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Abstract
Landscape context affects predator–prey interactions and predator diet composition, 
yet little is known about landscape effects on insect gut microbiomes, a determinant 
of physiology and condition. Here, we combine laboratory and field experiments to 
examine the effects of landscape context on the gut bacterial community and body 
condition of predatory insects. Under laboratory conditions, we found that prey diver-
sity increased bacterial richness in insect guts. In the field, we studied the performance 
and gut microbiota of six predatory insect species along a landscape complexity gradi-
ent in two local habitat types (soybean fields vs. prairie). Insects from soy fields had 
richer gut bacteria and lower fat content than those from prairies, suggesting better 
feeding conditions in prairies. Species origin mediated landscape context effects, sug-
gesting differences in foraging of exotic and native predators on a landscape scale. 
Overall, our study highlights complex interactions among gut microbiota, predator 
identity, and landscape context.
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1  | INTRODUCTION

Animal guts harbor a vast diversity of microbes, as revealed by modern 
DNA-based methods (Bahrndorff, Alemu, Alemneh, & Lund Nielsen, 
2016; Engel & Moran, 2013; Gibson & Hunter, 2010). The gut microbi-
ome may affect host fitness in many ways including host nutrition, reg-
ulating growth rate and stress tolerance, through protection against 
natural enemies, or by mediating host–pathogen interactions (Dillon 
& Dillon, 2004; Douglas, 2009; Ferrari, Darby, Daniell, Godfray, & 
Douglas, 2004; Henry, Maiden, Ferrari, & Godfray, 2015; Ruokolainen, 
Ikonen, Makkonen, & Hanski, 2016). Gut microbes can be vertically 
transmitted or acquired from the environment (horizontal transmis-
sion; Gibson & Hunter, 2010; Mason & Raffa, 2014). In addition, 
the total gut community also includes transient species that cannot 

permanently colonize the gut (Dillon, Vennard, Buckling, & Charnley, 
2005; Erkosar & Leulier, 2014) but may represent a supplementary 
food source, or contribute to digestion (Bouchon, Zimmer, & Dittmer, 
2016). Understanding factors influencing animal gut microbiome com-
position can thus yield important insights into ecological interactions.

Laboratory studies have found that the gut microbial community 
of many arthropod species is affected by host diet (Broderick, Raffa, 
Goodman, & Handelsman, 2004; Lundgren & Lehman, 2010; Mason & 
Raffa, 2014; Wang, Jin, & Zhang, 2011), either through effects of food 
substrates on the persistence of specific microbes, or directly from the 
acquisition of associated microbes (Bili et al., 2016; Chandler, Lang, 
Bhatnagar, Eisen, & Kopp, 2011). In addition, gut microbiota of wild 
insect populations vary geographically, suggesting that differences 
in the local environment can shape microbial assemblages (Adams, 
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Currie, Gillette, & Raffa, 2010; Coon, Brown, & Strand, 2016; Toju & 
Fukatsu, 2011; Yun et al., 2014). The gut microbiome of wild insect 
populations likely represents a sample of microbiota from local food 
and other sources in their surrounding environment (Borer, Kinkel, 
May, & Seabloom, 2013). On a local scale (small quadrats of 0.025 m²), 
correlations among gut microbial richness of two ground-dwelling 
cricket species and prey richness in the habitat have been reported 
(Schmid, Lehman, Brözel, & Lundgren, 2015); yet, the landscape-level 
consequences for mobile organisms such as flying predators have re-
mained largely unexplored.

Predator–prey interactions have frequently been shown to be 
influenced by landscape composition and structure. A multitude of 
studies has investigated numerical responses of predators to the sur-
rounding landscape (Chaplin-Kramer, O’Rourke, Blitzer, & Kremen, 
2011; Gardiner et al., 2009a; Liere et al., 2015), including predator 
movement (Blitzer et al., 2012; Forbes & Gratton, 2011; Schellhorn, 
Bianchi, & Hsu, 2014). If predators use multiple prey items located 
in different habitat types, landscape complexity should be posi-
tively correlated with diet items consumed (Bianchi, Schellhorn, 
& Cunningham, 2013; Bianchi, Schellhorn, & van der Werf, 2009; 
Layman, Quattrochi, Peyer, & Allgeier, 2007; Tscharntke, Klein, 
Kruess, Steffan-Dewenter, & Thies, 2005), resulting in a greater vari-
ety of food-related or environmental microbes in the predators′ guts. 
Yet, systematic studies on the effects of landscape context on preda-
tor gut microbiota are lacking.

Ideally, studies investigating landscape configuration and com-
position are performed in experimental landscapes, where landscape 
attributes are controlled by the experimenter (Hadley & Betts, 2016, 
p. 59). However, such studies are often performed within only a sin-
gle habitat type and cover often cover less than 1 km² (Haddad et al., 
2015); such scales are considerably smaller than the foraging range 
of many insects, including pollinators or predatory beetles. Here, we 
report results from a mensurative experiment, in which study sites are 
selected a priori on a meaningful biological scale. We present evidence 
for landscape-level effects on insect gut microbiota on a scale of sev-
eral thousand km².

Predator fitness may be affected by landscape context directly 
through variability in food quality and quantity. Prior work has shown 
that landscape context is associated with fitness-related measures 
of body condition, such as body size or fat content, in ground-
dwelling predators (Bommarco, 1998; Öberg, 2009; Östman, Ekbom, 
Bengtsson, & Weibull, 2001), but this relationship has not been exam-
ined in mobile arthropod predators and the role of gut microbes has 
remained elusive. As the microbiome can directly affect the nutritional 
state and health of an organism (Bahrndorff et al., 2016; Borer et al., 
2013; Gibson & Hunter, 2010; Ruokolainen et al., 2016), changes in 
the microbiome associated with the landscape could also have indirect 
microbe-mediated effects on body condition.

In this study, we examined the effects of landscape context on 
the gut bacterial community and body condition of predatory insects. 
We used aphidophagous lady beetles as our study system, as they 
are locally widespread and important natural enemies of aphids in 
agricultural crops (Obrycki, Harwood, Kring, & O’Neil, 2009; Snyder, 

2009) and seminatural habitats (Bianchi et al., 2013). Although aphids 
are their preferred prey, the lady beetles’ food spectrum includes a 
broad range of other soft-bodied arthropods, as well as fungal or 
plant resources (Dixon, 2000; Evans, 2009; Hodek & Honěk, 1996; 
Trilitsch, 1999; Weber & Lundgren, 2009). In a proof-of-concept labo-
ratory experiment, we first show that even a single meal can increase 
the richness and alter the community composition of gut bacteria in 
individual beetles, indicating that diet diversity can affect gut com-
munities. In a mensurative field experiment (Hadley & Betts, 2016), 
we sampled six lady beetle species that differ in their phylogenetic 
relatedness (including three in the same genus), origin (native and ex-
otic), and body size to explore the contribution of host-specific factors 
to differences in the gut microbiome and physiological response to 
landscape context. We tested the effects of landscape context at two 
spatial scales by sampling beetles in two field types with contrasting 
plant diversity: (1) species-rich prairies and soybean monocultures 
that (2) were systematically selected to be surrounded by landscapes 
ranging from low to high proportion of land covered by annual crops 
in southern Wisconsin, USA. We expected that mobile predators that 
forage in prairies have access to a broader range of prey types com-
pared to beetles foraging in soybean and therefore would have a richer 
gut community. Because mobile predators may forage on a landscape 
scale, we further predicted that lady beetles would have a relatively 
simpler gut community when the collection sites are surrounded by 
crop-dominated landscape compared to sites surrounded by more nat-
ural habitats. In addition, we examined whether landscape-mediated 
changes in predator gut microbiota were associated with differences 
in body condition, assessed using estimates of beetle fat content. 
Fat content reflects the available energy reserves for survival and 
reproduction and resistance to nutritional stress (Arrese & Soulages, 
2010; Roma, Bueno, & Camargo-Mathias, 2010). We predicted that 
prairies and landscapes with low proportions of arable land would 
foster greater body condition. We show that changes at the field and 
landscape scale affected the gut bacterial community and physiologi-
cal response of predators, but the direction of the effect differed sig-
nificantly between exotic and native species, raising the possibility of 
inherent differences in habitat use and foraging preferences among 
these groups.

2  | MATERIAL AND METHODS

2.1 | Feeding experiment

In a laboratory feeding experiment, we tested whether a single meal 
has the potential to alter the gut bacterial community of lady beetles. 
Adult Coleomegilla maculata De Greer (pink spotted lady beetle) were 
collected in April 2012 in Arlington, Wisconsin (USA), from dandelion 
flowers where they commonly aggregate in the spring (Harmon, Ives, 
Losey, Olson, & Rauwald, 2000; Figure 1d). Beetles were maintained 
in the laboratory on dandelion flowers and moistened cotton balls for 
7 days to allow their gut bacteria to equilibrate to similar diet environ-
ments. Prior to testing, beetles were starved for 48 hr. The beetles 
were randomly allocated to three treatments: (1) no food (control), 
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(2) a meal consisting of one individual of Acyrthosiphon pisum Harris 
(pea aphid), and (3) a meal consisting of five different prey species 
(one individual each of A. pisum, Rhopalosiphum padi L. (bird cherry-
oat aphid), Aphis gossypii Glover (cotton aphid), and Aphis glycines 
Matsamura (soybean aphid), and three eggs of Spodoptera frugiperda 
JE Smith ([Lepidoptera], beet armyworm). These species represent 
common prey of lady beetles in Wisconsin and the Midwestern USA. 
Beetles that finished their meal completely within 1 hr (n = 19 beetles) 
were transferred into 1.5-ml microtubes containing 70% ethanol and 
frozen at −20 °C (n = 7 for the control, n = 5 for the 1-species diet, and 
n = 7 for the 5-species diet).

2.2 | Field study

We sampled wild populations of lady beetles in southern Wisconsin, 
USA, in 2012. The region is dominated by agricultural row crops 
(mainly corn [Zea mays L.] and soybean [Glycine max L.]) with re-
maining patches of seminatural habitat (i.e., forest, grasslands, 
wetlands). We initially selected 10 prairies and 10 conventionally 
managed soy fields as two field types with contrasting diversity of 
plants and likely associated prey species. The fields were at least 
2.6 km apart (Fig. S1 in Appendix S1). We analyzed the landscape 
composition within a 2 km radius of each field, which is an ecologi-
cal meaningful distance for foraging flights in lady beetles (Woltz & 
Landis, 2014). The proportions of land cover types within each sec-
tor were analyzed with ArcGIS (10.0, ESRI, Redlands, CA, USA) and 
the Geospatial Modeling Environment software (Beyer, 2012) with 
the Cropland Data Layer (CDL, USDA, NASS 2012). As a metric for 
landscape complexity, we used the proportion of annual crop mono-
cultures (0.16–0.77; cropland hereafter) as it represents a habitat 
that is frequented by lady beetles but is intrinsically species poor 
and, in contrast to seminatural habitat, is easy to unambiguously 

categorize. The proportion of cropland and seminatural habitat 
were negatively correlated (Pearson’s r = −.88, p < .001) and the 
later produced essentially the same results when used in the analy-
sis instead.

We sampled each field multiple times by sweep netting or hand 
collection from July through mid-August. During this time, soybean 
aphid (A. glycines) populations usually reach high densities, but in 2012, 
they remained exceptionally low likely due to the severe drought in 
the Midwest (Liere et al., 2015). It was also difficult to find lady bee-
tles (compared to our previous experience), and we succeeded in only 
eight soy fields and nine prairies. In total, we collected 243 beetles 
(n = 139 in prairie, n = 104 in soy) belonging to six aphidophagous 
species (Coccinellidae: Coccinellinae: Coccinellini) including the exotic 
Coccinella septempunctata L. (n = 49), Harmonia axyridis Pallas (n = 72), 
and Hippodamia vairiegata Goeze (n = 59), and the native Cycloneda 
munda Say (n = 16), Hippodamia convergens Guérin-Méneville (n = 25), 
and Hippodamia parenthesis Dejean (n = 22; Gardiner et al., 2009b). 
Collected beetles were immediately placed separately into microtubes 
containing 70% ethanol, transported to the laboratory on ice and pre-
served at −20°C until later analysis.

2.3 | Sample processing

2.3.1 | Gut dissections

For both the beetles from the laboratory experiment and field col-
lected specimens, the analysis of gut bacteria was conducted on dis-
sected alimentary tracts. The beetles were carefully opened ventrally 
with sterilized fine-tipped forceps in individual Petri dishes. Complete 
guts were isolated and stored in new 1.5-ml microtubes containing 
70% ethanol at −20°C. The ethanol was removed before DNA extrac-
tion with the PowerSoil Kit (MoBio Laboratories, Carlsbad, USA).

F IGURE  1 Examples for field study 
sites. (a) Restored prairie; (b) soybean 
field; (d) Harmonia axyridis on aphid-
infested milkweed (Asclepias syriaca 
L.) in a prairie (photo by J. Dreyer); (c) 
Coleomegilla maculata on dandelion 
(Taraxacum officinale L.)

(a) (b)

(c) (d)
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2.3.2 | Analysis of gut bacteria

We characterized the total gut bacterial community of lady beetles 
with Automated Ribosomal Intergenic Spacer Analysis (ARISA), a cost- 
and time-efficient fingerprinting technique. ARISA detects bacterial 
phylotypes based on the length heterogeneity of the intergenic spacer 
region between the 16S and 23S rRNA genes (Fisher & Triplett, 1999). 
ARISA-PCR was performed with 1406f/23Sr (Borneman & Triplett, 
1997), a bacteria-specific primer set with high taxonomic coverage 
(Purahong et al., 2015), as previously described (Shade et al., 2007; 
Yannarell, Kent, Lauster, Kratz, & Triplett, 2003).

We analyzed up to four technical PCR replicates for each sample 
of the feeding experiment due to the low number of biological rep-
lications. No technical replications were used for wild populations. 
Reagent-only controls were included from the PCR step onwards. 
The PCR fragments were separated with a capillary sequencer (ABI 
3730 DNA Analyzer, Applied Biosystems, Foster City, USA). The frag-
ment sizes were determined by comparison with a custom internal 
100–2,000 bp ROX-labeled standard (BioVentures, Murfreesboro, 
USA) using GeneMarker v 1.5 (Soft Genetics LLC, State College, USA). 
Fragments were binned into operational taxonomic units (OTUs). The 
bin size was expanded from 1 bp for small fragments (200–550 bp) to 
2 bp (551–700 bp), 3 bp (701–950 bp) and 5 bp for large fragments 
(951–1,200 bp) to account for the decreasing resolution with increas-
ing fragment size (Abdo et al., 2006). Peaks that resulted from fluo-
rescently labeled fragments were distinguished from the background 
noise by a custom R script (R Development Core Team, 2012) devel-
oped by Jones and McMahon (2009) based on Abdo et al. (2006).

Operational taxonomic units were treated as distinct bacterial taxa, 
and their relative fluorescence intensity was used as a proxy for relative 
taxon abundance within a sample to compare bacterial diversity and com-
munity structure between samples. ARISA can fail to accurately separate 
bacterial taxa at species level when multiple species have the same se-
quence length of the intergenic spacer and the method tends to underes-
timate diversity when species richness is high. Despite these limitations, 
other studies have demonstrated that patterns detected with ARISA are 
similar to those observed with sequencing-based analysis at a fraction of 
the cost (van Dorst et al., 2014; Jami, Shterzer, & Mizrahi, 2014).

2.3.3 | Estimation of body fat content

We visually estimated the fat content in individual beetles during gut 
dissections. Beetles were assigned to the categories low, medium, and 
high fat content (Anderson, 1981): “Low”: little visual fat, mainly ac-
cumulated in the parietal layer; “Medium”, clearly visible fat accumu-
lations also in regions of the gut or reproductive organs; “High”: fat 
filling and expanding the abdomen. Compared to whole body fat ex-
traction, visual estimates of body fat do not provide quantitative data 
but allowed us to distinguish between storage fat and accumulated li-
pids in reproductive organs. Considering the fluctuations in total body 
fat in females during egg laying, estimates of storage fat provide a 
suitable assessment of the nutritional state.

2.4 | Statistical analyses

All statistical analyses were performed in R (version 3.3.1, R 
Development Core Team, 2016) and R-Studio (version 0.99.903, 
RStudio Team, 2015; Data files and R scripts in Appendices S2, S3, 
and S4 ). Means are reported ±1 SD.

2.4.1 | Feeding experiment

For the feeding experiment, technical replications existed for all but 
three samples and were averaged prior to the analysis. The relation-
ship between bacterial richness and the number of prey species in the 
meal (zero in the control, 1-species diet, 5-species diet) was analyzed 
with linear regression. The number of bacterial taxa in a sample was 
log-transformed, and the model included number of technical repli-
cates per sample as known prior weights, giving more weight to sam-
ples with more replications.

We analyzed the gut bacterial community assemblage using 
bacterial taxon relative abundances and calculating Bray–Curtis 
similarities (vegan: vegdist; Oksanen et al., 2017). We tested the 
effects of meal type (control, 1-species diet, 5-species diet) on 
community composition with permutational multivariate analy-
sis of variance (perMANOVA; adonis; Oksanen et al., 2017) and 
permutation tests for the between group homogeneity in multi-
variate dispersions (vegan: betadisper, permutest; Oksanen et al., 
2017; Anderson, 2006; McArdle & Anderson, 2001). Similarities 
between samples were visualized by NMDS (metaMDS; Oksanen 
et al., 2017).

2.4.2 | Field study

Bacterial richness
We tested the effects of host-specific factors, sex, field type, and 
proportion of annual cropland in the surrounding 2 km on the log-
transformed gut bacterial richness using linear mixed-effects mod-
els (nlme: lme; Pinheiro & Bates, 2000). Alternative distributions 
for count data (Poisson, negative binomial) had higher AICc values 
(Akaike’s information criterion corrected for small sample size; ste-
pAICc function, MASS package, corrected for small sample sizes by C. 
Scherber, 2009, http://www.christoph-scherber.de/stepAICc.txt), 
and we therefore decided for a log-transformation of the response. 
For the host-specific factors, we constructed a custom contrast 
matrix that compared the six species according to three different 
attributes: origin (exotic vs. native), size (small vs. large), and genus 
(genus Hippodamia vs. non-Hippodamia; Table 1). Models further 
included sex within species within collection site as a random ef-
fect. Variance heterogeneity between species was accounted for by 
introducing a variance function with different variances estimated 
for each species. Models were simplified based on AICc, starting 
with a model including the three-way interaction. For the reported 
output, parameters were estimated based on restricted maximum 
likelihood (REML).

http://www.christoph-scherber.de/stepAICc.txt
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Bacterial community structure
Bacterial community composition in wild collected species was visual-
ized as in the laboratory experiment with NMDS based on Bray–Curtis 
distances and by mean relative abundance of bacterial taxa per beetle 
species and habitat type (Fig. S2 in Appendix S1). We tested the ef-
fect of species, and species grouped by genus, origin, and body size on 
bacterial composition using separate (one-way) perMANOVA (adonis; 
Oksanen et al., 2017). Species, as the best predictor, was included in 
a model testing the interactions between species and field type, and 
species and proportion cropland. Additionally, we tested the interac-
tion between species and sex. All models included sex within species 
within collection site as random effect. Homogeneity of sample disper-
sion was tested (vegan: betadisper, permutest; Oksanen et al., 2017).

Body fat content
We analyzed the proportion of beetles in three ordinal categories 
(low, medium, and high fat content) using cumulative link mixed-
effects models (ordinal: CLMM; Christensen, 2015) as a function of 
beetle species contrasts, field type, proportion cropland, and bacte-
rial richness as fixed effects and beetle species within collection site 
as random effects. The full models included all two-way interactions, 
and models were simplified as described above. To assess the effect 
of sex, three-way interactions with sex were included in the best fit 
model and deleted from maximal models based on AICc.

3  | RESULTS

3.1 | Feeding experiment

In guts of the 19 beetles from the feeding experiment, we found 313 
bacterial phylotypes (OTUs). The bacterial richness in individual beetle 
guts increased with the number of prey species in the meal (Table 2; 
Figure 2a) from 28 ± 7 (mean ± SD) in the beetles in the unfed (con-
trol) diet, to 31 ± 5 in the 1-species diet, and 39 ± 11 in the 5-species 
diet. Overall, we detected a significant but weak effect of the meal 
type on the bacterial community (perMANOVA; Table 2A; Figure 2b). 
In pairwise tests (Table 2b–d), the gut communities between beetles 
from the 1-species diet and the 5-species diet differed from the con-
trol but not from each other. Nonsignificant differences in sample dis-
persion (Table 2) indicated that the effects were driven by differences 
in the group centroids.

TABLE  1 Custom contrast matrix for lady beetle species

Lady beetle species Genus group Origin Body size

Coccinella 
septempunctata

non-Hippodamia Exotic Big

Cycloneda munda non-Hippodamia Native Small

Harmonia axyridis non-Hippodamia Exotic Big

Hippodamia convergens Hippodamia Native Big

Hippodamia variegata Hippodamia Exotic Small

Hippodamia parenthesis Hippodamia Native Small

Small versus large body size refers to average measures of species elytron 
length (small <4.0 mm vs. big >4.5 mm; Julia Tiede (JT) & Claudio Gratton 
(CG), unpublished data).

TABLE  2 Laboratory experiment results on the effect of meal type on gut bacteria in the gut of C. maculata

Linear model df Estimate ± SE t value p value

(Intercept) 1 3.301 ± 0.07 45.61 <2e−16

Number of prey species 1 0.078 ± 0.02 3.41 .003

Residuals 17

perMANOVA df SS F value p value

(a) All meal types 2 1.13 1.74 .014

Residuals 16 5.20 [R2 = 0.18]

(b) Control versus 1-species diet 1 0.67 2.13 .003

Residuals 10 3.13 [R2 = 0.18]

(c) Control versus 5-species diet 1 0.67 2.12 .008

Residuals 12 3.79 [R2 = 0.15]

(d) 1-species diet versus 5-species diet 1 0.35 1.00 .393

Residuals 10 3.49 [R2 = 0.09]

PERMDISP df SS F value p value

Meal type 2 0.01 0.43 .659

Residuals 16 0.14

Dark grey horizontal lines separate the different analysis. Linear model parameter estimates and standard errors on the effect of meal type on log-
transformed bacterial richness. PerMANOVA results on the effect of meal type on gut bacterial community in multiple (a) and pairwise contrasts (b–d). 
PERMDISP results on homogeneity of multivariate sample dispersion. p values <.05 are reported in bold numbers.
df, degrees of freedom; SE, standard errors; SS, sums of squares.
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3.2 | Field study

3.2.1 | Bacterial richness

In total, we found 551 bacterial taxa (OTUs) in the guts of 243 field 
collected beetles; the mean bacterial richness was 80 ± 20. Most of 
the variance in richness was explained by the differences between 
beetle species, which was higher in the three exotic species than in 
the three native species (Table 3 and Figure 3a; Table S3 in Appendix 
S1). Moreover, exotic and native species responded differently to 
landscape context: the bacterial richness in native species guts in-
creased with increasing proportion of cropland surrounding the col-
lection side, but decreased for exotic species (Tables 3 and Figure 3a; 
Table S3 in Appendix S1). Further, there was an effect of field type 
with higher bacterial richness in beetles collected in soy than in prai-
ries (Table 3; Table S3 in Appendix S1). Sex had no effect.

3.2.2 | Bacterial community structure

The bacterial assemblages were largely associated with beetle spe-
cies identity (perMANOVA; Table 3a and Figure 3b). Origin, genus, 
and body size, also, had significant effects on the community struc-
ture, but the fit of the models was weaker (Table 3b–d). Sex, field 
type (corn vs. soy), and proportion cropland did not explain additional 
variability (Table 3e,f). The detected effects on the bacterial commu-
nity might be partly driven by variances in sample dispersion between 
species (Table 3), but species also had distinct sets of abundant bac-
teria indicating compositional differences among species (Fig. S2 in 
Appendix S1).

3.2.3 | Body fat content

The relative fat content of beetles was associated with species iden-
tity (Tables 3 and Table S4 in Appendix S1). Most beetles of the genus 
Hippodamia contained low body fat. Fat content of the two native 

Hippodamia species, H. convergens and H. parenthesis, increased with 
their gut bacterial richness, but this pattern was not observed in the 
exotic H. parenthesis. Conversely, in the exotic C. septempunctata 
and H. axyridis, beetles with a low gut bacterial richness were fattest 
(Table 3 and Figure 4a; Table S4 in Appendix S1). Gut bacterial rich-
ness also interacted with the proportion of cropland to affect varia-
tion in beetle fat content. Bacterial richness had a negative effect on 
fat content when the proportion of cropland was low and a positive 
effect when the beetles were collected in crop-dominated areas 
(Tables 3 and Figure 4b; Table S4 in Appendix S1). Further, beetles 
collected in prairie had a higher fat content compared to soy (Table 3; 
Table S4 in Appendix S1) and tended to be fatter when the prairie 
was surrounded by cropland, but this interaction was only marginally 
significant (Table 3 and Figure 4c; Table S4 in Appendix S1). When 
sex was included as a fixed effect in the analysis, the interaction be-
tween prairie and the proportion of cropland also became significant. 
Additionally, we found an interaction between crop and sex with only 
females responding positive to increasing proportions of cropland. 
Further, there was an interaction between species and sex (Table S5 
and S6 in Appendix S1).

4  | DISCUSSION

We hypothesized that the diversity and composition of gut microbes 
in mobile arthropod predators would be affected by landscape con-
text, both at the local (field) and at broader (among field, landscape) 
scale. Consistent with this prediction, we found that changes in 
landscape composition were associated with changes in richness of 
bacterial OTUs in the guts of beetles, but this effect was strongly 
species-dependent. In fact, one of the strongest patterns observed in 
this study was the distinct difference in abundance and composition 
of gut bacteria across species of lady beetles. Moreover, a signifi-
cant amount of bacterial community variation, and the response of 
microbes to landscape composition, was related to whether species 

F IGURE  2 Bacterial (OTU) community richness and composition in feeding experiments. (a) Bacterial richness in guts of C. maculata as a 
function of the number of prey species in the meal (zero in the control, 1-species diet, 5-species diet). Points represent individual beetles and 
are scaled based on the number of averaged technical replicates, the black line and gray area show the predictions and 95% confidence interval 
of the linear regression model, respectively. (b) Community composition of bacteria in guts of C. maculata shown as NMDS (2D, stress = 0.19) 
based on Bray–Curtis dissimilarities of the relative abundance of bacterial taxa. Symbols represent individual beetles; colors and enclosing 
polygons refer to meal types.
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were native or exotic, an unexpected finding. Native lady beetles had 
a richer gut bacterial community, and this richness increased as the 
landscape became more crop-dominated; in contrast, the gut bacte-
rial richness of exotic beetles was generally lower than that of natives 
and decreased as the amount of cropland increased in the landscape.

4.1 | Species effects on bacterial richness and 
composition

The significant effect of lady beetle species on the gut bacterial commu-
nity composition raises three nonmutually exclusive hypotheses about 

TABLE  3 Field study results on gut bacteria and fat content of wild populations of lady beetles

Linear mixed model* df denom. df χ2 p value

Species 3 31 177.55 <.001

Field type 1 14 12.22 <.001

Proportion crop 1 14 3.04 .081

Species × proportion crop 3 31 13.27 .004

perMANOVA df SS F value p value

(a) Species 5 27.51 26.89 .001

Residuals 237 48.49 [R2 = 0.36]

(b) Origin 1 5.54 18.95 .001

Residuals 241 70.46 [R2 = 0.07]

(c) Genus 1 5.39 18.39 .001

Residuals 241 70.61 [R2 = 0.07]

(d) Size 1 5.14 17.48 .001

Residuals 241 70.86 [R2 < 0.02]

(e) Sex 1 0.31 1.53 .148

Species × sex 5 1.11 1.08 .413

Residuals 231 47.1 [R2 = 0.38]

(f) Field type 1 0.56 2.85 1.000

Species × field type 4 1.38 1.78 .147

Proportion crop 1 0.32 1.66 .722

Species × proportion crop 5 1.25 1.30 .485

Residuals 226 44.04 [R2 = 0.42]

PERMDISP df SSqs F-value p-value

Species 5 1.39 39.02 <.001

Residuals 237 1.69

Cumulative link mixed model** df denom. df χ2 p-value

Bacterial richness (log) 1 153 0.51 .476

Species 3 34 12.04 .007

Field type 1 13 4.33 .037

Proportion cropland 1 13 0.1 .753

Bacterial richness (log) × species 3 153 10.32 .016

Bacterial richness (log) × proportion crop 1 153 4.20 .043

Field type × proportion crop 1 13 2.97 .085

Dark grey horizontal lines separate the different analysis. Wald chi-square tests from linear mixed model on the effect of species contrasts (native vs. exotic 
origin, small vs. big size; Hippodamia vs. other genera), sex, field type, and proportion cropland on log-transformed bacterial richness. PerMANOVA results 
on the effects of species (a) and species grouped by origin, and size, (b–d), and sex (e), field type and proportion cropland after accounting for the effect of 
species and their interactions with species (f) on the bacterial community. PERMDISP results on homogeneity of multivariate sample dispersion. Likelihood-
ratio tests from cumulative link mixed model results on the effect of beetle species contrasts, log-transformed bacterial richness, field type, and proportion 
cropland on beetle fat content. p values <.05 are reported in bold numbers and p <.10 in italics. Details on parameter estimates and standard errors are 
reported in Table S3 and S4 in Appendix S1.
* Mixed effects model denom. df = 159.
** Cumulative link mixed model denom. df = 153.
df, degrees of freedom; denom. df,  denominator degrees of freedom; SE, standard errors; SS, sums of squares.
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drivers of the composition the gut microbiome. That conspecific beetles 
had similar gut communities, even if they were sampled in different field 
types at distant collection sites, suggest that there may be a core group 
of species-specific bacteria. Lady beetles are frequently infected with 
male-killer bacteria (Majerus & Hurst, 1997; Weinert, Tinsley, Temperley, 
& Jiggins, 2007) but specific associations with gut microbes are largely 

unexplored, as is the case for most predatory insects. Shotgun-sequencing 
of gut contents of lady beetles revealed potential symbionts (Paula et al., 
2016). However, facultative gut symbionts were also detected in omnivo-
rous ground beetles (Lundgren, Lehman, & Chee-Sanford, 2007) and dis-
tinct gut communities in predatory ants (Anderson et al., 2012) and wasps 
(Mrázek, Strosová, Fliegerová, Kott, & Kopecný, 2008).

F IGURE  4 Body fat content in wild 
beetle populations. (a) Effects of the 
interactions of beetle species and log-
transformed gut bacterial taxon richness 
(OTUs), (b) proportion cropland and log-
transformed gut bacterial taxon richness 
(cropland was a continuous variable in the 
model but is shown as low and high for 
illustrative purposes), and (c) field type and 
proportion cropland on the proportion of 
beetles with low, medium, or high body 
fat as predicted by a cumulative link mixed 
modelProportion cropland
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Another potential explanation is that species-specific chemo-
physical characteristics of the gut select for colonization by certain bac-
teria (Dillon & Dillon, 2004; Nelson, Rogers, Carlini, & Brown, 2012). 
However, if this was a strong influencing factor, then we would expect 
that shared evolutionary history of beetles would result in the gut bac-
terial communities of closely related species to be more similar than 
distantly related species (Sanders et al., 2014). However, this was not 
the case for the three species of the genus Hippodamia in our study 
which had distinct bacterial assemblages more associated with whether 
they were exotic or native to the Midwestern USA. Although this study 
was not specifically designed to test for systematic differences in bac-
terial communities as a function of evolutionary relatedness or their ex-
otic vs. native status, the patterns found in the most widespread beetle 
species in this area were strong and warrant additional study.

A third explanation for our findings of species-specific differences 
in gut bacteria relates to differences in their diets, which could result 
in different sets of prey-related bacteria. The laboratory experiment 
demonstrated that beetle gut communities could change relatively rap-
idly even within one species. Similar to our findings, H. axyridis gut mi-
crobes were enriched by aphid symbionts shortly after aphid ingestion 
(Paula et al., 2015). This hypothesis is further supported by a study on 
fruit fly species with distinct feeding habits, whose gut communities 
were different in wild populations but became similar on the same diet 
under laboratory conditions (Chandler et al., 2011). Thus, it is likely that 
at least some of the bacterial variation between lady beetle species 
was due to dietary differences maybe as a result of resource partition-
ing through differences in the dietary breadth, prey preferences, the 
ability to locate prey, preferred areas on a plant to forage, and the like-
lihood of switching habitats (Forbes & Gratton, 2011; Hodek & Honěk, 
1996; Iperti, 1999; Schellhorn & Andow, 2005; Sloggett & Majerus, 
2000). Studies that simultaneously identify food remains and microbes 
in gut contents (Paula et al., 2015; Tiede et al., 2016) could further illu-
minate the relation between diet and the gut microbiome.

4.2 | Landscape effects on bacterial richness and 
composition

Other studies have shown that exotic species often dominate lady 
beetle communities in arable land. In this region, native species are 
mainly found in perennial grasslands and other seminatural habitats 
(Gardiner et al. 2009b; Diepenbrock & Finke 2013; Grez et al. 2013). 
A similar pattern was found for native and exotic spider communi-
ties. An increasing amount of arable land is often associated with 
seminatural habitat fragmentation and more distant remnant patches 
are expected to harbor more dissimilar communities than close ones 
(Tscharntke et al., 2012). Thus, native beetles might have sampled 
a greater beta diversity of microbes from isolated natural habitat 
patches when located in landscapes with a high proportion of crop-
land. The preference of exotic beetles for homogenous agricultural 
habitats (i.e., crops fields) could have led to a reduced exposure to 
bacteria in the environment and therefore a lower gut bacterial rich-
ness. Additionally, a higher pathogen load in agricultural landscapes 
combined with higher antimicrobial defense in exotic species could 

contribute to the pattern of increasing microbial richness with in-
creasing amount of cropland in native but not exotic lady beetles. 
Along these lines, farmland frogs harbored more potentially harmful 
bacteria in their guts than frogs from natural habitats (Chang, Huang, 
Lin, Huang, & Liao, 2016). A strong antimicrobial defense has been 
detected in the exotic H. axyridis (Beckert et al., 2015; Gross, Eben, 
Müller, & Wensing, 2010; Vilcinskas, Mukherjee, & Vogel, 2013) and 
is suggested as a potential mechanism driving invasive predator suc-
cess (enemy release hypothesis; Roy, Handley, Schönrogge, Poland, & 
Purse, 2011).

The specific habitat type in which beetles were collected, soy com-
pared to prairie, was another strong predictor for bacterial richness. 
In contrast, to our expectation that beetles from prairie would have a 
richer gut community, we found more bacterial diversity in the guts of 
beetles from soy. This finding could be partly attributed to a drought 
that affected the soybean plants and aphid populations in southern 
Wisconsin (Mallya, Zhao, Song, Niyogi, & Govindaraju, 2013). The low 
availability of soybean aphids, the principal prey of lady beetles in this 
crop, likely increased the consumption of alternative prey (Iperti, 1999; 
Sloggett & Majerus, 2000). A broader diet in soybean would expose 
the beetles to a greater variability of environmental bacteria compared 
to a diet of mainly aphids. In H. axyridis, aphid–symbionts were de-
tected up to 96 hr after aphid consumption (Paula et al., 2015). Prairie 
plant communities were more resilient to the drought than row crops 
(Joo et al., 2016) and likely allowed the aphidophagous lady beetles in 
our study to be more selective in their prey choice.

Additionally, differences in local food availability between the two 
habitat types could have led to differences in residency time. The bee-
tles we collected in soybean might have switched from another (crop-) 
habitat not long before (Forbes & Gratton, 2011) and carried over bac-
teria and higher food availability in prairie could have increased small-
scale foraging. The lack of information on how much time a beetle has 
spent in the field where it was sampled may to some degree confound 
the local and the landscape scale used in our study.

Studies that compare samples from multiple seasons and years 
could help to further elucidate what shapes the gut community. Our 
results indicate that the total gut community of lady beetles can be di-
vided into a stable and a variable part. The core OTUs that form similar 
gut communities in conspecific beetles collected from different hab-
itats and at distant collection sites are likely also relatively stable be-
tween seasons and years. More transient, food-related bacterial taxa 
should be highly variable and respond to annual and seasonal changes 
in food availability, and the variations might be more extreme in crop-
dominated regions with many ephemeral food sources. For example, in 
a year with high aphid abundance in soy we would expect the pattern 
we found to be reversed, with lower bacterial richness found in bee-
tles from soy as compared to beetles that forage in prairies.

4.3 | Microbe and landscape effects on ladybeetle 
fat content

We posit that the higher gut bacterial richness in beetles from soy 
fields compared to prairies is an indicator of consumption of mixed 
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alternative resources in absence of soybean aphids. This interpretation 
is consistent with the findings that beetles collected in prairie had a 
higher fat content compared to soy-collected beetles, indicating supe-
rior feeding conditions and a better outcome for body condition in prai-
rie compared to aphid–depauperate soy. Landscape context on a broad 
scale had no effect itself but mediated the effect of bacterial richness 
on body fat of beetles: As bacterial richness increased, beetles became 
fatter in agriculturally dominated landscapes, while for beetles col-
lected in landscapes with few crops, higher bacterial richness was as-
sociated with lower fat content. Generalist predators can benefit from 
some proportion of cropland, which periodically provides abundant 
food resources (Rand & Tscharntke, 2007) but may benefit more from 
the inclusion of alternative resource with complementary nutrients in 
simplified landscapes in which they mainly find crop pests. Other stud-
ies on predatory beetle body condition found positive effects of land-
scape heterogeneity (Östman et al., 2001) and succession-related food 
supply and diversity of wildflower habitats (Barone & Frank, 2003).

Although landscape context clearly had an impact on gut micro-
biota, and landscape context and gut microbial richness together 
affected the fat content of lady beetles, the ultimate causal mecha-
nisms remain to be explored. We propose that food resource abun-
dance and diversity in the local habitat could be one of the main 
drivers for both gut bacterial richness and host fat content. Further, 
diet-related bacteria can potentially affect host fitness directly when 
they serve as a supplemental food source, temporarily contribute to 
digestion processes (Bouchon et al., 2016) or facilitate adaption to 
novel food sources (Chu, Spencer, Curzi, Zavala, & Seufferheld, 2013). 
However, if and to what extend a predator benefits from a mixed diet 
(Evans, Stevenson, & Richards, 1999; Harwood et al., 2009; Lefcheck, 
Whalen, Davenport, Stone, & Duffy, 2012; Lundgren, 2009) and di-
verse gut bacteria depends on host species: In our study, the two na-
tive beetles H. convergens and H. parenthesis had more body fat when 
their guts harbored many different bacterial. In contrast, the exotic 
C. septempunctata and H. axyridis were fatter when their gut bacterial 
communities were species poor. This finding might reflect that exotic 
species are better adapted to homogenous conditions in cropland than 
native species and therefore often dominate coccinellid communities 
in cultivated habitats (Bahlai, Colunga-Garcia, Gage, & Landis, 2013).

5  | CONCLUSION

A key finding of this study is that mobile predatory insects have a 
species-specific set of gut bacteria that is stable over a range of envi-
ronmental conditions. However, landscape and habitat-associated dif-
ferences in where they are collected can alter this base assemblage. 
Although the mechanisms for these patterns are not resolved, the 
strong differences between exotic and native species and the con-
trasting effects of landscape context on gut bacteria suggest inherent 
differences in habitat and prey use among these groups. Moreover, 
that landscape context can also affect host performance as indicated 
by fat content, both directly and indirectly via gut microbiota, po-
tentially indicates a novel mechanism through which human-altered 

landscapes can affect invertebrate predators. The method we used 
to analyze gut bacterial communities allowed us to rapidly compare 
samples from multiple species and locations but does not provide in-
formation on taxon identity. Sequencing-based technologies in com-
bination with reference databases for taxon identification are an ideal 
next step. This could help identify the core microbes of different spe-
cies, their relationship to the host and response to environmental fac-
tors. We focused on bacterial microbes which are thought to comprise 
the greatest fraction of organisms in the guts of many insect (Engel 
& Moran, 2013), but further studies could expand the range to other 
potential interaction partners, like fungi, protists, and archaea. Overall, 
our study illustrates the importance of both resource and landscape-
based influences on gut microbiota and their interactions with species-
specific traits including foraging behavior and physiology.
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