the
immunoglobulin (Ig) superfamily (49). CHL1 has also been
reported associated with the suppression of neoplastic growth
and metastasis in various tumors (50–52). Our results supported
its suppressing role in the proliferation and also promoting
apoptosis in ccRCC. Combing previous researches with our
results, we propose that low expression and high methylation
of PTPRG and CHL1 facilitate the formation of high cytotoxic
immune phenotypes thus leading to better response to
ICB therapy.

Finally, we constructed a Cox-Lasso logistic regression prognosis
model based on differentially expressed genes between clusters A1
and B1 of the KIRC cohort. Five candidate genes were screened out
and visualized in Kaplan–Meier survival curves, including widely
recognized factors of immune regulation (53, 54). Our study
included the following limitations. First, the data we utilized for
analysis were all downloaded from databases like the GEO and
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FIGURE 15 | Risk score analysis of the 5-gene signature-based prognostic model in the test group ccRCC patients. (A) Five-gene multivariate prognosis model for
the test group ccRCC patients. (B) Time dependent ROC curve analysis exhibits the prognostic performance of the five differentially expressed gene signature-based
prognostic model in predicting 1–5-year survival times of the test group ccRCC patients in the TCGA-KIRC cohort. (C) Kaplan–Meier curve shows the overall survival
of high- and low-risk ccRCC patients in the TCGA-KIRC cohort. (D–F) Survival bar, risk curve, and survival scatter plot analysis show surviving status of patients of
high- and low-risk. (G) Heat maps of expression profiles of 5 genes obtained using multivariate Cox regression. *P < 0.05, **P < 0.01.
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TCGA rather than obtained from our original samples. Second, our
study gained results mainly based on the difference of the two most
prominent immune sub-clusters but we cannot ignore the effects of
some immune subtypes even in low abundance. Finally, we did not
acquire meaningful results when investigating the cohorts of the
ccRCC patients who have received ICB therapy due to the limited
samples available for the public (Supplementary Figure 2).

In conclusion, our study divided ccRCC into distinct immune
clusters and thereby identified two DEGs, namely, PTPRG and
CHL1, which were validated to play a crucial role in inhibiting
tumor growth and might be responsible for the formation of
distinct immune clusters in ccRCC. We also constructed a
prognosis model based on the DEGs between high immune-
infiltrating cluster and low immune-infiltrating cluster and we
hope ccRCC patients before or during ICI therapy could profit
from this immunophenotypes-associated risk stratification model.
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