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Abstract 19 

Motivation: Large datasets containing multiple clinical and omics measurements for each 20 
subject motivate the development of new statistical methods to integrate these data to 21 
advance scientific discovery.  22 
Model: We propose bootstrap evaluation of association matrices (BEAM), which integrates 23 
multiple omics profiles with multiple clinical endpoints. BEAM associates a set omic features 24 
with clinical endpoints via regression models and then uses bootstrap resampling to determine 25 
statistical significance of the set. Unlike existing methods, BEAM uniquely accommodates an 26 
arbitrary number of omic profiles and endpoints. 27 
Results: In simulations, BEAM performed similarly to the theoretically best simple test and 28 
outperformed other integrated analysis methods. In an example pediatric leukemia application, 29 
BEAM identified several genes with biological relevance established by a CRISPR assay that 30 
had been missed by univariate screens and other integrated analysis methods. Thus, BEAM is 31 
a powerful, flexible, and robust tool to identify genes for further laboratory and/or clinical 32 
research evaluation. 33 
Availability: Source code, documentation, and a vignette for BEAM are available on GitHub 34 
at: https://github.com/annaSeffernick/BEAMR. The R package is available from CRAN at: 35 
https://cran.r-project.org/package=BEAMR.  36 
Contact: Stanley.Pounds@stjude.org  37 
Supplementary Information: Supplementary data are available at the journal’s website.   38 
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Introduction 39 

As omics technologies continue to evolve, increasingly large amounts of data are available for 40 
large cohorts of patients. We often have data from multiple omics platforms (e.g., mRNA 41 
expression, DNA methylation, proteomics, metabolomics, etc.) as well as clinical data on 42 
multiple outcomes (e.g., minimal residual disease [MRD], overall survival [OS], relapse-free 43 
survival [RFS], etc.). For example, The Cancer Genome Atlas (TCGA) program has publicly 44 
available genomic, epigenomic, transcriptomic, proteomic, and outcome data for 33 cancer 45 
types (https://www.cancer.gov/tcga). Similarly, the TARGET 46 
(https://cog.cancer.gov/programs/target) and St. Jude Cloud (https://www.stjude.cloud/) [1] 47 
databases offer a variety of omics data for pediatric cancers. Much of these data are now 48 
available in the Genomic Data Commons (https://gdc.cancer.gov/). These resources present 49 
an exciting opportunity to deepen our understanding of the complex biology of genes and their 50 
roles in disease. The challenge is how to effectively integrate the multiple forms of omics data 51 
to gain clinically valuable insights. 52 

Many multi-omics data integration methods have been developed for dimension reduction and 53 
visualization, such as JIVE [2, 3] BIDIFAC [4], iPCA [5], and sparse CCA [6, 7]. Similar 54 
methods have been specifically developed for multi-omics single-cell data integration, including 55 
MOFA [8], MOFA+ [9], and UMINT [10]. Integrative clustering methods have been developed 56 
as well, like intNMF [11], nNMF [12], iCluster [13], iClusterPlus [14], and iClusterBayes [15]. 57 
While these methods are useful for exploratory analysis and clustering, they do not directly 58 
incorporate outcome data. Some recent methods have been developed to integrate multiple 59 
forms of omics data with a single outcome. These methods mainly focus on matrix 60 
decomposition and factorization, such as JIVE-predict, where matrix factorization “scores” are 61 
included as predictors in models [16] and sJIVE which simultaneously identifies joint and 62 
individual components and predicts a continuous outcome [17]. iPCA has also been extended 63 
to predict a single clinical outcome, using top PCs as predictors in a random forest model [5]. A 64 
Bayesian method, iBAG, uses the underlying biological relationships among molecular 65 
features from different platforms to identify genes related to a clinical outcome [18].  66 

Other multi-omics predictive models include those in the mixOmics R package, which can 67 
integrate multiple omics profiles with a categorical outcome through a variety of dimension 68 
reduction techniques and unsupervised or supervised analyses [19]. One such method is 69 
DIABLO, which extends sparse generalized canonical correlation analysis to classification 70 
problems [20]. LASSO-based predictive models have also been developed, such as the two 71 
novel multi-omics variable selection methods to predict cancer prognosis using Cox models 72 
[21]. However, these methods have not yet been extended to evaluate multiple clinical 73 
outcomes simultaneously. 74 

Many studies still use Venn diagram overlaps to identify genes associated with multiple 75 
outcomes at multiple molecular levels (genomic, epigenomic, transcriptomic, proteomic, 76 
metabolomic). However, this approach is underpowered [22]. Some studies find significant 77 
genes for one platform to generate a gene list to be tested by gene set enrichment analysis 78 
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(GSEA) for another platform [23]. Still, this approach doesn't identify individual genes 79 
associated with multiple outcomes. 80 

To integrate one form of omic data with multiple clinical outcomes, we have previously 81 
developed projection onto the most interesting statistical evidence (PROMISE) [22]. This 82 
permutation-based method was shown to have excellent statistical properties and practical 83 
value. With very limited cohort sizes, we used PROMISE to successfully identify and validate 84 
60 expression probesets, corresponding to 53 prognostic genes, for childhood acute myeloid 85 
leukemia (AML) [24].  86 

We also extended PROMISE to two omics with CC-PROMISE (canonical correlation 87 
PROMISE) [25]. We used CC-PROMISE to integrate two forms of omics data to discover that 88 
demethylation and overexpression of the methylation writer gene DNMT3B are associated with 89 
greater total genome-wide methylation and worse prognosis in pediatric AML [26]. This seminal 90 
discovery provided the scientific rationale for the ongoing multi-center AML16 clinical trial 91 
(clinicaltrials.gov/NCT03164057).  92 

However, PROMISE and CC-PROMISE are limited to evaluating at most two forms of omics 93 
data simultaneously and in their ability to adjust for other factors. These methods account for 94 
covariates by stratification of the test statistic and stratifying permutation. This can be difficult, 95 
especially as the number of covariates grows. When there are too many factors to adjust for, 96 
the size of each stratum becomes prohibitively small. Additionally, PROMISE and CC-97 
PROMISE rely on defining the directions of association that are detrimental or beneficial, which 98 
is not always straightforward in practice.  99 

Here, we propose the bootstrap evaluation of association matrices (BEAM), a novel multi-100 
omics, multi-outcome, integrative analysis method. BEAM relies on bootstrapping rather than 101 
permutation, and thus has some unique capabilities. It allows the evaluation of any number of 102 
omics profiles with multiple outcomes. We can evaluate adjusted and unadjusted analyses 103 
simultaneously and provide a consensus ranking. Compared to permutation tests, the 104 
bootstrap procedure allows for more naturally adjusted analyses.  105 

Methods 106 

Notation 107 

For each of 𝑛𝑛 = 1, … ,𝑁𝑁 subjects, suppose we have collected 𝐶𝐶 clinical outcomes (e.g., minimal 108 
residual disease [MRD], event-free survival [EFS], and overall survival [OS]) and 𝑘𝑘 = 1, … ,𝐾𝐾 109 
types of omics data (e.g., methylation, expression, and genotype data). Suppose there are 𝐹𝐹𝑘𝑘 110 
features (e.g., CpG sites, expression probesets, and single nucleotide polymorphisms [SNPs]) 111 
for each omic data set 𝑘𝑘. We define sets of these omics features by using their genomic 112 
position to map features to gene locations, and call these “gene-feature” sets. Let 𝑠𝑠 = 1, … , 𝑆𝑆 113 
index the gene-feature sets for which the omics data are available and let 𝑃𝑃𝑠𝑠 index the number 114 
of omics features for set 𝑠𝑠. Note that sets can be defined in other ways, such as features 115 
belonging to genes in a pathway or located in a particular chromosome arm.  116 

BEAM 117 
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While BEAM can integrate an arbitrary number of omics datasets and clinical outcomes, we 118 
will focus on an illustrative example with expression, methylation, and genotype data as omics 119 
features, and MRD, EFS, and OS as clinical outcomes (Figure 1). To conduct a BEAM 120 
analysis, we first consider the data layout and define the gene-feature sets. For example, in 121 
Figure 1, we start with an 𝑁𝑁 × 𝐶𝐶 matrix of clinical outcomes. Here, 𝑁𝑁 = 8 subjects and 𝐶𝐶 = 3 122 
for the example outcomes MRD, EFS, and OS. We also have 𝐾𝐾 omics datasets each 𝑁𝑁 × 𝐹𝐹𝑘𝑘. 123 
In this example illustration, 𝐾𝐾 = 3 corresponding to genotype data with 𝐹𝐹1 = 3 SNPs denoted 124 
𝐺𝐺1,𝐺𝐺2,𝐺𝐺3; methylation data with 𝐹𝐹2 = 3 CpG sites denoted 𝑀𝑀1,𝑀𝑀2,𝑀𝑀3; and transcription data 125 
with 𝐹𝐹3 = 3 transcripts denoted 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3. We define the gene-feature sets by mapping these 126 
omics features to two genes based on genomic position. We define the Gene 1 Omics matrix 127 
(Set 1), with 𝑁𝑁 = 8 rows and 𝑃𝑃1 = 4 columns (Figure 1). We also define the Gene 2 Omics 128 
matrix (Set 2) with 𝑁𝑁 = 8 rows and 𝑃𝑃2 = 6 columns. Notice that each set can contain multiple 129 
genomic features of the same type and that a single genomic feature (e.g., 𝐺𝐺2) can be mapped 130 
to multiple sets. In practice, bioinformatic databases such as Ensembl or KEGG can be used 131 
to define gene-feature sets based on genomic location or known molecular interactions.  132 

 133 

Figure 1: BEAM data layout. Align outcome and omic data matrices. Define gene-feature 134 
sets of omic variables by mapping the omics features to genes using genomic position.  135 

Once we have the gene-feature sets defined, we can begin the statistical analysis procedure of 136 
BEAM. For a single gene-feature set, we use the outcome matrix and the omics matrix for that 137 
set to calculate the association estimate matrix (AEM). For example, in Figure 2, we use the 138 
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Gene 1 omics matrix (Set 1), which results in an AEM that is 𝐶𝐶 × 𝑃𝑃1 and shown as the red-blue 139 
heat map. Each entry in this AEM is the association found from a regression model fit for each 140 
outcome, and each omics feature within the set. For example, in the AEM, the association of a 141 
censored event-time outcome with an omic variable can be represented by the regression 142 
coefficient from a Cox model using the omic variable as a predictor of the event-time variable 143 
(possibly adjusted for covariates). Similarly, logistic and linear regression can be used to obtain 144 
coefficients to represent the association of an omic variable with binary and quantitative 145 
outcome variables in the AEM, respectively. Next, this AEM is projected into multi-dimensional 146 
association estimate space, shown as the pink point in the grey plot. The green point 147 
corresponds to the null, that is the point where all the univariate associations are zero (Figure 148 
2a). We use the distance from the observed point to the null (typically the point at which all 149 
regression coefficients equal zero) to determine whether the omic features of this set are 150 
significantly associated with the clinical outcomes. 151 
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Figure 2: (a) For a gene-feature set, build association estimate matrix (AEM) of 153 
regression coefficients from single-feature analyses. Project this observed AEM into 154 
multivariate association estimate space (pink) and compare its distance from the green 155 
null point of no associations. (b) Bootstrap the cases, maintaining the connection of 156 
outcomes and omics features. For each bootstrap resample, construct the AEM and 157 
project into multivariate space (yellow points). (c) After many bootstrap resamples, we 158 
have a cloud of yellow bootstrap points around the pink observed point. Compute the 159 
distance from the observed point of each bootstrap point and the null. Calculate the 160 
BEAM P-value. 161 

We use bootstrapping to determine whether the observed point differs significantly from the 162 
null. We resample the subject IDs with replacements to form new outcomes and Set 1 omics 163 
datasets. Note that we maintain the connection between the omics and the outcome matrices 164 
by resampling subjects. For each new bootstrap dataset, we calculate the AEM and again 165 
project this as a point in the association estimate space, shown as a yellow point in Figure 2b. 166 
We then repeat the bootstrap resampling procedure, resulting in additional points shown in 167 
yellow in the association estimate space. 168 

After performing many bootstrap replicates, we have a cloud of bootstrap points (shown in 169 
yellow) around the pink observed point (Figure 2c). This cloud of bootstrap points is 170 
represented as a 𝐵𝐵 ×  𝑃𝑃1 matrix, as if the bootstraps are observations and the association 171 
estimates are variables. We then compute scaled principal components for this matrix, using 172 
the observed result vector as the center. In PC space, we compute the Euclidean distance of 173 
the null to the observed point and from each bootstrap to the observed. This is equivalent to 174 
Mahalanobis distance [27]. The set-level BEAM 𝑃𝑃-value is defined as  175 

 BEAM 𝑃𝑃 = # bootstrap points further from the observed than is the null
Total # Bootstraps

. 176 

This formula for the p-value is derived by inverting the test technique for confidence interval 177 
calculations [28] in the context of empirical bootstrap confidence interval calculations [29]. In 178 
other words, we invert the empirical bootstrap confidence interval to obtain a bootstrap 𝑃𝑃-179 
value. The calculation of this 𝑃𝑃-value is illustrated Figure 2c. The green ellipse marks the 180 
boundary of the distance from the null point to the observed result. Notice that four bootstrap 181 
points fall outside of this ellipse, indicating that it is further from the observed than is the null. 182 

Since there are 50 bootstrap points in this example, the BEAM 𝑃𝑃-value is 𝑃𝑃 = 4
50

= 0.08. When 183 

the observed is far from the null, very few bootstrap points will fall outside of the ellipse, 184 
leading to a small 𝑃𝑃-value. When the observed is close to the null, nearly all of the bootstrap 185 
points will fall outside of the ellipse, leading to a large 𝑃𝑃-value which indicates a lack of 186 
significance (Supplementary Figure 1).  187 

The BEAM procedure is applied to all gene-feature sets, so that the BEAM 𝑃𝑃-value is 188 
calculated for all sets. We then use the Pounds-Cheng 𝑞𝑞-value method to account for multiple 189 
comparisons [30]. Furthermore, we calculate a distance ratio statistic to evaluate ranking in 190 
case of tied 𝑞𝑞- or 𝑃𝑃-values.  191 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴

. 192 

Any number of integrated analyses or simple analyses can be conducted using BEAM. For a 193 
set, the AEM can be formed using only features from a particular omics platform, or only using 194 
associations with one outcome (Supplementary Figure 2). The AEM could also be formed at 195 
the feature level instead. Additionally, a PROMISE-type analysis could be performed if we 196 
specify a projection vector of the most interesting associations (see [22]). Then the PROMISE 197 
statistic is calculated from the dot product of the z-scaled feature-level AEM and the projection 198 
vector (not yet implemented in software). 199 

Simulations 200 

Design 201 

We evaluated the performance of BEAM through simulation studies. All simulation studies 202 
were conducted in R v. 4.2.0 on the St. Jude Children’s Research Hospital's high-performance 203 
computing facility. Code to implement BEAM is available as an R Package at https://cran.r-204 
project.org/package=BEAMR.  Example simulation study code can also be found on GitHub at 205 
https://github.com/annaSeffernick/BEAM_Paper. 206 

We used a latent variable approach to generate a variety of null and non-null simulation 207 
settings. In each setting, we generated data for one binary outcome, one continuous decimal 208 
outcome, and one censored event-time outcome, 10 SNPs, five methylation markers, and two 209 
expression transcripts. In the null settings, there were no associations between omics features 210 
and outcomes. We also looked at five alternative association structures: (i) 1 SNP associated 211 
with all outcomes, (ii) 1 methylation marker associated with all outcomes, (iii) 1 expression 212 
probe set associated with all outcomes, (iv) 1 SNP, 1 methylation marker, and 1 expression 213 
probe set associated with all outcomes, and (v) all features with all outcomes. Each alternative 214 
association structure was simulated with a moderate or a strong effect size. Additionally, we 215 
varied the sample size for each setting (𝑛𝑛 = 50, 100, 500, 1000), for a total of 44 simulation 216 
settings (4 null settings, one for each of 4 sample sizes; 40 alternative settings defined by 5 217 
association structures x 2 effect sizes x 4 sample sizes). For each setting, we used 𝐵𝐵 = 1000 218 
bootstrap replicates and 𝑟𝑟 = 1000 simulation replicates. For full details on the simulation study 219 
structure, see Supplementary Materials. 220 

BEAM is a very flexible method, and in this simulation study, we fit 33 variations of BEAM for 221 
each simulation setting: 222 

• 1 BEAM overall analysis, integrating all omics features with all outcomes. 223 
• 9 BEAM single omic-single outcome analyses, associating all features of an omic type 224 

with an outcome. 225 
• 10 BEAM SNP analyses, associating each SNP with all outcomes. 226 
• 5 BEAM methylation analyses, associating each CpG site with all outcomes. 227 
• 2 BEAM expression analyses, associating each expression probe with all outcomes. 228 
• 3 BEAM omic-single outcome analyses, associating all omics features with an outcome. 229 
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• 3 BEAM 2 omic analyses, associating all features from 2 omics types with all outcomes. 230 

If there is no further specification, “BEAM” refers to the integrated analysis of all molecular 231 
features with all clinical outcomes available for a particular set. 232 

In these BEAM analyses, we fit logistic regression for the binary outcome, linear regression for 233 
the continuous outcome, and Cox models for the survival outcome. We compared BEAM to 234 
these simple tests of each omic with each outcome. As there were three outcome variables 235 
and 17 omic variables, we evaluated a total of 3x17 = 51 simple association tests in our 236 
simulations. Additionally, we compared the performance of BEAM to existing integrative 237 
methods, PROMISE [22] and CC-PROMISE [25] described in the introduction. We used the R 238 
packages PROMISE and CCPROMISE, available on Bioconductor. PROMISE results are 239 
comparable to the BEAM analyses associating a genomic feature with all outcomes, and the 240 
CC-PROMISE analyses are comparable to the BEAM 2 omic analyses. Finally, we compared 241 
BEAM to two single omics integrative gene set methods: sequence kernel association test 242 
(SKAT) [31] and the global test [32]. SKAT evaluates the association of sets of SNPs with a 243 
single outcome through kernel machine regression [31, 33-36] and was implemented using the 244 
SKAT R package. SKAT has also been extended to survival outcomes [37], which is 245 
implemented in the seqMeta package available on GitHub 246 
(https://github.com/hanchenphd/seqMeta). The global test was designed to test the association 247 
of expression of groups of genes with a binary, continuous, or survival clinical outcome [32, 248 
38]. As the global test is based on a random effects model, it can be applied to methylation and 249 
genotype data as well. We used the R package globaltest in our simulations. These tests are 250 
comparable to the BEAM single omic-single outcome analyses, which integrate possibly 251 
multiple omics features of the same type with a single outcome.  252 

Results 253 

Simulation results can be found in the Supplementary Materials. Table S1 provides details for 254 
all simulation settings including the sample size, effect size, and the associated coefficient 255 
matrix 𝑀𝑀. Table S2 provides the mean 𝑃𝑃-value, Pr(𝑃𝑃 < α) for α =  0.01, 0.05, and purity for each 256 
analysis performed on each simulation setting. Purity is the proportion of true non-zero 257 
associations for a gene-feature set and collection of outcomes. For the null settings, the purity 258 
is zero, and for the settings where all features are associated with all outcomes, the purity is 259 
one.  260 

In the null datasets, where none of the omic features are associated with the clinical outcomes 261 
(Settings 1-4, Tables S1-S2), BEAM maintains the nominal Type I error rate. In the alternative 262 
settings (Settings 5-44, Tables S1-S2), BEAM generally performs better in terms of greater 263 
statistical power as the sample size increases and the number of features associated with the 264 
outcomes increases. In Table 1, the top methods with greatest power and smallest mean P-265 
value are reported for each simulation setting with sample size n=100 and moderate effect size 266 
(d=0.5). At least one BEAM analysis variation is in the top three methods for each setting, and 267 
similar results are observed for the other settings (Table S3). We call the univariate test with 268 
the greatest power the “best simple test.” For example, in Table 1, the best simple test for 269 
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setting 6, which has one truly associated SNP, is the simple test of this SNP (labeled gtyp1) 270 
with the decimal (continuous) outcome. However, the best simple test would not be known in 271 
practice, as we don’t know which genomic features are truly associated with the outcomes of 272 
interest in real data. Fortunately, BEAM analyses often have power similar to that of the best 273 
simple test.  274 

Setting Associated Omic Analysis Method (omic, outcome) Power (0.01) 
6 SNP1 Simple (SNP1, decimal) 0.224 
6 SNP1 BEAM (SNP1, all) 0.211 
6 SNP1 PROMISE (SNP1, all) 0.091 

14 Meth1 Simple (Meth1, decimal) 0.38 
14 Meth1 BEAM (Meth1, all) 0.368 
14 Meth1 Simple (Meth1, binary) 0.142 
22 Expr1 Simple (Expr1, decimal) 0.456 
22 Expr1 BEAM (Expr1, all) 0.417 
22 Expr1 BEAM (Expr, decimal) 0.297 
30 SNP1, Meth1, Expr1 Simple (Expr1, decimal) 0.42 
30 SNP1, Meth1, Expr1 BEAM (Expr1, all) 0.394 
30 SNP1, Meth1, Expr1 Simple (Meth1, decimal) 0.38 
38 All BEAM (all, decimal) 0.697 
38 All BEAM (Meth & Expr, decimal) 0.697 
38 All BEAM (all, all) 0.693 

Table 1: Top 3 methods for each alternative setting with sample size n=100 and effect 275 
size d=0.5. 276 

BEAM is a very flexible method, and in this simulation study, we fit several variations of BEAM 277 
for each simulation setting. Table 2 shows the top BEAM methods in terms of greatest power 278 
and smallest mean 𝑃𝑃-value for each simulation setting with sample size n=100 and moderate 279 
effect size (d=0.5). Consistently, the BEAM variation that tests the true association has the 280 
greatest power, as expected. For example, in setting 6 with one SNP (labeled gtyp1) truly 281 
associated with all outcomes, the BEAM test of this SNP with all outcomes has the greatest 282 
power, followed by BEAM tests that involve all SNP (labeled gtyp) variables. We see similar 283 
patterns for the other settings in Table 2 and all settings in Table S4. These results show that 284 
care must be taken when selecting the type of BEAM analysis to perform. The overall 285 
integration of all omics with all outcomes [BEAM (all, all)] may not have the greatest power in 286 
all application scenarios. A summary of all simulation settings can be found in Supplementary 287 
Figure 5, which shows that a BEAM analysis is in the top three analyses with greatest power 288 
for most settings, and that power improves for BEAM and the other integrated analysis 289 
methods as sample size and effect size increase.  290 

Setting Associated Omic Analysis Method (omic, outcome) Power (0.01) 
6 SNP1 BEAM (SNP1, all) 0.211 
6 SNP1 BEAM (SNP, decimal) 0.029 
6 SNP1 BEAM (SNP & Expr, decimal) 0.027 
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14 Meth1 BEAM (Meth1, all) 0.368 
14 Meth1 BEAM (Meth, decimal) 0.08 
14 Meth1 BEAM (Meth, all) 0.054 
22 Expr1 BEAM (Expr1, all) 0.417 
22 Expr1 BEAM (Expr, decimal) 0.297 
22 Expr1 BEAM (Expr, all) 0.237 
30 SNP1, Meth1, Expr1 BEAM (Expr1, all) 0.394 
30 SNP1, Meth1, Expr1 BEAM (Meth1, all) 0.371 
30 SNP1, Meth1, Expr1 BEAM (Expr, decimal) 0.292 
38 All BEAM (all, decimal) 0.697 
38 All BEAM (Meth & Expr, decimal) 0.697 
38 All BEAM (all, all) 0.693 

Table 2: Top 3 BEAM methods for each alternative setting with sample size n=100 and 291 
effect size d=0.5. 292 

An Application Example: Pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL) 293 

For the application analysis, BEAM analyses were conducted in R-4.3.1 on St. Jude high 294 
performance computing cluster. Table and figure creation were performed in R-4.2.0. The code 295 
of this application is available on GitHub (https://github.com/annaSeffernick/BEAM_Paper).  296 

Data and BEAM Analyses 297 

We applied BEAM to a multi-omics pediatric B-ALL data set of 170 patients from TOTAL XV 298 
(NCT00137111) and TOTAL XVI (NCT00549848) clinical trials who were treated at St. Jude 299 
[39]. Most patients had gene expression, measured with Affymetrix HG-U133 arrays; DNA 300 
methylation, measured with Illumina 450K array; germline genotypes, measured with 301 
Affymetrix Mapping 6.0 or 500KSNP array; and somatic Copy Number Variation (CNV) data 302 
derived from the SNP arrays (Supplementary Figure 6). We integrated these four omics 303 
profiles with five outcomes: dichotomous MRD at protocol day 19 (middle of remission 304 
induction) and day 46 (end of remission induction), continuous LC50of prednisolone (𝑙𝑙𝑙𝑙𝑙𝑙10-305 
transformed; dose of prednisolone required to kill 50% of patient leukemic cells ex vivo), EFS, 306 
and OS. We applied BEAM with Firth-penalized logistic regression [40] for MRD at both time 307 
points, linear regression for log(LC50), and Firth-penalized Cox regression [41] for EFS and 308 
OS, using 1000 bootstrap replicates. Firth-penalization stabilizes regression coefficients for 309 
analyses involving small sample sizes or small number of events [40, 41]. Gene-feature sets 310 
were defined based on Ensembl ID and genomic position [42]. For SNPs and CpG sites 311 
(methylation data), we mapped a feature to a gene-feature set if the feature was within 50kb of 312 
the gene’s start and end position. An automated PubMed literature search was performed to 313 
annotate the top genes from this analysis. We also explored the ability of BEAM to adjust for 314 
additional covariates. We applied BEAM with the same models as described above, except we 315 
additionally included leukemia molecular subtype as a categorical variable in each regression 316 
model. We again used 1000 bootstrap replicates. 317 
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This dataset contains 50,353 gene-feature sets. BEAM identified 157 gene-feature sets with 318 
𝑞𝑞 < 0.2 (Table S5), including 26 known leukemia genes identified by an automated PubMed 319 
literature search (Table S6). The BEAM analysis found several genes known to be associated 320 
with leukemia in the literature, such as PLAGL2, CD27, and NOTCH1; these genes were not 321 
identified in the original analysis of this dataset [39]. An adjusted BEAM analysis was also 322 
performed, in which each feature-outcome regression model also included leukemia molecular 323 
subtype as a covariate. The minimum 𝑞𝑞-value from this analysis was 0.804. However, of the 324 
157 gene-feature sets identified in the unadjusted BEAM analysis, all had this minimum 𝑞𝑞-325 
value and 87 had 𝑃𝑃 <  0.05 in the adjusted analysis (Table S7).  326 

One interesting gene identified in the unadjusted BEAM analysis was CD1C, a gene that has 327 
been implicated in other leukemias [43-45] but was not found in univariate screening or by a 328 
customized p-value aggregation method developed for analysis of this dataset in [39]. The p-329 
value aggregation analysis integrated six forms of molecular omics data with the LC50 330 
outcome. CD1C ranked third in this paper's CRISPR knockout screen (see Supplementary 331 
Table 6 in [39]) strongly indicating that it may play a role in glucocorticoid resistance. Chronic 332 
B-cell leukemia cells may improve their survival advantage by suppressing the expression of 333 
CD1C to reduce their interaction with immune cells [43]; also, human T-cells are able to target 334 
CD1C+ acute B-cell leukemia cells [44]. Additionally, research suggests CD1C is prognostically 335 
important in breast cancer [46], cervical cancer [47], and neuroblastoma [48] and also 336 
implicated in cancer-immune system interaction [43, 44, 46].  337 

Clinical plots (Figure 3), bootstrap plots (Supplementary Figure 7), and individual association 338 
test results suggest that SNPs, expression, and methylation are driving the BEAM significance 339 
for CD1C. Expression of probeset 205987_at was positively associated and methylation of 340 
CpG cg04574507 was negatively associated with log(LC50), but these features were not 341 
significantly associated with survival or MRD. SNP_A-2076774 was significantly associated 342 
with OS and MRD at day 46, while SNP_A-8578231 was significantly associated with EFS. 343 
The CD1C gene remained significant in the BEAM analysis adjusting for leukemia molecular 344 
subtype (𝑃𝑃 = 0.049; Table S7). A table of genotype by subtype for the SNPs that map to CD1C 345 
can be found in Table S8. Some additional genes present in the CRISPR screens of [39] that 346 
were identified by BEAM but not the original integrated analysis are GYPE, CCDC114, 347 
ARHGAP18, MAGI3, PARP8, and STRADA.  348 
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Figure 3: Clinical plots for CD1C from BEAM application to TOTAL pediatric B-ALL 350 
dataset. 351 

Discussion 352 

As large datasets containing multiple forms of molecular omics data and multiple clinical 353 
outcomes become publicly available, integrated statistical analysis methods are paramount to 354 
inform biologically meaningful discoveries. Here, we propose a bootstrap-based integrated 355 
analysis method called BEAM that can evaluate the associations of multiple omic variables 356 
with multiple clinical outcomes. This method is implemented in an R Package called “BEAMR” 357 
available on GitHub (https://github.com/annaSeffernick/BEAMR) and CRAN (https://cran.r-358 
project.org/package=BEAMR). In our simulations and applications, BEAM outperformed other 359 
methods in most scenarios. BEAM also maintained type I error rate in null simulation settings 360 
and often had the greatest or second-greatest power in alternative settings.  361 

BEAM also performed well when applied to a pediatric B-ALL dataset. This application 362 
demonstrated the novelty of BEAM, as it was able to integrate four omics variables with five 363 
clinical outcomes, a feat that existing methods could not achieve. BEAM identified both known 364 
leukemia-related genes and novel genes, including CD1C which had not been previously 365 
implicated in pediatric B-ALL and was not found in univariate screens or by another integrated 366 
analysis method in the original data analysis. This gene could be an important prognostic 367 
biomarker or immunotherapy target [49] in pediatric B-ALL and warrants further studies. 368 
Furthermore, CRISPR assays provide experimental evidence that CD1C is functionally 369 
involved in prednisolone resistance [39]. 370 

In addition to integrating an arbitrary number of omics with multiple outcomes, BEAM can also 371 
easily incorporate additional covariates. The association estimates in the AEM can be derived 372 
from regression coefficients of the omics features in multivariate linear regression models that 373 
adjust for confounders or important clinical factors, such as age and sex. Another advantage of 374 
BEAM over PROMISE and CC-PROMISE is that BEAM does not require the user to specify a 375 
projection vector that defines the direction of associations of interest. This flexibility allows for 376 
identifying genes that may be beneficially associated with some outcomes but detrimentally 377 
associated with other outcomes. However, if a PROMISE-type analysis is desired, a projection 378 
vector can be provided (this capability is not yet implemented in the software).  379 

BEAM is also a very flexible and general method that can be used for various types of 380 
integration. After each of the omic/outcome association statistics are calculated, it is 381 
straightforward to calculate the integrated BEAM 𝑃𝑃-value for any combination of features and 382 
outcomes of interest. Another aspect of flexibility is the type of association statistic that can be 383 
input into the BEAM framework. We used regression coefficients, but correlations or even 384 
measures of predictive ability could be used instead. This might require reformulating the null 385 
hypothesis. Since BEAM was developed based on regression coefficients, the null is defined 386 
as a vector of zeros. Other statistics with non-zero nulls could be accommodated, perhaps by 387 
applying a transformation first. Incorporating different statistics into the BEAM framework is an 388 
intriguing area for future work. 389 
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As with other integrated analysis methods, BEAM improves statistical power by combining 390 
information across omics datasets. BEAM computes an empirical p-value as the proportion of 391 
bootstrap association estimate matrices (AEMs) that are farther from the observed AEM in 392 
Mahalanobis distance than the complete null (where no omic variable associates with any 393 
outcome variable). One area of future research is to evaluate the use of these components to 394 
define weights, allowing certain associations to be prioritized. Additional research directions 395 
include improving computational performance to decrease the computation time, incorporating 396 
other types of outcomes (e.g., toxicity, adverse event) in addition to efficacy outcomes, and 397 
applying BEAM to other high-dimensional data types such as imaging data. 398 
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