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Abstract

Background: Gene expression profiling yields quantitative data on gene expression used to create prognostic models that
accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified
by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-
points might be a more powerful technique to investigate the association of gene expression with outcome.

Methodology/Principal Findings: We explored gene expression profiling data using variable cut-point analysis for 36 genes
with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-
points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To
facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be
identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of
significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g.
HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome
(e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as
FN1).

Conclusions/Significance: Variable cut-point analysis with permutation p-value calculation can be used to identify
significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of
gene effects.
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Introduction

Diffuse large B cell lymphoma (DLBCL) is an aggressive disease

with a variable outcome. In order to quantify patient risk, numerous

biomarkers have been identified that can be detected with a variety

of methods. We recently described the use of a quantitative nuclease

protection assay (qNPA) to measure gene expression levels from

formalin fixed, paraffin embedded (FFPE) tissue blocks of DLBCL

[1]. In a subsequent study of CHOP and rituximab-CHOP (R-

CHOP) treated DLBCL cases, qNPA results for many genes were

significantly associated with overall survival [2]. Initial data analysis

was performed by categorizing patients into expression levels above

and below the median level of expression. The best selected 2-

variable model predicting overall survival in DLBCL was the

combination of the major histocompatibility (MHC) class II antigen,

HLA-DRB, and the cell cycle associated gene, MYC. In agreement

with the literature, these results implicated lack of immunosurveil-

lance and increased cell proliferation as important features that

characterize the most aggressive B cell lymphomas [3–8].

We then further explored the relationship between expression

levels and survival for these two genes. We plotted the score test

statistic (logrank test statistic) from Cox regression for the

association of gene expression quantile and survival, where gene

expression was converted to a binary variable with cut-points

defined along a continuous spectrum of low to high expression [9].

For HLA-DRB, the highest logrank statistic chi-square value

indicating the most significant cut-point of gene expression was at

the 20th percentile. Many other cut-points were also significant [2].

This observation was in keeping with previous data demonstrating

that there is a smooth non-linear association of MHC Class II

expression levels as related to patient risk, with small incremental

decreases in expression corresponding to increases in the hazard

ratio of death with a sharp increase in hazard at lower levels of

expression [10]. For MYC the most significant cut-point was at the

80th percentile of expression. While the 80th percentile was the

optimal cut-point, there was a wide range of cut-point values that

were also nominally significant [2]. This has biological implica-

tions for MYC, suggesting that incremental increases in MYC
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expression portend a worse prognosis with the sharpest increase in

risk at higher levels of expression.

In the current study, we went on to perform this variable cut-

point analysis on 36 genes to determine whether we could identify

genes that might have significant cut-points other than the median

and how that might be a factor in the reported discrepancies in

prognostic value of genes by different investigators and techniques.

Materials and Methods

Ethics Statement
The project was approved by the University of Arizona

Institutional Review Board (IRB) according to the principles

expressed in the Declaration of Helsinki. The University of

Arizona IRB specifically waived the need for informed consent for

this project.

Patient groups and mRNA data
We used the mRNA levels determined using qNPA (ArrayPla-

teR Assay, High Throughput Genomics, Tucson, AZ) as described

previously [1,2]. Briefly, unstained FFPE sections of 209 DLBCL,

previously treated with CHOP-like regimens (N = 93) or R-CHOP

(N = 116) were subjected to the qNPA procedure. This process

begins with cell lysis followed by exposure to specifically designed

probe sets that bind to the target mRNA of interest. S1 nuclease is

used to degrade all single stranded RNA and the surviving probes

are identified by binding to linker probes and detection probes on

the ArrayPlateR followed by chemiluminescence and imaging. The

study set of cases included FFPE blocks from cases of de novo,

previously untreated DLBCL which had also been a part of 2

larger case series using gene expression profiling of snap frozen

biopsies from patients treated with CHOP or R-CHOP and then

later in a study of ArrayPlateR gene expression technique on the

corresponding FFPE blocks [2,11,12]. The customized ArrayPla-

teR assay had been designed to assess the expression levels of 36

prognostic genes identified in DLBCL by different research groups

and published in the literature. A list of the genes, their function (if

known), and the reference from which they were chosen are listed

in Table 1. All research was conducted under an IRB (human

subjects committee) approved protocol from the University of

Arizona. We obtained expression measurements with $95%

success on all but 3 genes, and with #80% success on only one

gene (HTR2B).

Variable cut-point and smooth hazard regression analysis
Variable cut-point (or split-point) analysis was performed on all

36 genes in order to discriminate between groups of patients with

the most significant differences in overall survival. This statistical

technique calculates the score test statistic from a Cox model

(analogous to the logrank statistic) at a continuous spectrum of cut-

points on the gene expression variable [13]. (Typically the

maximum statistic is often used to define best split of patients.)

In the plot (Figure 1), the vertical axis corresponds to the score

statistic on the standard normal scale. To adjust for the evaluation

of the large number of cut-point models, permutation sampling is

used to control the family-wise type 1 error for each gene. The

permutation p-values presented in the cut-point plots are based on

1000 samples, and the horizontal line on each plot corresponds to

the 90th percentile of the sampled permutation distribution of the

maximum test statistic. Therefore, a cut-point statistical test

reaching above the horizontal line has a permutation adjusted p-

value of ,0.10 [9]. Note that the 90th percentile horizontal lines

for the genes are at approximately 2.5 for most gene expression

variables; if there were no adjustment for multiple comparisons, a

value of 1.64 would correspond to a p-value of 0.1. Without this

adjustment there would be the tendency to falsely believe

moderately large test statistics correspond to real association,

when observed associations could simply be due to the large

number of cut-point models that have been investigated. In

addition, to control statistical variability, a minimum possible

subgroup size of 10% of total patients was set for each analysis.

Since our previous test of panel-wide interaction between the

CHOP and R-CHOP groups had shown no significance, we

combined the 2 data sets for purposes of the current analysis [2].

However, the cut-point technique adjusted for treatment group

(CHOP versus R-CHOP) as a main effect in the relative risk

regression model, since R-CHOP is well known to be associated

with improved survival. The cut-point technique also allows for

more general adjustment of an existing prognostic model to assess

the statistical significance of the addition of a new gene expression

variable and cut-point. Analyses presented are based on overall

survival, where overall survival is defined as the time from study

registration until death. Patients without an observed death time

are censored at the last known time under follow-up.

While the cut-point evaluation allows the assessment of

statistical significance of multiple partitions of a gene expression

variable, it does not directly lead to an estimate of the underlying

regression function representing how gene expression is associated

with survival. Therefore, we also used hazard regression modeling

(based on a B-spline basis) to calculate smooth estimates of the

hazard function for each gene [14]. An alternative estimation

strategy for smooth hazard regression functions is by local

likelihood [15]. In addition, we transformed each gene expression

variable to be approximately uniformly distributed to make the

analysis consistent with the cut-point analysis, which only depends

on the rank of the gene expression variables. As done for the cut-

point analysis, we adjusted for the two treatment groups (CHOP

versus R-CHOP) via main effect in the relative risk regression

model.

While our combination of cut-point analysis and smooth hazard

regression modeling is useful for interpreting individual effects of a

small set of continuous biological measurements, such as gene

expression with censored survival patient outcome, there are other

related statistical methods available for multivariable modeling

and subgroup analysis. For instance, with respect to smooth

regression modeling, there has been considerable study of

generalized additive models, which consist of additive combina-

tions of smooth univariate regression functions. For deriving

subgroups in the context of many variables, the cut-point methods

we proposed can be utilized recursively to cut-up or partition the

data on multiple covariates to construct regression trees [16].

There is an extenstive discussion of other statistical or machine

learning algorithms in Hastie et al. [17]. Due to the complexity of

some of the multivariable models, their use is often better applied

to patient prognostic predictions or subgroup stratification rather

than probing the interpretation and clinical impact of individual

gene expression measurements. In addition, alternatives to the

smooth hazard regression models based on locally estimated

quantiles of the survival distribution can be helpful for exploring

gene effects [18]; however, we chose the hazard based methods for

our exploration of DLBCL gene expression data given the

relatively modest sample size. In addition, hazard regression

methods tend to achieve better variance control in such cases.

Results

We first generated a series of graphs for each of the 13 genes

with significant logrank statistic (Z-value) (Fig. 1). The different

DLBCL Gene Expression Variable Cut-Point Analysis
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Table 1. Prognostic genes tested1.

Name in original reference Alternative names qNPA name Reference Function

BCL-6 BCL6* Rosenwald
1/Lossos 6

Transcriptional repressor that controls
germinal center formation [26,27]

IMAGE 1334260 centerin/GCET1 (germinal center
B-cell expressed transcript 1)

SERPINA9* Rosenwald 2 Serpin (serine protease inhibitor) [28]

IMAGE 814622 GCET2 (germinal center B-cell
expressed transcript 2)/HGAL
(human germinal center-
associated lymphoma)

GCET2 Rosenwald 3 Membrane-associated protein with a
putative role in signal transduction [29];
myosin-interacting protein that is a
putative inhibitor of cell migration [30]

HLA-DPa HLA-DPA1 Rosenwald 4 Antigen presentation [31]

HLA-DQa HLA-DQA1 Rosenwald 5 Antigen presentation [31]

HLA-DRa HLA-DRA Rosenwald 6 Antigen presentation [31]

HLA-DRb HLA-DRB* Rosenwald 7 Antigen presentation [31]

alpha-actinin ACTN1* Rosenwald 8 Non-muscle a-actinin isoform involved in
bundling actin filaments and attaching
them to focal adhesions; important for
cell motility [32]

collagen type III alpha1 COL3A1* Rosenwald 9 Type III fibrillar collagen; part of the
extracellular matrix in lymph nodes
[33,34]

connective tissue growth factor CTGF* Rosenwald 10 Heparin and integrin binding protein
involved in extracellular matrix
remodeling [35]

fibronectin FN1* Rosenwald 11/Lossos 5 Extracellular integrin ligand involved in
cell adhesion [36]

KIAA0233 Piezo1 FAM38A Rosenwald 12 Multipass transmembrane protein
involved in mechanotransduction and
regulation of integrin activation [37,38]

urokinase plasminogen
activator

Urokinase/uPA PLAU* Rosenwald 13 Serine protease that activates
plasminogen which results in extracellular
matrix degradation [39]

C-MYC MYC* Rosenwald 14 Transcription factor that controls
proliferation, growth, metabolism,
microRNAs and apoptosis [40]

E21G3 Nucleostemin NS C20orf155 Rosenwald 15 Nucleolar GTP-binding protein that
regulates cell cycle by regulating p53 and
maintains nucleolar structure [41,42]

NPM3 Nucleophosmin 3 NPM3 Rosenwald 16 Nucleolar protein that inhibits ribosome
biogenesis and histone assembly and
enhances transcription [43,44]

BMP6 Bone morphogenetic protein-6 BMP6 Rosenwald 17 Cytokine that regulates B-cell
lymphopoiesis [45]

LMO2 LIM domain only-2 LMO2 Lossos1 Transcription factor that regulates
erythropoiesis and angiogenesis [46,47]

BCL2 BCL2 Lossos 2 Membrane bound protein that prevents
apoptosis [48]

SCYA3 MIP-1a(macrophage inflammatory
protein-1)

CCL3 Lossos 3 Chemokine that recruits cells to sites of
inflammation and inhibits hematopoietic
stem cell proliferation [49]

CCND2 Cyclin D2 CCND2* Lossos 4 Activator of cell cycle progression [50]

DRP2-dystrophin related
protein 2

DRP2 Shipp 1 One of a class of structural proteins that
maintains membrane–associated
complexes at the points of intercellular
contact [51]

PRKACB-protein kinase
C beta 1

PKCbII PRKCB1* Shipp 2 Serine/threonine-specific kinase that
plays a role in B-cell receptor signaling
and B-cell development [52]

H731-nuclear antigen Programmed Cell Death 4 PDCD4* Shipp 3 Protein translation initiation factor
inhibitor that is a putative context-
specific tumor suppressor [53,54]

DLBCL Gene Expression Variable Cut-Point Analysis
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cut-point values assessed for each gene are represented by the dots

along the connected line of chi-square values. The solid horizontal

line represents the 90th percentile of the permutation distribution

of the maximal score statistics under the assumption the gene is not

associated with patient outcome (i.e., under the null hypothesis).

Given the exploratory nature of this analysis, all values with a

significance cut-off above the 90th percentile line (type 1 error of

0.10) were considered significant. An overall p-value adjusted for

the permutation analysis is presented on each of the panels. Note

that only score statistics for cut-points that generate subgroups of

patients with $10% of the sample size were considered, since

smaller groups would probably not be considered useful clinically.

We think it is useful to plot the cut-point analysis against the

quantile of the gene expression distribution so that one could just

read what fraction of the sample is above or below the cut-point.

Thirteen out of the 36 genes (36%) had at least 1 significant cut-

point at p,0.10, including SERPINA9, HLA-DRB, ACTN1,

COL3A, CTGF, FN1, PLAU, MYC, BCL6, CCND2, PRKCB1,

PDCD4, and TLE1. Of these, 10 (77%) would have been

significant at a pre-specified cut-point at the median (SERPINA9,

ACTN1, COL3A, CTGF, PLAU, MYC, BCL6, CCND2,

PDCD4, and TLE1) and 3 genes (or a relative 23% of the 13

genes) would not have been significant (HLA-DRB, FN1, and

PRKCB1). Therefore, the median cut-point analysis would have

missed detecting the significance of a notable selection of genes.

Inspection of the graphs revealed patterns that allowed us to

classify the results into 3 different groups. The first group was

defined as those genes with the significant cut-points only below

the median. The second group was defined as genes with

significant cut-points only above the median. The third group

was defined as genes with significant cut-points above, below, or

including the median.

The single gene in the first category was HLA-DRB, with the

highest chi-square values all below the median and the most

significant cut-point at the 20th percentile. This pattern is

consistent with a gene whose loss is associated with poor outcome.

The two genes that fell into the second category, showing

significant cut-points above the median gene expression values,

were CCND2 and PRKCB1. CCND2 is G1/S-specific regulator

of cyclin-dependent kinases, and PRKCB1 functions as a serine-

and threonine-specific protein kinase. This second pattern is

consistent with genes whose over-expression is associated with

poor outcome.

Ten genes fell into the third category, with significant cut-points

above and below the median gene expression values. The genes in

this category included ACTN1, COL3A, FN1, CTGF, PLAU,

Name in original reference Alternative names qNPA name Reference Function

39 UTR of unknown protein Microtubule-Associated
Protein 1B

MAP1B Shipp 4 Protein that stabilizes microtubules,
attaches other proteins to microtubules
and has a putative role in microvessicle
trafficking [55,56]

Transducin-like enhancer
protein 1

Groucho TLE1* Shipp 5 Transcriptional co-repressor involved in
differentiation of hematopoietic cells
[57,58]

Uncharacterized citrin SLC25A13 Shipp 6 Mitochondrial inner membrane aspartate-
glutamate carrier that moves aspartate to
the cytosol and NADH reducing
equivalents into the mitochondria [59,60]

PDE4B Phosphodiesterase 4B,
cAMP-specific

PDE4B Shipp 7 Phosphodiesterase that degrades cAMP
to inactivate cAMP signaling [61]

Uncharacterized UDP-Gal:betaGlcNAc
b-1,4-galactosyltransferase
polypeptide 1

B4GALT1 Shipp 8 Enzyme that transfers galactose to
glycoproteins in a steriospecific manner;
galactoproteins are involved in immune
cell trafficking [62]

PRKCG Protein kinase C, gamma PRKCG Shipp 9 Serine/threonine–specific kinase
activated by lipid signals and reactive
oxygen species [63,64]

Oviductal glycoprotein MUC9 OVGP1 Shipp 10 Glycoprotein secreted by oviduct
epithelial cells under estrogen control
[65]

(MINO/NOR1) Mitogen induced
nuclear orphan receptor

NR4A3 Shipp 11 Nuclear hormone receptor that regulates
metabolism and inhibits leukemogenesis
in a ligand-independent manner [66,67]

Zinc-finger protein C2H2-150 ZNF212 Shipp 12 Putative transcription factor [68]

5-Hydroxytryptamine 2B receptor HTR2B Shipp 13 Serotonin receptor isotype involved in
tumorigenesis [69,70]

Catalase CAT Tome 1 Peroxisomal enzyme that metabolizes
H2O2 [71]

Manganese superoxide dismutase SOD2 Tome 2 Mitochondrial enzyme that metabolizes
superoxide [72]

1Last names with numbers refer to genes that are members of prognostic gene signatures previously reported in A. Rosenwald et al, I. Lossos et al, M. Shipp et al, and M.
Tome et al. [12], [73], [74], [75].

doi:10.1371/journal.pone.0022267.t001

Table 1.Cont.
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TLE1, PDCD4, MYC, SERPINA9, and BCL6. The first 5 of

these 10 genes code for extra-cellular molecules. PDCD4 codes for

an apoptosis related molecule, MYC is associated with prolifer-

ation and other cellular processes, while SERPINA9 and BCL6

are related to germinal center formation. While it wasn’t explored

in this analysis, an extended strategy for constructing prognostic

groups of patients with significant cut-points at multiple points in

the gene expression distribution (i.e., above and below the median)

could be implemented. Here, a stage-wise approach would be

appropriate. First, the maximal cut-point with all of the data

would be identified; this defines two subgroups of patients. Next,

evidence of a significant cut-point in either of the two remaining

subgroups would be assessed. As before, permutation resampling

methods would be used to determine evidence of further cut-

points; this would indicate whether more than two prognostic

groups, based on that gene, are needed.

Analysis of the cut-point graphs indicates whether or not

expression of a particular gene is critical for patient outcome.

However, to understand the impact of increasing or decreasing

expression of a particular gene on patient outcome and gain

insight into the tumor biology we generated hazard regression

functions for the 13 genes with significant cut-points (Fig. 2). A

hazard function that is increasing with respect to gene expression

indicates a worse prognosis (or survival) with higher gene

expression; conversely, a decreasing function implies improved

survival for higher gene expression. The hazard regression

functions confirm the importance of these genes and indicate

whether an increase or decrease in expression is associated with

better or worse patient survival. For example, examination of the

hazard regression functions is in agreement with the known data

on MYC. MYC over-expression in DLBCL results from

translocations, increased gene copy number, or other mechanisms,

and correlates with poor patient outcome [19–21].

In secondary analysis, we assessed whether adjustment for the

International Prognostic Index (IPI) [22] mitigated the effect of

gene expression on survival for the 13 genes described above.

Results were similar, with ten of the 13 genes achieving family-wise

error rate of ,0.10.

Discussion

While a large amount of effort in recent years has been devoted

to evaluating thousands of genes from unfixed, snap frozen tissue,

we have focused on a more detailed analysis of a smaller number

of genes using FFPE. In this paper, we investigated the use of

different cut-points for determining gene significance, which we

applied here for the first time on GEP data for 36 genes on

paraffin embedded tissue. We show that while using the median

cut-point is often useful, the significance of some genes may be

missed when the effect is limited to patients with only markedly

high or low (rather than median) levels of expression.

Therefore, we believe the results more generally show that the

variable cut-point method is a powerful tool to explore the

relationship of gene expression data with outcomes. The strategy

produces a sequence of decision rules to directly identify a group of

patients, and hence, has a potential role in the translation of results

to other studies. The second tool, smooth hazard regression, allows

a finer understanding of the underlying biological relationships of

gene expression with patient survival, but doesn’t produce a

decision rule. Therefore, this pair of tools together allows a fuller

interrogation of gene expression data, an approach which has been

largely overlooked under the current paradigm of performing

simple univariate analyses at a genome-wide level. In practice, the

choice of a cut-point derived by the methods we be propose can be

used if there is not a specific cut-point of interest specified based on

prior research. Our proposal would be to evaluate cut-points over

a range of clinical interest. The choice of cut-point for subsequent

clinical applications would often be the one that gave the largest

test statistic value (or smallest p-value). However, one may choose

other significant cut-point values that lead to larger subgroups

depending on the clinical need in future studies. Importantly,

given the multiple possible cut-points evaluated, the methodology

includes an algorithm (permutation resampling) to control for

potential false positive selection of a cut-point; that is, where there

may not be a true association with patient outcome.

While we have focused our analysis and discussion on the

understanding of individual genes, it is important to note that a

cut-point algorithm can also be used to explore and draw

inferences into whether or not other adaptively selected models

might improve the existing prognostic models. Given a model with

a set of specified variables and cut-points, the method allows one to

statistically evaluate all cut-points over all remaining genes to see if

any other variables would improve model performance. We

assessed whether our prior model that included HLA-DRB and

MYC could be improved by applying this method. We found that

inclusion of the gene PDCD4, with a cut-point at the upper 27th

percentile of its distribution, had an adjusted p-value (controlling

for multiple comparisons) of 0.001 to enter the model. Therefore,

the 3-gene model including HLA-DRB, MYC, and PDCD4

appears to be preferred statistically over the prior 2-gene model.

This improved model would likely not have been evident without

using cut-point methodology.

In this project, a single median cut-point approach would have

missed detecting a notable subset (23%) of the genes that were

most significantly associated with survival at lower or higher

expression cut-points. This may account for differences in

significance of certain genes reported between different studies.

Since a near complete loss of gene expression or high over-

expression may be a relatively infrequent event for certain genes in

some tumor types, these 2 categories of genes may be overlooked

in general data analysis using median cut-points. We note that

both in this data set and others, the statistically significant

association of HLA-DR gene expression with survival would have

been missed if only the median value of expression had been

investigated.

Laboratory methods that either minimize or maximize signal will

tend to underestimate the significance of genes with significant data

cut-points at lower or higher levels of gene expression. For example,

immunohistochemistry (IHC) often runs the chemical reaction through

to equilibrium and may therefore over-estimate protein expression of

genes by favoring a strong positive reaction. Furthermore, IHC is

usually interpreted with simple descriptions of positive and negative

staining based on visual inspection. Therefore, IHC strongly

Figure 1. Graphs for each of the 13 genes with a significant logrank statistic (Z-value). On the Y-axis, an unadjusted score statistic of 2
corresponds to a p-value of approximately 0.05. On the X-axis, a value of 0.1 corresponds to the 10th percentile of gene expression, 0.2 to the 20th

percentile, and etc up to the 90th percentile of expression. Different cut-point values assessed for each gene are represented by the dots along the
connected line of chi-square values. The solid horizontal line represents the 90th percentile of the permutation distribution of the maximal score
statistics. The range on the x-axis is from 10% to 90% of the distribution of the gene expression variable. An overall p-value adjusted for the
permutation analysis is shown along the right sided Y-axis.
doi:10.1371/journal.pone.0022267.g001
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dichotomizes data and may miss the significance of lower or higher

amounts of protein. Conversely methods that rely on high amounts of

target for detection may also not reveal genes that are most significant

at low levels of expression. It is therefore apparent that quantitative

data with an appropriate dynamic range will be the most effective for

exploring gene and protein expression patterns that play a prognostic

role in DLBCL and other cancers. This factor might account for some

of the discrepancies seen between gene expression and follow up

confirmatory studies on their protein products.

By grouping similar hazard regression function patterns, we can

speculate about the biological roles of the significant genes in

DLBCL. These groups can differ somewhat from the categories

generated in the cut-point analysis. Genes for which high

expression is correlated with poor survival could be roughly

described as oncogenes. MYC is a charter member of this

category. Inspection of the MYC hazard regression function

indicates that incremental increases have incremental effects on

survival. This category would include CCND2, a protein closely

related to proliferation, which has long been linked to outcome in

DLBCL and mantle cell lymphomas [7,12,23]. PDCD4 also fits

this pattern in DLBCL although studies in other cell types suggest

PDCD4 can play a tumor suppressor role in other contexts [24].

Another hazard ratio pattern could be roughly described as

genes for which loss of expression is associated with poor outcome.

These genes have characteristics of tumor suppressor genes and

include HLA-DRB. The pattern for HLA-DRB, which shows a

sharp increase in hazard at lower levels of expression, also fits our

previous data showing a loss of HLA-DRB is associated with poor

outcome [2]. Previously, we had demonstrated an incrementally

worse overall survival in patients as average major histocompat-

ibility class II (MHC II) gene expression values (of which HLA-

DRB is a principle gene) decreased by quantiles with the poorest

outcome in patients at the 25th percentile and below [10]. The

current data also agree with our previous analysis that showed a

non-linear association of HLA-DRA (part of the HLA-DR

heterodimer) with patient hazard ratio of death - specifically with

a sharp increase in hazard at lower levels of expression [10]. A

comparison of the hazard regression functions for genes with a less

well understood role in DLBCL to those of MYC and HLA-DRB

provide insight as to their biological significance.

A third hazard ratio pattern is the genes with impact on survival

especially at high and low expression. This pattern is most

pronounced for COL3A1 and FN1, but PLAU also has this

pattern. A gene expression pattern like this argues for threshold

effects rather than a rheostat where incremental increases have

incremental effects on survival. This type of pattern could reflect a

requirement for other proteins in a complex to exert the full

biological effect. Alternatively, this pattern could reflect a different

impact of the gene in subgroups of DLBCL such as the cell of

origin subtypes previously identified by GEP including germinal

center B cell and activated B cell types [11,12,25]. The

information from the hazard regression functions provides the

basis for developing testable hypotheses to determine the

importance of these genes for DLBCL biology.

In summary, we have demonstrated a method of statistical

analysis that can be applied to GEP data and may reveal

interesting associations with patient outcome. In particular, when

data are evaluated by being split at expression levels other than the

median, additional genes that correlate with patient outcome may

be identified. A key component of the analysis is the use of the

appropriate statistical techniques to control for false positive

findings. To this end we have found re-sampling (in this study

permutation sampling) to be extremely useful strategy to avoid

over interpretation of flexible exploratory analysis such as cut-

point techniques. Finally, while these genes and their cut-points

will need to be validated in future studies, the results presented

here may serve as hypothesis generating tools in regards to the use

of particular genes at particular cut-points with possible implica-

tions for gene and tumor biology.

Software implementing the adjusted cut-point analysis is

available from the final author.
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