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Simple Summary: We studied field collections of two flea subspecies that are plague vectors on the
vast Palearctic territory. Analysing the molecular–genetic, geographical, morphological, and repro-
ductive isolation criteria, we conclude that these subspecies could be considered different species.

Abstract: This study investigated the relationship between two subspecies of the Citellophilus tesquo-
rum flea, C. t. altaicus and C. t. sungaris, which are vectors of the bacterium Yersinia pestis that causes
human plague across the vast territories of the Palearctic. Adult fleas were collected from 16 localities
and 11 populations in 2019 and 2020. Specimens were morphologically verified for subspecies status
and analysed for mitochondrial cytochrome c oxidase subunit I (COI) DNA, nuclear ribosomal cluster
internal transcribed spacer 1 (ITS1) and ITS2, and Wolbachia-infection status. Our results demon-
strated a genetic difference between C. t. altaicus and C. t. sungaris. According to mitochondrial
data, the genetic distance between clades of C. t. altaicus and C. t. sungaris was comparable with
the species divergence of the genus Callopsylla, which is closely related to Citellophilus. All studied
populations of C. t. altaicus were Wolbachia-infected, whereas all studied populations of C. t. sungaris
were symbiont-free. Data for ITS1 and ITS2 had much lower phylogenetic signals than mitochon-
drial data; however, diagnostic substitutions for C. t. altaicus and C. t. sungaris delimitation were
also revealed. Analysis of a hardly accessible report on cross experiments allowed us to conclude
the partial postzygotic isolation between these subspecies. Taken together, the molecular-genetic,
geographical, morphological, and reproductive isolation findings verified that C. t. altaicus and C. t.
sungaris subspecies could be considered as different species.

Keywords: Citellophilus tesquorum; COI; flea; ITS1; ITS2; plague; population; subspecies; Wolbachia

1. Introduction

Siphonaptera, commonly known as fleas, comprise a relatively small order of secon-
darily wingless insects with complete metamorphosis. According to the latest taxonomic
revision, this order includes 2005 species and 828 subspecies belonging to 242 genera and
97 subgenera [1].

Fleas are vectors for many pathogens, including Rickettsia typhi (which causes en-
demic typhus), Rickettsia prowazekii (rural epidemic typhus) [2], Bartonella spp. (cat-scratch
disease) [3], and Yersinia pestis (plague) [4]. Plague is a dangerous disease, and several
hundred cases in humans are reported annually worldwide, predominantly in developing
countries [4]. Developed countries have extensive systems for monitoring plague hot-spots
that allow preventive actions to be taken to avoid outbreaks. Flea species differ in their
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ability to transfer plague infection. In total, 257 species are known to be reservoirs of Y.
pestis [5,6]. Yersinia pestis bacteria inhabit the foregut of adult fleas where they form a
biofilm that interferes with feeding. While trying to satisfy their hunger, infected fleas
actively attack animal or human hosts, and biofilm conglomerates enter the bloodstream
transmitting the infection [7].

In previous studies, the focus of researchers has been on the diversity and molecu-
lar biology of the pathogenic bacteria, whereas the flea species have been studied much
less comprehensively. In terms of population genetic data, the best studied flea species—
Ctenocephalides felis, Ctenocephalides canis, Pulex irritans, Tunga penetrans and Xenopsylla
cheopis—are those that are synanotropic. Investigating the diversity of these species has re-
vealed intriguing details of their evolutionary history and candidate cryptic species [8–11].

Here, we studied populations of C. tesquorum (Wagner, 1898) [12], which are ac-
tive vectors of Y. pestis in the vast Palearctic territories [5,13]. This species parasitizes
various ground squirrels (Spermophilus spp.) in the steppe and mountain regions of
Southern Europe, the Caucasus, the Volga region, Central Asia, and Southern Siberia,
including Transbaikal and South of Yakutia, Mongolia and Northern regions of China [6].
Nine subspecies of C. tesquorum have been described; however, their taxonomic status
is under question, because the diagnostic morphological traits vary greatly [14–16], and
genetic differences between populations in different regions are unknown.

The aim of this study was to clarify the relationship between two broadly distributed
subspecies, C. t. altaicus and C. t. sungaris, which are the main active vectors in several
natural plague hot-spots. These subspecies are common in the Altai, Baikalia, Yakutia,
Eastern Mongolia and Outer Manchuria territories. In general, C. t. altaicus is found in the
West, and C. t. sungaris is found in the East, and sympatry is noted in some Mongolian
regions. Some authors previously defined C. t. sungaris as an independent C. sungaris
species [15,17,18]. This research estimated the isolation between subspecies in order to
elucidate their taxonomic status. Adult fleas were collected from populations in the Tuva,
Baikalia, Transbaikalia and Yakutia territories. Analysis of the samples compared the
mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) gene, the internal
transcribed spacer 1 (ITS1) and ITS2 regions of the nuclear ribosomal gene, and the Wol-
bachia-infection status, which could be an additional indicator of reproductive isolation
between C. t. altaicus and C. t. sungaris populations.

2. Materials and Methods
2.1. Sample Collection

We sampled adult fleas from 16 localities in 2019 and 2020 (Table 1 and Figure 1). Two
methods of flea sampling were employed, both of which were conducted according to
methodological guidelines MU 3.1.3012-12 of the Federal Centre for State Sanitary and
Epidemiological Supervision of Rospotrebnadzor. In method one, ground squirrel nests
were excavated, and fleas were collected from the nest substrates. In method two, fleas
were collected from the entrances of ground squirrel burrows using a rubber hose with a
fleece fabric cover; the hose was pushed several times into the burrow entrance, after which
it was examined for fleas. All fleas were stored in ethanol and sent to the Laboratory of Par-
asitology of the Zoological Institute Russian Academy of Science, Saint Petersburg, Russia,
to verify the subspecies status. Details of the subspecies morphological identification
are provided in Table 2, Figures 2 and S1. Briefly, three traits of the head and abdomen
were analysed to discriminate between C. t. sungaris and C. t. altaicus, as well as Citel-
lophilus tesquorum mongolicus and Citellophilus tesquorum dzetysuensis, which were neighbour
subspecies to the South (Figure 1).
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Table 1. Characteristics of data collection and Wolbachia infection.

Subspecies of
Citellophilus tesquorum Population No of Localities No of Samples No of Wolbachia

Infected Samples

sungaris Goloustnenskaya 3 7 0

sungaris Ust-Ordynskaya 2 7 0

sungaris East Torean 2 19 0

sungaris Kudinskaya 1 4 0

sungaris Yakutskaya 1 5 0

altaicus Ulug-Khemskaya 1 15 15

altaicus Saglinskaya 1 9 7

altaicus Karginskaya 2 20 9

altaicus Despenskaya 1 6 3

altaicus Boro-Shaiskaya 1 6 3

altaicus Chozinskaya 1 5 3
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Table 2. Morphological delimitation traits of four Citellophilus tesquorum subspecies.

Trait C. t. altaicus C. t. sungaris C. t. mongolicus C. t. dzetysuensis

Head: ratio of proboscis
apex to coxa

and trochanter

reach apex of coxa, or
middle of trochanter

(Figure 2A)

reach apex of trochanter
(Figure 2B)

reach middle or apex
of trochanter reach middle of trochanter

Abdomen: presence of
membranous appendage

of sternum VIII apical part

present
(Figures 2C and S1A)

absent
(Figures 2D and S1C) absent (Figure S1D) absent (Figure S1B)

Abdomen: presence of
lateral sinus of posterior

margin sternum VIII

absent
(Figures 2E and S1E)

present or absent
(Figures 2F and S1G) present (Figure S1H) no data (Figure S1F)
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Figure 2. Diagnostic characteristics of Citellophilus tesquorum subspecies. Head: ratio of proboscis
(prbs) apex to coxa of (A) C. t. altaicus and (B) C. t. sungaris. Abdomen: clasper (cl) and sternum
VIII (8st) of (C) C. t. altaicus and (D) C. t. sungaris. Abdomen: outline of sternum VII (7st) of (E) C. t.
altaicus and (F) C. t. sungaris. Scale bars = 0.1 mm.
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Before and after morphological verification, the samples were stored in 96% ethanol.
The DNA analysis was carried out in the Laboratory of Molecular Genetics of Insects at the
Institute of Cytology and Genetics, Novosibirsk, Russia. In total, 61 samples of C. t. altaicus
and 42 samples of C. t. sungaris were used in the molecular study.

2.2. DNA Extraction, Amplification and Sequencing

Fleas were individually homogenized in 200 µL of extraction buffer (10 mM TRIS-HCl
[pH 8.0], 25 mM ethylenediaminetetraacetic acid (EDTA), 0.5% sodium dodecyl sulphate
(SDS), 0.1 M NaCl, and 0.1 mg/mL proteinase K) and incubated for 2 h at 56 ◦C. The DNA
extract was precipitated and diluted in 200 µL of deionised water. One microliter of DNA
solution was used for amplification. Three genetic markers were investigated: the nuclear
region including ITS1, ITS2, and 5.8S ribosomal RNA (rRNA); the mitochondrial locus COI;
and the Wolbachia-infection status. The mitochondrial locus was amplified with the primer
set LCO-1490/HCO-2198 [20]. The nuclear marker was amplified with primers that flanked
the 18S and 28S regions as a whole product (2075 base pairs [bp]), or using two overlapping
fragments with primers that flanked the 18S and 5.8S regions and the 5.8S and 28S regions;
the fragments were sequenced with the primers listed in Table 3. All PCR reactions were
performed using BioMaster HS-Taq PCR (2×) (BiolabMix, Novosibirsk, Russia) with a
20 µL volume. The PCR cycling conditions were as follows: initial denaturation 5 min at
95 ◦C; 35 cycles of denaturing at 95 ◦C 15 s, annealing at 55 ◦C for ribosomal DNA and
53 ◦C for mitochondrial DNA 30 s, elongation at 72 ◦C 30 s–1 min 30 s depending on the
expected amplicon size; and final elongation at 72 ◦C—3 min. All specimens were examined
for Wolbachia infection by the nested PCR with the primer set ftsZuniv1/2 for the first
round and ftsZf1/r1 for the second round (for details, see [21]). DNA samples of Drosophila
melanogaster stocks infected with Wolbachia and uninfected [22] were used as positive and
negative controls. The PCR products were visualised on agarose gel (1.5%) electrophoresis.
Amplicons were purified by exonuclease I of Escherichia coli (ExoI; New England Biolabs)
and sequenced by the BrightDye Terminator Cycle Sequencing kit (Nimagen). Sequences
were deposited in the GenBank under accession numbers OL484862–OL484880 for ITS1
and ITS2, and OL504533–OL504557 for COI.

Table 3. Primers used in the study.

Primer Target 5′-3′ Sequence Reference

ITS5-f1 ribosomal region GGAAGTAAAAGTCGTAACAAGG [23]

ITS2-r2 ribosomal region CAAGGTTTCCGTAGGTGAACCTG [24]

ITS1ctf2 ribosomal region CGCGTACAGGCAGATTATCA this study

ITS1ctr2 ribosomal region GCCCGCACTCAAACATTAAA this study

ITS1ctf ribosomal region CGTGCTTCGGTGTGTGTTTT this study

ITS1ctr ribosomal region GGACAAATTCGCTCTCACGC this study

ITS2-f2 ribosomal region GGGTCGATGAAGAACGCAGC [25]

ITS1-r1 ribosomal region GCTGCGTTCTTCATCGACCC [26]

ITS2-f3 ribosomal region GACCACTCCTGGCTGAGG this study

ITS1-r2 ribosomal region CCAGGAGTGGTCCGGGAACAGTATC this study

28S-r2 ribosomal region TAGTTTCTTTTCCTCCGCTTAA this study

28S-r1 ribosomal region GCCGCTACTAAGGGAATCCTA this study

HCO-2198 COI, mitochondrial gene TAAACTTCAGGGTGACCAAAAAATCA [20]

LCO-1490 COI, mitochondrial gene GGTCAACAAATCATAAAGATATTGG [20]

ftsZuniv1 Wolbachia symbiont GG(CT)AA(AG)GGTGC(AG)GCAGAAGA [27]

ftsZuniv2 Wolbachia symbiont ATC(AG)AT(AG)CCAGTTGCAAG [27]

ftsZf1 Wolbachia symbiont ATYATGGARCATATAAARGATAG [28]

ftsZr1 Wolbachia symbiont TCRAGYAATGGATTRGATAT [28]
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2.3. Evolutionary Analysis

In addition to our data, we used sequences deposited in the GenBank database by
other authors; in particular, we retrieved the following accession numbers: EU770311-14
for the analysis of ITS variation; and MG138174, 77, 78, 80 to 83, 91 and 92 (Callopsylla spp.),
KM890971, and MF000642 (C. tesquorum) for the mtDNA variation. Alignments were
generated by the MUSCLE algorithm [29]. DNA polymorphism comprising number of
polymorphic sites (S), number of haplotypes (h), haplotype diversity (Hd), nucleotide
diversity (Pi) and the fixation index (FST) were calculated using DnaSP v5 [30]. The
maximum likelihood (ML) phylogenetic tree for the mtDNA data was reconstructed in
Mega6, and the coefficient of differentiation (GST) was calculated [31]. A Templeton,
Crandall, and Sing (TCS) gene network [32] was produced by PopArt [33] to represent the
genealogical relationships among alleles of nuclear ribosomal genes and their frequencies.
An allele of the Wolbachia ftsZ locus was checked in the Public Databases for Molecular
Typing and Microbial Genome Diversity (PubMLST) [34].

3. Results

Fleas were collected in 16 localities from 11 populations. The geographical bound-
aries of the host and flea populations were considered to be the same [35]. Morphological
identification of the subspecies status was in agreement with the expectation; five eastern
populations were represented by C. t. sungaris and six western populations by C. t. altaicus.
DNA was extracted from 103 fleas: in total, 42 samples were C. t. sungaris and 61 were
C. t. altaicus. All DNA samples were of good quality for PCR analysis, which was checked
by amplification with the universal primers LCO-1490/HCO-2190. The full dataset was
examined for Wolbachia-infection status by nested PCR for bacterial locus ftsZ. All popula-
tions of C. t. sungaris were Wolbachia-negative, whereas all populations of C. t. altaicus were
Wolbachia-positive, giving a total of 66% infected samples (Table 1). The analysed Wolbachia
isolates were characterised by the ftsZ-56 allele clustered into the A-supergroup (Figure S2),
which is common for insects [28].

We sequenced the mitochondrial locus COI with the universal primer set of at least
one sample for each population. The analysis of alignment (25 samples, 587 bp) revealed
values of S = 57 and h = 19; all replacements were synonymous. The values for the Hd and
Pi diversity of the entire population were 0.967 and 0.041, respectively. The values of these
indices for the subspecies were as follows: for C. t. sungaris, S = 18, h = 8, Hd = 0.885 and
Pi = 0.013; and for C. t. altaicus, S = 25, h = 11, Hd = 0.985 and Pi = 0.014. The FST and GST
were 0.794 and 0.668, respectively, indicating a high isolation level between subspecies. The
p-distance between the populations of subspecies was 0.066.

The ML phylogenetic tree of the mtDNA data (Figure 3) had two clades: the first
included all C. t. altaicus and C. t. dzetysuensis retrieved from the GenBank database
(MF000642); and the second included only C. t. sungaris samples. Therefore, the components
of maternal inheritance (mtDNA variation and Wolbachia infection) indicated isolation
between C. t. sungaris and C. t. altaicus.

To estimate the differentiation between subspecies according to nuclear genes, we
sequenced the ITS1 and ITS2 and located 5.8S rRNA locus between them. As with the
mtDNA variation analysis, we aimed to obtain sequences from all populations. However,
ITS1 and ITS2 variation was very low, so we sequenced only 19 samples. Despite the
low variation, the observed polymorphism subdivided the C. t. altaicus and C. t. sungaris
samples. The length of the nuclear sequences was in the range of 1999 to 2001 bp. Five sites
were characterised by an ambiguous signal that could be explained by errors in sequencing
or by heterozygosity, so they were excluded from the analysis. Three isolates of C. t. altaicus
and three of C. t. dzetysuensis were retrieved from the GenBank and added to the analysis.
The final alignment of 25 samples comprised 1968 bp (Figure 4) and was characterised by
the following parameters: S = 12, h = 6, Hd = 0.700 and Pi = 0.00176. The FST and GST
values between the samples of C. t. altaicus and C. t. sungaris were 1.0, demonstrating
complete isolation between the subspecies (see the Supplementary Material).
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4. Discussion

Traditional morphological analyses combined with molecular-genetic investigation
is a powerful approach to clarify relationships at the species level. In previous studies of
fleas, notable results were obtained for Ct. felis whereby the subspecies Ct. f. orientalis was
reclassified as the species Ct. orientalis [8,9], and Ct. f. felis and Ct. f. strongylus were found
to be synonymous [36]. Based on a conflict of genetics and phenotype variation, a wide
morphological plasticity was found in females of the genus Ctenophthalmus [37]. Moreover,
two cryptic lineages (species) were identified within Pulex irritans [11].

Our results clearly demonstrated genetic differences between C. t. altaicus and C. t.
sungaris. The most evident divergence of these subspecies was observed in their mtDNA
data. The genetic distance between the clades of C. t. altaicus and C. t. sungaris was
comparable to the species divergence within the Callopsylla genus, which is closely related
to Citellophilus. In addition, the sequences of C. t. dzetysuensis and C. t. mongolicus derived
by other authors clustered into the C. t. altaicus clade (Figure S3). The data for ITS1 and
ITS2 showed much weaker phylogenetic signals. Only three replacements and one indel
were found per 2 Kbp; however, they were diagnostic for C. t. altaicus and C. t. sungaris
divergence. Additional isolates of C. t. altaicus and C. t. dzetysuensis deposited in GenBank
showed even greater divergence from C. t. sungaris (Figure 4). Finally, the populations
of C. t. sungaris differed from C. t. altaicus in Wolbachia-infection status. The symbiont
was found in all populations of C. t. altaicus, and Wolbachia infection was found in C. t.
dzetysuensis (MF045776–MF045779 and MF04583–MF045786). Notably, Wolbachia infection
is often associated with flea diversity as summarized by Yudina et al. [38]. The sequence
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of the Wolbachia ftsZ gene isolated from C. t. altaicus in our isolates was clustered into the
A-supergroup. The analysis of the wsp locus of Wolbachia isolated from C. t. dzetysuensis
revealed two types of symbionts clustered also into the A-supergroup (Figure S2).

A crucial element of species discrimination is reproductive isolation. We analysed
a hardly accessible report on reciprocal crosses of C. t. altaicus and C. t. sungaris [39]
(see Supplementary Materials). In both cross directions, the number of F1 progeny per
female was in the range of 1.2–6.4, whereas in the control crosses (within subspecies) it
was 45.4–51.0. Low fertility (2.0–5.4) was also observed in the F2 progeny. This indicated
incomplete postzygotic isolation between the subspecies. The authors noted that the
hybrids were slightly larger than the parents, demonstrating higher rates of fluctuating
asymmetry and morphoses. The hybrids were also tested to produce a biofilm of Y. pestis
and to infect laboratory animals [40]. Both parameters were higher in the progeny than
in the parent subspecies. These features could decrease hybrid fitness in the field via
more effective infection of the host population and increased starvation levels due to
Y. pestis infection.

Taken together, the molecular–genetic, geographical, morphological and reproductive
isolation data indicate that the C. t. altaicus and C. t. sungaris are long-term isolated and
could be considered different species. Even from a sceptical perspective, the subspecies
features clearly indicate a case of incomplete speciation. Here, it is important to mention
that Jordan [17], Cyprich et al. [18] and Lewis [15] provided C. t. sungaris as the independent
species C. sungaris.

The next step for our research will be to clarify the relationships among the other
subspecies of C. tesquorum. Preliminary results based on the limited sequences retrieved
from the GenBank database indicate that C. t. mongolicus and C. t. dzetysuensis do not show
significant differences from C. t. altaicus. However, genetic data on Eastern European and
Caucasian populations are lacking to date.
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